Homework Set 1: Exercises on Complex Numbers

Directions: You are assigned the **Calculational Problems** 1(a, b, c), 2(b), 3(a, b), 4(b, c), 5(a, b), and the **Proof-Writing Problems** 8 and 11.

Please submit your solutions to the Calculational and Proof-Writing Problems **separately** at the beginning of lecture on Friday January 12, 2007. The two sets will be graded by different persons.

1. Express the following complex numbers in the form x + yi for $x, y \in \mathbb{R}$:

(a)
$$(2+3i) + (4+i)$$

(b) $(2+3i)^2(4+i)$
(c) $\frac{2+3i}{4+i}$
(d) $\frac{1}{i} + \frac{3}{1+i}$
(e) $(-i)^{-1}$

2. Compute the real and imaginary parts of the following expressions, where z is the complex number x + yi and $x, y \in \mathbb{R}$:

(a)
$$\frac{1}{z^2}$$

(b) $\frac{1}{3z+2}$
(c) $\frac{z+1}{2z-5}$
(d) z^3

- 3. Solve the following equations for z a complex number:
 - (a) $z^5 2 = 0$
 - (b) $z^4 + i = 0$
 - (c) $z^6 + 8 = 0$

- (d) $z^3 4i = 0$
- 4. Calculate the
 - (a) complex conjugate of the fraction $(3+8i)^4/(1+i)^{10}$.
 - (b) complex conjugate of the fraction $(8-2i)^{10}/(4+6i)^5$.
 - (c) complex modulus of the fraction i(2+3i)(5-2i)/(-2-i).
 - (d) complex modulus of the fraction $(2-3i)^2/(8+6i)^2$.
- 5. Compute the real and imaginary parts:
 - (a) e²⁺ⁱ
 (b) sin(1+i)
 (c) e³⁻ⁱ
 - (d) $\cos(2+3i)$
- 6. Compute the real and imaginary part of e^{e^z} for $z \in \mathbb{C}$.
- 7. Let $a \in \mathbb{R}$ and $z, w \in \mathbb{C}$. Prove that
 - (a) Re(az) = aRe(z) and Im(az) = aIm(z).
 (b) Re(z + w) = Re(z) + Re(w) and Im(z + w) = Im(z) + Im(w).
- 8. Let $z \in \mathbb{C}$. Prove that Im(z) = 0 if and only if Re(z) = z.
- 9. Let p be a polynomial with real coefficients and $z \in \mathbb{C}$. Show that p(z) = 0 if and only $p(\overline{z}) = 0$.
- 10. Let $z, w \in \mathbb{C}$. Prove the parallelogram law $|z w|^2 + |z + w|^2 = 2(|z|^2 + |w|^2)$.

11. Let $z, w \in \mathbb{C}$ with $\overline{z}w \neq 1$ such that either |z| = 1 or |w| = 1. Prove that

$$\left|\frac{z-w}{1-\overline{z}w}\right| = 1.$$

12. For an angle $\theta \in [0, 2\pi)$, find the linear map $f_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ which describes the rotation by the angle θ in the counterclockwise direction. *Hint*: For a given angle θ find a, b, c, d such that $f_{\theta}(x_1, x_2) = (ax_1 + bx_2, cx_1 + dx_2)$.