
IAP LECTURE JANUARY 28, 2000:
THE ROGERS–RAMANUJAN IDENTITIES AT Y2K

ANNE SCHILLING

Abstract. The Rogers-Ramanujan identities have reached the ripe-old age

of one hundred and five and are still the subject of active research. We will
discuss their fascinating history, some of the number theory and combinatorics

they encapture, and what they have to do with the 1998 Nobel Prize in physics.

1. The Rogers–Ramanujan identities

In this lecture you will be introduced to the Rogers–Ramanujan identities, you
will learn some of their history and their fascinating relation to combinatorics and
physics.

The Rogers–Ramanujan identities are
∞∑

n=0

qn2

(q)n
=
∞∏

j=0

1
(1− q5j+1)(1− q5j+4)

,(1.1)

∞∑
n=0

qn(n+1)

(q)n
=
∞∏

j=0

1
(1− q5j+2)(1− q5j+3)

,(1.2)

where (q)n = (1− q)(1− q2) · · · (1− qn) for n > 0 and (q)0 = 1. (In the sequel we
will mostly deal with (1.1); however all results have analogues for (1.2)). Although
equality between sums and products expressed by these identities may appear rather
obscure, you will hopefully be convinced by the end of the lecture how interesting
they really are. We will not give proofs of (1.1) and (1.2) since they are quite
involved, but instead discuss some results they imply.

What do the Rogers–Ramanujan identities mean? Basically, they give us two
different expressions for the same function, a function in q. However, often the
two sides are not viewed as functions, but rather as expressions for a formal power
series.

What is a formal power series? Let us consider, for example, the function f(x) =
1

1−x . Those of you who have taken 18.014 know that the Taylor or power series of
this function for −1 < x < 1 is given by

(1.3)
1

1− x
= 1 + x+ x2 + x3 + x4 + · · · .

This basically means that we can obtain the value of f(x) = 1
1−x when −1 < x < 1

up to a certain error by summing up sufficiently many terms on the right-hand side.
To make the error smaller requires to take more terms into account. But to any
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given error it suffices to sum up a finite number of terms on the right-hand side.
To see that 1 + x+ x2 + · · · really amounts to 1

1−x observe that

(1.4)
1− xm+1

1− x
= 1 + x+ x2 + · · ·+ xm.

This equation can be verified by multiplying both sides by 1−x and expanding the
right-hand side. All terms except 1− xm+1 cancel. Taking m→∞ in (1.4) yields
(1.3) since limm→∞ xm+1 = 0 for −1 < x < 1.

Let us now use (1.3) to expand both sides of (1.1). The right-hand side becomes
∞∏

j=0

1
(1− q5j+1)(1− q5j+4)

=
1

(1− q)(1− q4)(1− q6)(1− q9)
· · ·

=(1 + q + q2 + q3 + q4 + q5 + q6 + q7 · · · )
(1 + q4 + q8 + q12 + · · · )
(1 + q6 + q12 + · · · )
· · ·

=1 + q + q2 + q3 + 2q4 + 2q5 + 3q6 + · · · .

(1.5)

Expanding the left-hand side of (1.1) in an analogous fashion we obtain
∞∑

n=0

qn2

(q)n
=

1
(q)0

+
q

(q)1
+

q4

(q)2
+

q9

(q)3
+ · · ·

=1 +
q

(1− q)
+

q4

(1− q)(1− q2)
+

q9

(1− q)(1− q2)(1− q3)
+ · · ·

=1 + q(1 + q + q2 + q3 + q4 + q5 + q6 + · · · )
+ q4(1 + q + q2 + q3 + · · · )(1 + q2 + q4 + · · · )
+ q9(1 + q + q2 + · · · )(1 + q2 + q4 + · · · )(1 + q3 + q6 + · · · )
+ · · ·

=1 + q + q2 + q3 + 2q4 + 2q5 + 3q6 + · · · .

As we see from the tedious calculations above the two sides of (1.1) yield the same
power series. However, so far we have not worried about the convergence properties
of these series. All manipulations we did were “formal” in the sense that we applied
(1.3) without specifying for which ranges of q these manipulations are justified.
That’s why the above power series are labeled “formal power series”. (Close scrutiny
however reveals that the above power series converge for −1 < q < 1).

