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In this section we are going to study linear maps T : V → V from a vector space to
itself. These linear maps are also called operators on V . We are interested in the question
when there is a basis for V such that T has a particularly nice form, like being diagonal
or upper triangular. This quest leads us to the notion of eigenvalues and eigenvectors of
linear operators, which is one of the most important concepts in linear algebra and beyond.
For example, quantum mechanics is based on the study of eigenvalues and eigenvectors of
operators.

1 Invariant subspaces

To begin our study we will look at subspaces U of V that have special properties under an
operator T ∈ L(V, V ).

Definition 1. Let V be a finite-dimensional vector space over F with dim V ≥ 1, and let
T ∈ L(V, V ) be an operator in V . Then a subspace U ⊂ V is called an invariant subspace
under T if

Tu ∈ U for all u ∈ U .

That is if
TU = {Tu | u ∈ U} ⊂ U.

Example 1. The subspaces null T and rangeT are invariant subspaces under T . To see
this, let u ∈ null T . This means that Tu = 0. But since 0 ∈ null T this implies that
Tu = 0 ∈ null T . Similarly, let u ∈ range T . Since Tv ∈ range T for all v ∈ V , we certainly
also have that Tu ∈ range T .

An important special case is the case of one-dimensional invariant subspaces of an oper-
ator T ∈ L(V, V ). If dim U = 1, then there exists a nonzero vector u ∈ V such that

U = {au | a ∈ F}.
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In this case we must have
Tu = λu for some λ ∈ F.

This motivates the definition of eigenvectors and eigenvalues of a linear operator T .

2 Eigenvalues

Definition 2. Let T ∈ L(V, V ). Then λ ∈ F is an eigenvalue of T if there exists a nonzero
vector u ∈ V such that

Tu = λu.

The vector u is called the eigenvector (with eigenvalue λ) of T .

Finding the eigenvalues and eigenvectors of linear operators is one of the most important
problems in linear algebra. We will see later that they have many uses and applications. For
example all of quantum mechanics is based on eigenvalues and eigenvectors of operators.

Example 2.

1. Let T be the zero map defined by T (v) = 0 for all v ∈ V . Then every vector u �= 0 is
an eigenvector of T with eigenvalue 0.

2. Let I be the identity map defined by I(v) = v for all v ∈ V . Then every vector u �= 0
is an eigenvector of T with eigenvalue 1.

3. The projection P : R
3 → R3 defined by P (x, y, z) = (x, y, 0) has eigenvalues 0 and

1. The vector (0, 0, 1) is an eigenvector with eigenvalue 0 and (1, 0, 0) and (0, 1, 0) are
eigenvectors with eigenvalue 1.

4. Take the operator R : F2 → F2 defined by R(x, y) = (−y, x). When F = R, then R
can be interpreted as counterclockwise rotation by 900. From this interpretation it is
clear that no vector in R2 is left invariant (up to a scalar multiplication). Hence for
F = R the operator R has no eigenvalues. For F = C the situation is different! Then
λ ∈ C is an eigenvalue if

R(x, y) = (−y, x) = λ(x, y),

so that y = −λx and x = λy. This implies that y = −λ2y or λ2 = −1. The solutions
are hence λ = ±i. One can check that (1,−i) is an eigenvector with eigenvalue i and
(1, i) is an eigenvector with eigenvalue −i.

Eigenspaces are important examples of invariant subspaces. Let T ∈ L(V, V ) and let
λ ∈ F be an eigenvalue of T . Then

Vλ = {v ∈ V | Tv = λv}
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is called an eigenspace of T . Equivalently

Vλ = null (T − λI).

Note that Vλ �= {0} since λ is an eigenvalue if and only if there exists a nonzero vector u ∈ V
such that Tu = λu. We can reformulate this by saying that:

λ ∈ F is an eigenvalue of T if and only if the operator T − λI is not injective.

