Homework 8

due December 4, 2001

- (1) A ring R such that $a^2 = a$ for all $a \in R$ is called a Boolean ring. Prove that every Boolean ring R is commutative and a + a = 0 for all $a \in R$.
- (2) (a) Let R be a ring. An element $x \in R$ is called nilpotent if $x^n = 0$ for some n. Prove that the set of all nilpotent elements in a commutative ring is an ideal I. Besides the zero element, the ring R/I has no nilpotent elements.
 - (b) Give an example of a (noncommutative) ring, in which the set of nilpotent elements is not an ideal.
- (3) Let \mathbb{Q} be the field of rational numbers and R any ring. If $f, g: \mathbb{Q} \to R$ are homomorphisms of rings such that $f|\mathbb{Z} = g|\mathbb{Z}$, then f = g.

[Hint: Show that for $n \in \mathbb{Z}$, $n \neq 0$, $f(\frac{1}{n})g(n) = g(1)$].

- (4) Let I be an ideal in a commutative ring R and let $RadI = \{r \in R \mid r^n \in I \text{ for some } n\}$. Show that RadI is an ideal.
- (5) For each part give an example of a ring R with the specified properties:
 - (a) R has a left ideal, that is not a right ideal.
 - (b) R has zero divisors and an ideal I such that R/I has no zero divisors and R/I has at least 17 elements.
- (6) (a) Show that \mathbb{Z} is a principal ideal ring.
 - (b) Every homomorphic image of a principal ideal ring is also a principal ideal ring.
 - (c) \mathbb{Z}_m is a principal ideal ring for every m > 0.

Extra Problem: Prove using Zorn's lemma:

Let R be a commutative ring. Define

$$S = \bigcap_{P \text{ prime ideal of } R} P.$$

Then S is the set of all nilpotent elements of R.

[Hint: If $r \in R$ is not nilpotent, consider the set of all ideals in R which do not contain any power of r.]