As we will see shortly, the coefficients in the power series corresponding to (1.1)
are special numbers which have a number theoretic meaning. That is, writing either
side as

(1.6) (1.1) =
∞∑

N=0

aNq
N

the numbers a0, a1, a2, a3, a4, a5, a6 . . . (which for (1.1) are 1, 1, 1, 1, 2, 2, 3, . . .) turn
out to be the number of certain kinds of partitions. The sum

∑∞
N=0 aNq

N is said
to be the generating function of the sequence a0, a1, a2, . . .. But before going into
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detail let us disgress and indulge ourselves in the history of the Rogers–Ramanujan
identities.

2. Some history

The Rogers–Ramanujan identities first appeared, together with a proof, in 1894
in a paper by Rogers [12]. However, his paper went practically unnoticed by the
mathematics community at the time. In 1913 Ramanujan, an Indian genius who had
no formal education in mathematics, wrote a letter to the English mathematician
Hardy with several astonishing results. Among them were the identities (1.1) and
(1.2), however without proof. Hardy was so amazed by Ramanujan’s results that he
invited him to England. However neither Ramanujan nor any of the mathematicians
to whom Hardy had communicated Ramanujan’s results were able to find a proof
of the identities (1.1) and (1.2), so that they were published in 1916 in the book
Combinatory Analysis by MacMahon [11] without proof.

In 1917 Ramanujan looked through some old Proceedings of the London Mathe-
matical Society and came accidentally across Rogers’ paper. Ramanujan must have
been extremely surprised by his findings. He started a correspondence with Rogers
which led to a joint paper [13] with a simplified proof of the identities (1.1) and
(1.2). At the same time, cut off from England by the war, Schur rediscovered and
proved the Rogers–Ramanujan identities [14]. His proof is quite different from the
others and uses combinatorial methods. Because of his contribution some people
refer to (1.1) and (1.2) as the Rogers–Schur–Ramanujan identities.

Since these early days, many new proofs and a vast number of generalizations of
the Rogers–Ramanujan identities have been found. Because of the wealth of results
it is not possible to give a complete account on all work related to the Rogers–
Ramanujan identities here. Hence I will just mention some major breakthroughs.
In 1951 Slater [15] compiled a list of 130 Rogers–Ramanujan-type identities using a
method by Bailey [4]. The first infinite family of Rogers–Ramanujan-type identities
was given by Andrews [1].

The debut of the Rogers–Ramanujan identities in physics was made in 1981
in a paper by Baxter [5] on the Hard Hexagon model. We will discuss some of
Baxter’s results in section 4. However, it was not until the 1990’s that McCoy
and his collaborators interpreted the Rogers–Ramanujan identities as the partition
function of a physical system with quasiparticles obeying certain exclusion statistics
[9, 10]. These exclusion statistics are related to the fractional statistics introduced
by Haldane [8] which show up in the fractional quantum Hall effect for which the
1998 Nobel Prize in physics was awarded [16]! We will sketch the relation between
the Rogers–Ramanujan identities and fractional statistics in section 5.

3. Partitions with restricted parts

We now wish to give an interpretation of the numbers aN which occur as coeffi-
cients in the expansion (1.6). To this end let us consider a slight generalization of
the expansion we made in (1.5).

Let S be a set of positive integers. We are interested in the expansion of the
product

∏
n∈S

1
1−qn . Note that

∏∞
j=0

1
(1−q5j+1)(1−q5j+4) can be recovered by choos-

ing S to be the set of all positive integers congruent to 1 or 4 modulo 5 since these
are the numbers 5j + 1 and 5j + 4 for j = 0, 1, 2, . . .. Let us index the elements of

3



S as follows S = {s1, s2, s3, . . .}. Then, using (1.3), we obtain∏
n∈S

1
1− qn

=
∏
n∈S

(1 + qn + q2n + q3n + · · · )

=(1 + qs1 + q2s1 + q3s1 + · · · )
× (1 + qs2 + q2s2 + q3s2 + · · · )
× (1 + qs3 + q2s3 + q3s3 + · · · )
· · · .