Or, since we know that for finite-dimensional vector spaces the notion of injectivity, surjec-
tivity and invertibility are equivalent we can say that

λ ∈ F is an eigenvalue of T if and only if the operator T − λI is not surjective.

λ ∈ F is an eigenvalue of T if and only if the operator T − λI is not invertible.

Theorem 1. Let T ∈ L(V, V ) and let λ1, . . . , λm ∈ F be m distinct eigenvalues of T with
corresponding nonzero eigenvectors v1, . . . , vm. Then (v1, . . . , vm) is linearly independent.

Proof. Suppose that (v1, . . . , vm) is linearly dependent. Then by the Linear Dependence
Lemma there exists a k ∈ {2, . . . , m} such that

vk ∈ span(v1, . . . , vk−1)

and (v1, . . . , vk−1) is linearly independent. This means that there exist scalars a1, . . . , ak−1 ∈
F such that

vk = a1v1 + · · · + ak−1vk−1. (1)

Applying T to both sides yields, using that vj is an eigenvector with eigenvalue λj ,

λkvk = a1λ1v1 + · · ·+ ak−1λk−1vk−1.

Subtracting λk times equation (1) from this, we obtain

0 = (λk − λ1)a1v1 + · · · + (λk − λk−1)ak−1vk−1.

Since (v1, . . . , vk−1) is linearly independent, we must have (λk − λj)aj = 0 for all j =
1, 2, . . . , k − 1. By assumption all eigenvalues are distinct, so that λk − λj �= 0, which
implies that aj = 0 for all j = 1, 2, . . . , k − 1. But then by (1), vk = 0 which contradicts the
assumption that all eigenvectors are nonzero. Hence (v1, . . . , vm) is linearly independent.

Corollary 2. Any operator T ∈ L(V, V ) has at most dim V distinct eigenvalues.

Proof. Let λ1, . . . , λm be distinct eigenvalues of T . Let v1, . . . , vm be the corresponding
nonzero eigenvectors. By Theorem 1 the list (v1, . . . , vm) is linearly independent. Hence
m ≤ dim V .
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3 Diagonal matrices

Note that if T has n = dim V distinct eigenvalues, then there exists a basis (v1, . . . , vn) of V
such that

Tvj = λjvj for all j = 1, 2, . . . , n.

Then any v ∈ V can be written as a linear combination of v1, . . . , vn as v = a1v1 + · · ·+anvn.
Applying T to this we obtain

Tv = λ1a1v1 + · · · + λnanvn.

Hence the vector

M(v) =




a1
...

an




is mapped to

M(Tv) =




λ1a1
...

λnan


 .

This means that the matrix M(T ) for T with respect to the basis of eigenvectors (v1, . . . , vn)
is diagonal

M(T ) =



λ1 0

. . .

0 λn




We summarize the results of the above discussion in the following Proposition.

Proposition 3. If T ∈ L(V, V ) has dim V distinct eigenvalues, then M(T ) is diagonal with
respect to some basis of V . Moreover, V has a basis consisting of eigenvectors of T .

4 Existence of eigenvalues

In what follows we want to study the question of when an operator T has any eigenvalue. To
answer this question we will use polynomials p(z) ∈ P(F) evaluated on operators T ∈ L(V, V )
or equivalently on square matrices Fn×n. More explicitly, for a polynomial

p(z) = a0 + a1z + · · · + akz
k
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we can associate the operator

p(T ) = a0IV + a1T + · · · + akT
k.

Note that for p, q ∈ P(F) we have

(pq)(T ) = p(T )q(T ) = q(T )p(T ).

The results of this section will be for complex vector spaces. The reason for this is that
the proof of the existence of eigenvalues relies on the Fundamental Theorem of Algebra,
which makes a statement about the existence of zeroes of polynomials over the complex
numbers.

Theorem 4. Let V �= {0} be a finite-dimensional vector space over C and T ∈ L(V, V ).
Then T has at least one eigenvalue.

