Spring 2005

Homework 3

due April 27, 2005 in class

- (1) Artin 11.3.1 (pg. 443)
- (2) Artin 11.5.2 (pg. 444)
- (3) Artin 11.5.5 (pg. 444)
- (4) Artin 11.5.6 (pg. 445)
- (5) For the proof of Theorem 3.8 of Artin Chapter 11 we assumed that factorization exists in the polynomial ring $\mathbb{Z}[x]$. Explain why this is true.
- (6) Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in \mathbb{Z}[x]$ and let $p \in \mathbb{Z}$ be prime. Suppose that the coefficients of f satisfy the following conditions:
 - (a) p does not divide a_n ;
 - (b) p divides a_{n-1}, \cdots, a_0 ;
 - (c) p^2 does not divide a_0 .

Show that f(x) is irreducible in $\mathbb{Q}[x]$. If f is primitive, it is irreducible in $\mathbb{Z}[x]$.

(7) Use Problem 6 to show that $x^4 + 10x + 5$ is irreducible in $\mathbb{Z}[x]$. Show that $x^n - p$ is irreducible in $\mathbb{Z}[x]$ for $n \ge 2$ and p a prime integer. Is it possible to use Problem 6 to show that $x^4 + 1$ is irreducible? (Hint: Combine Problem 6 with Problem 1 with a = b = 1).