This infinite product is to be expressed as a sum
∑∞

N=0 bNq
N . To obtain the term

qN from the product we need to pick one summand in each of the factors such that
the exponents add up to N . From the first factor we get an exponent of the form
n1s1 with n1 ∈ {0, 1, 2, . . .}. From the second factor we get an exponent of the form
n2s2 with n2 ∈ {0, 1, 2, . . .}, and so on. Hence bN counts the number of ways N
can be written as n1s1 + n2s2 + n3s3 + · · · with n1, n2, n3, . . . ≥ 0.

If si = i, so that S = {1, 2, 3, . . .} is the set of all positive integers, bN is the
number of ways one can write N as a sum of positive integers. For example, if
N = 4 we get

4 =1 + 1 + 1 + 1
=2 + 1 + 1
=2 + 2
=3 + 1
=4.

(3.1)

A collection of positive integers which sums up to N is called a partition of N .
Hence the partitions of 4 are given by (1, 1, 1, 1), (2, 1, 1), (2, 2), (3, 1) and (4).
Since there are five of them we have b4 = 5. Each element in a partition is called a
part. For example the partition (2, 1, 1) has three parts given by 2, 1 and 1.

When S = {s1, s2, s3, . . .} the coefficient bN is still the number of partitions of
N ; however there is the additional restriction that the parts of the partitions have
to be an element of S.

Recall that for the expansion (1.6) the set S is the set of all positive integers
congruent to 1 or 4 modulo 5. For example, the partitions of 6 with parts congruent
to 1 or 4 modulo 5 are the following:

(1, 1, 1, 1, 1, 1), (4, 1, 1) and (6).

There are three of them which is indeed a6.
The above arguments imply the following theorem.

Theorem 1. The right-hand side of (1.1) is the generating function of partitions
with parts congruent 1 or 4 modulo 5.

This theorem indeed shows that the coefficients a0, a1, a2, . . . of the expansion
(1.6) have a combinatorial meaning. A good introductory book on the theory of
partitions is [2].

4. The Hard Hexagon model

It turns out that partition theorists and combinatorialists are not the only ones
interested in counting partitions. Physicists are also interested in precisely the
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Figure 1. A path of length 9

same counting problems, since applied to models of microscopic particles, they
allow the calculation of macroscopic properties such as specific heat, resistance,
conductivity etc. In fact, as mentioned earlier the physicist Baxter encountered the
Rogers–Ramanujan identities in his study of the Hard Hexagon model in 1981 [5, 6].
The Hard Hexagon model is a two-dimensional model in statistical mechanics which
exhibits a phase transition. In order to study the properties of this phase transition
Baxter reduced the two-dimensional problem to a one-dimensional problem which
is of interest to us here.

Consider L+1 points on a line labeled by i = 0, 1, 2, . . . , L. Assign to each point
a height variable σi which takes on the values 0 or 1. In addition the height variables
satisfy the restrictions σ0 = σL = 0 and σiσi+1 = 0. An allowed configuration of
height variables for a given length L is called a path of length L. One can illustrate
a path graphically by drawing all points (i, σi) and connecting adjacent points by
straight lines. An example for a path with L = 9 is given in figure 1. The condition
σiσi+1 = 0 requires that the paths consist of a certain number of non-overlapping
triangles. To each path p one may assign an energy E(p) by summing up the
positions of the peaks, that is

E(p) =
L∑

j=1

jσj .

The energy of the path in figure 1 is E(p) = 1 + 5 + 8 = 14. Let us now consider
the function

(4.1) F (L) =
∑

p

qE(p)

where the sum is over all paths of length L.
Our aim is to find an expression for F (L) and to relate it to the left-hand side

of (1.1). To this end let us work out some properties of F (L). Recall that σL = 0.
Hence the last step of the path from point (L − 1, σL−1) to point (L, 0) is either
a horizontal line (if σL−1 = 0) or it goes down (if σL−1 = 1). In the former case
the energy does not change if we remove the last step. Hence the contribution to
F (L) from all paths with the last step horizontal is F (L − 1). If σL−1 = 1 the
condition σL−2σL−1 = 0 requires that σL−2 = 0. Removing the last two steps of
the path changes the energy by L − 1 since there is a peak at L − 1. Hence the
contribution from these paths to F (L) is qL−1F (L− 2). Altogether this yields the
following recursion relation

(4.2) F (L) = F (L− 1) + qL−1F (L− 2).