Proof. Let v ∈ V , v �= 0 and consider

(v, Tv, T 2v, . . . , T nv),

where n = dim V . Since the list contains n+1 vectors, it must be linearly dependent. Hence
there exist scalars a0, a1, . . . , an ∈ C, not all zero, such that

0 = a0v + a1Tv + a2T
2v + · · ·+ anT nv.

Let m be largest such that am �= 0. Since v �= 0 we must have m > 0 (but possibly m = n).
Consider the polynomial

p(z) = a0 + a1z + · · · + amzm = c(z − λ1) · · · (z − λm),

where c, λ1, . . . , λm ∈ C and c �= 0. Note that the polynomial factors because of the Funda-
mental Theorem of Algebra, which says that every polynomial over C has at least one zero.
Call this zero λ1. Then p(z) = (z − λ1)p̃(z) where p̃(z) is a polynomial of degree m − 1.
Continue the process until p(z) is completely factored.

Therefore

0 = a0v + a1Tv + a2T
2v + · · · + anT nv = p(T )v

= c(T − λ1I)(T − λ2I) · · · (T − λmI)v,

so that at least one of the factors T − λjI must be noninjective. In other words, this λj is
an eigenvalue of T .

Note that the proof of this Theorem only uses basic concepts about linear maps, not
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determinants or characteristic polynomials as many other proofs of the same result! This is
the same approach as in the textbook of Axler, ”Linear Algebra Done Right”.

Theorem 4 does not hold for real vector spaces. We have already seen in Example 2 that
the rotation operator R on R2 has no eigenvalues.

5 Upper triangular matrices

As before let V be a complex vector space.
Let T ∈ L(V, V ) and (v1, . . . , vn) a basis of V . Recall that we can associate a matrix

M(T ) ∈ C
n×n to the operator T . By Theorem 4 we know that T has at least one eigenvalue,

say λ ∈ C. Let v1 �= 0 be an eigenvector corresponding to λ. By the Basis Extension
Theorem we can extend the list (v1) to a basis of V . Since Tv1 = λv1, the first column of
M(T ) with respect to this basis is 


λ
0
...
0




What we will show next is that we can find a basis of V such that the matrix M(T ) is upper
triangular.

Definition 3. A matrix A = (aij) ∈ F
n×n is called upper triangular if aij = 0 for i > j.

Schematically, an upper triangular matrix has the form



∗ ∗

. . .

0 ∗




where the entries ∗ can be anything, but below the diagonal the matrix has zero entries.
Some of the reasons why upper triangular matrices are so fantastic are that

1. the eigenvalues are on the diagonal (as we will see later);

2. it is easy to solve the corresponding system of linear equations by back substitution.

The next Proposition tells us what upper triangularity means in terms of linear operators
and invariant subspaces.

Proposition 5. Suppose T ∈ L(V, V ) and (v1, . . . , vn) is a basis of V . Then the following
statements are equivalent:
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1. the matrix M(T ) with respect to the basis (v1, . . . , vn) is upper triangular;

2. Tvk ∈ span(v1, . . . , vk) for each k = 1, 2, . . . , n;

3. span(v1, . . . , vk) is invariant under T for each k = 1, 2, . . . , n.

Proof. The equivalence of 1 and 2 follows easily from the definition since 2 implies that the
matrix elements below the diagonal are zero.

Obviously 3 implies 2. To show that 2 implies 3 note that any vector v ∈ span(v1, . . . , vk)
can be written as v = a1v1 + · · · + akvk. Applying T we obtain

Tv = a1Tv1 + · · ·+ akTvk ∈ span(v1, . . . , vk)

since by 2 each Tvj ∈ span(v1, . . . , vj) ⊂ span(v1, . . . , vk) for j = 1, 2, . . . , k and the span is
a subspace of V and hence closed under addition and scalar multiplication.

The next theorem shows that complex vector spaces indeed have some basis for which
the matrix of a given operator is upper triangular.