F (L) is completely determined by this recurrence and the initial condition F (0) =
F (1) = 1. Note that at q = 1 the recurrence (4.2) is precisely the recursion relation
for the Fibonacci numbers.
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A solution to (4.2) can be given in terms of q-binomial coefficients. These are
q-deformations of the usual binomial coefficients

(
M
m

)
= M !

m!(M−m)! and are defined
as

(4.3)
[
M

m

]
=

(q)M

(q)m(q)M−m

for 0 ≤ m ≤ M and zero otherwise. The q-binomial
[
M
m

]
reduces to the binomial

coefficient
(
M
m

)
as q → 1 (this can be shown using l’Hôpital’s rule). For q = 1 the

following result is probably familiar to you.

Lemma 2. For M > 0 the q-binomial coefficients satisfy the recurrence

(4.4)
[
M

m

]
=
[
M − 1
m

]
+ qM−m

[
M − 1
m− 1

]
.

Proof. We begin with the right-hand side of (4.4), insert the definition (4.3) and
put everything over a common denominator[

M − 1
m

]
+ qM−m

[
M − 1
m− 1

]
=

(q)M−1

(q)m(q)M−1−m
+ qM−m (q)M−1

(q)m−1(q)M−m

=
(q)M−1

(q)m(q)M−m
(1− qM−m + qM−m(1− qm))

=
(q)M−1

(q)m(q)M−m
(1− qM ) =

[
M

m

]
.

�

In fact the recurrence (4.4) reduces to(
M

m

)
=
(
M − 1
m

)
+
(
M − 1
m− 1

)
for q = 1 which is the defining relation of the Pascal triangle.

Now define

(4.5) P (L) :=
∞∑

n=0

qn2
[
L− n
n

]
.

Theorem 3. For L ≥ 0, F (L) = P (L).

Proof. To prove P (L) = F (L) it suffices to show that P (0) = P (1) = 1 and that
P (L) = P (L−1)+qL−1P (L−2). For L = 0 or 1 the only nonzero contribution from
the sum over n in (4.5) comes from the term n = 0, so that indeed P (0) = P (1) = 1.

To prove the recurrence we apply (4.4) to (4.5) and obtain
∞∑

n=0

qn2[L−n
n

]
=
∞∑

n=0

qn2[L−n−1
n

]
+
∞∑

n=1

qn2+L−2n
[
L−n−1

n−1

]
.

(Note that the application of (4.4) for n ≥ L is ok since in this case both sides yield
0). The first sum is P (L− 1). To see that the second sum equals qL−1P (L− 2) we
make the substitution n = m+ 1

∞∑
n=1

qn2+L−2n
[
L−n−1

n−1

]
=
∞∑

m=0

qm2+L−1
[
L−m−2

m

]
= qL−1P (L− 2).

�
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Since F (L) at q = 1 satisfies the Fibonacci recurrence and F (L) = P (L), we can
interpret the explicit expression (4.5) as a q-deformation of the Fibonacci numbers.

The expression (4.5) looks similar to the left-hand side of (1.1), but is not quite
the same. Note that, canceling the common factor (q)L−2n, we obtain[

L− n
n

]
=

(q)L−n

(q)n(q)L−2n
=

(1− qL−2n+1)(1− qL−2n+2) · · · (1− qL−n)
(q)n

.

Let us fix n. Then for −1 < q < 1 all terms qL−2n+k → 0 as L→∞ so that

(4.6) lim
L→∞

[
L− n
n

]
=

1
(q)n

.

Hence the left-hand side of (1.1) equals

lim
L→∞

P (L) = lim
L→∞

F (L).

What do we learn from this result? Well, we know by (4.1) that F (L) is the sum
over all paths p of length L weighted by the energy function E(p). The coefficient
of qN is hence the number of all paths with energy N . Recall that the energy is
the sum of the positions of the peaks. Because of the restriction σiσi+1 = 0 the
peaks have to be at least two apart. Hence the number of paths with energy N is
equal to the number of partitions for which the difference between any two parts is
at least two. This proves the following theorem.

Theorem 4. The left-hand side of (1.1) is the generating function of partitions
for which the difference between any two parts is at least two.

Let us check this theorem for N = 6. The partitions of 6 with the difference
between any two parts at least two are

(4, 2), (5, 1) and (6).

Hence as asserted a6 = 3.
Together with Theorem 1 this immediately yields the following corollary.

Corollary 5. The number of partitions of an integer N into parts in which the
difference between any two parts is at least 2 is the same as the number of partitions
of N into parts congruent to 1 or 4 modulo 5.

This corollary is a remarkable and highly non-trivial result. At first sight the
partitions with restrictions on the difference of any two parts and the partitions
with the modular restrictions have nothing to do with each other. Recall again
that for N = 6 the first set consist of the partitions (1, 1, 1, 1, 1, 1), (4, 1, 1) and (6)
whereas the second set contains the partitions (4, 2), (5, 1) and (6). The theorem
asserts that the cardinality of both sets is equal.

5. Fractional statistics

In physics statistics refers to certain properties of particles. There are two well-
known types of particles, bosons and fermions. Bosons are characterized by the
property that each physical state can be occupied by an arbitrary number of par-
ticles. For fermions, on the other hand, each state can be occupied by at most one
particle.
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Let us consider a physical model which has single particle states of energies
1, 2, 3, 4, . . .. The partition function is the sum over all possible particle configu-
rations c of the system weighted by the total energy H(c), that is

∑
c q

H(c). The
total energy is just the sum of the all single particle energies.

If the particles are bosons then each single particle state can be occupied by an
arbitrary number of single particles. Hence, if we want to determine how many
possible particle configurations there are for a given energy N , we need to find the
number of ways N can be written as a sum of positive integers (these are the single
particle energies). But this is nothing but the number of partitions of N . As we
have seen in section 3 the generating function of all partitions is

∏∞
n=1

1
1−qn . In

fact there also exists an identity in this case given by

(5.1)
∞∑

m=0

qm

(q)m
=
∞∏

n=1

1
1− qn

.

If the particles are fermions each single particle state can be occupied by at
most one particle. In this case the coefficient of qN in the partition function is the
number of partitions of N into distinct parts. Similar to section 3 it can be shown
that the generating function of partitions with distinct parts is

∏∞
n=1(1 + qn). The

corresponding identity is

(5.2)
∞∑

m=0
m even

q
1
2 m(m−1)

(q)m
=
∞∏

n=0

(1 + qn).

These identities for bosons and fermions look similar to the Rogers–Ramanujan
identities. This immediately raises the question what kind of particles the Rogers–
Ramanujan identities represent? To answer this let us look back at section 4 where
we considered paths. The graphical illustration (see for example figure 1) suggests
to interpret each triangle in the path as a particle. Since the particles cannot
overlap each particle occupies two states. This means that adding a particle to
the system reduces the number of available states by two. This differs from the
boson or fermion statistics. For bosons the addition of a particle does not reduce
the number of available states (since each state can be occupied by an arbitrary
number of particles). For fermions the addition of a particle reduces the number of
available states by one (since each state can be occupied by at most one particle).

Nowadays there exist a vast number of generalizations of the identities (1.1),
(1.2), (5.1) and (5.2). It has been shown [9, 10] that the analogue of the left-hand
side of these identities carries the information of the statistics of the underlying
particles. In many of the known examples a particle occupies only a fraction of a
single particle state. This may seem odd, however recently quasiparticles possessing
exactly these properties have been observed in fractional quantum Hall samples.
The discovery of the fractional quantum Hall effect was honored in 1998 by the
Nobel prize in physics [16].

To conclude the lecture let me cite Dyson’s famous paper “Missed opportunities”
[7] (with which Andrews’ lecture [3] series actually begins):

“As a working physicist, I am acutely aware of the fact that the
marriage between mathematics and physics, which was so enor-
mously fruitful in past centuries, has recently ended in divorce...
I shall examine in detail some examples of missed opportunities,
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occasions on which mathematicians and physicists lost chances of
making discoveries by neglecting to talk to each other.”

The Rogers–Ramanujan identities are an example where the “divorce” between
mathematics and physics seems to be overcome at last!
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