Theorem 6. Let V be a finite-dimensional vector space over C and T ∈ L(V, V ). Then
there exists a basis for V such that M(T ) is upper triangular with respect to this basis.

Proof. We proceed by induction on dim V . If dim V = 1 there is nothing to prove.
Hence assume that dimV = n > 1 and we have proved the result of the theorem for all

T ∈ L(W, W ), where W is a complex vector space with dimW ≤ n − 1. By Theorem 4 T
has at least one eigenvalue λ. Define

U = range (T − λI).

Note that

1. dim U < dim V = n since λ is an eigenvalue of T and hence T − λI is not surjective;

2. U is an invariant subspace of T since for all u ∈ U we have

Tu = (T − λI)u + λu

which implies that Tu ∈ U since (T − λI)u ∈ range (T − λI) = U and λu ∈ U .

Therefore we may consider the operator S = T |U , being the operator T restricted to the
subspace U . By induction hypothesis there exists a basis (u1, . . . , um) of U with m ≤ n − 1
such that M(S) is upper triangular with respect to (u1, . . . , um). This means that

Tuj = Suj ∈ span(u1, . . . , uj) for all j = 1, 2, . . . , m.
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Extend this to a basis (u1, . . . , um, v1, . . . , vk) of V . Then

Tvj = (T − λI)vj + λvj for all j = 1, 2, . . . , k.

Since (T − λI)vj ∈ range (T − λI) = U = span(u1, . . . , um), we have that

Tvj ∈ span(u1, . . . , um, v1, . . . , vj) for all j = 1, 2, . . . , k.

Hence T is upper triangular with respect to the basis (u1, . . . , um, v1, . . . , vk).

There are two very important facts about upper triangular matrices and their associated
operators.

Proposition 7. Suppose T ∈ L(V, V ) is a linear operator and M(T ) is upper triangular
with respect to some basis of V . Then

1. T is invertible if and only if all entries on the diagonal of M(T ) are nonzero.

2. The eigenvalues of T are precisely the diagonal elements of M(T ).

Proof of Proposition 7 Part 1. Let (v1, . . . , vn) be a basis of V such that

M(T ) =



λ1 ∗

. . .

0 λn




is upper triangular. The claim is that T is invertible if and only if λk �= 0 for all k =
1, 2, . . . , n. Equivalently, this can be reformulated as T is not invertible if and only if λk = 0
for at least one k ∈ {1, 2, . . . , n}.

Suppose λk = 0. We will show that then T is not invertible. If k = 1, this is obvious
since then Tv1 = 0, which implies that v1 ∈ null T so that T is not injective and hence not
invertible. So assume that k > 1. Then

Tvj ∈ span(v1, . . . , vk−1) for all j ≤ k

since T is upper triangular and λk = 0. Hence we may define S = T |span(v1,...,vk) to be the
restriction of T to the subspace span(v1, . . . , vk)

S : span(v1, . . . , vk) → span(v1, . . . , vk−1).

The linear map S is not injective since the dimension of the domain is bigger than the
dimension of its codomain

dim span(v1, . . . , vk) = k > k − 1 = dim span(v1, . . . , vk−1).
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Hence there exists a vector 0 �= v ∈ span(v1, . . . , vk) such that Sv = Tv = 0. This implies
that T is also not injective and therefore not invertible.

Now suppose that T is not invertible. We need to show that at least one λk = 0. The
linear map T not being invertible implies that T is not injective. Hence there exists a vector
0 �= v ∈ V such that Tv = 0. We can write

v = a1v1 + · · ·+ akvk

for some k where ak �= 0. Then

0 = Tv = (a1Tv1 + · · ·+ ak−1Tvk−1) + akTvk. (2)

Since T is upper triangular with respect to the basis (v1, . . . , vn) we know that a1Tv1 +
· · ·+ ak−1Tvk−1 ∈ span(v1, . . . , vk−1). Hence (2) shows that Tvk ∈ span(v1, . . . , vk−1), which
implies that λk = 0.

Proof of Proposition 7 Part 2. Recall that λ ∈ F is an eigenvalue of T if and only if the
operator T − λI is not invertible. Let (v1, . . . , vn) be a basis such that M(T ) is upper
triangular. Then

M(T − λI) =



λ1 − λ ∗

. . .

0 λn − λ




Hence by Part 1 of Proposition 7, T − λI is not invertible if and only if λ = λk for some
k.

6 Diagonalization of 2 × 2 matrices and Applications

Let A =

[
a b
c d

]
∈ F2×2, and recall that we can define a linear operator T ∈ L(F2) on C2 by

setting T (v) = Av for each v =

[
v1

v2

]
∈ F2.

One method for finding the eigen-information of T is to analyze the solutions of the
matrix equation Av = λv for λ ∈ F and v ∈ F2. In particular, using the definition of
eigenvector and eigenvalue, v is an eigenvector associated to the eigenvalue λ if and only if
Av = T (v) = λv.

A simpler method involves the equivalent matrix equation (A−λI)v = 0, where I denotes
the identity map on F2. In particular, 0 �= v ∈ F2 is an eigenvector for T associated to the
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eigenvalue λ ∈ F if and only if the system of linear equations

(a − λ)v1 + bv2 = 0
cv1 + (d − λ)v2 = 0

}
(3)

has a non-trivial solution. Moreover, the system of equations (3) has a non-trivial solution
if and only if the polynomial p(λ) = (a − λ)(d− λ)− bc evaluates to zero (see Homework 7,
Problem 1).

In other words, the eigenvalues for T are exactly the λ ∈ F for which p(λ) = 0, and the

eigenvectors for T associated to an eigenvalue λ are exactly the non-zero vectors v =

[
v1

v2

]
∈

F2 that satisfy the system of equations (3).

Example 3. Let A =

[−2 −1
5 2

]
. Then p(λ) = (−2 − λ)(2 − λ) − (−1)(5) = λ2 + 1, which

is equal to zero exactly when λ = ±i. Moreover, if λ = i, then the system of equations (3)
becomes

(−2 − i)v1 − v2 = 0
5v1 + (2 − i)v2 = 0

,

which is satisfied by any vector v =

[
v1

v2

]
∈ C2 such that v2 = (−2 − i)v1. Similarly, if

λ = −i, then the system of equations (3) becomes

(−2 + i)v1 − v2 = 0
5v1 + (2 + i)v2 = 0

,

which is satisfied by any vector v =

[
v1

v2

]
∈ C2 such that v2 = (−2 + i)v1.

It follows that, given A =

[−2 −1
5 2

]
, the linear operator on C2 defined by T (v) = Av

has eigenvalues λ = ±i, with associated eigenvectors as described above.

Example 4. Take the rotation Rθ : R2 → R2 by an angle θ ∈ [0, 2π) given by the matrix

Rθ =

[
cos θ − sin θ
sin θ cos θ

]

Then we obtain the eigenvalues by solving the polynomial equation

p(λ) = (cos θ − λ)2 + sin2 θ

= λ2 − 2λ cos θ + 1 = 0,
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where we used that sin2 θ + cos2 θ = 1. Solving for λ in C we obtain

λ = cos θ ±√
cos2 θ − 1 = cos θ ±

√
− sin2 θ = cos θ ± i sin θ = e±iθ.

We see that as an operator over the real vector space R2, the operator Rθ only has eigenvalues

when θ = 0 or θ = π. However, if we interpret the vector

[
x1

x2

]
∈ R2 as a complex number

z = x1 + ix2, then z is an eigenvector if Rθ : C → C maps z 
→ λz = e±iθz. We already saw
in the lectures on complex numbers that multiplication by e±iθ corresponds to rotation by
the angle ±θ.


