Errata

Applied Analysis

- p. 9: line 2 from the bottom: $\sqrt{2}$ instead of 2 .
- p. 10: Last sentence should read: "The limsup of a sequence whose terms are bounded from above is finite or $-\infty$, and the liminf of a sequence whose terms are bounded from below is finite or ∞."
- p. 12, line 5 from the bottom: "This property is, in general, not equivalent to ...".
- p. 39 Example 2.7 ...there is an $R>0$ such that $\|x\|>0$ implies that...
- p. 46: Delete all of the paragraph above Example 2.13 except for the first sentence i.e delete from "The same proof applies to a more general situation..." to "...if and only if it is closed, bounded, and equicontinuous."
- p. 47, line 4 from the bottom: replace "intermediate" by "mean".
- p. 59, Exercise 2.7, 2nd line: "Lipschitz constant less than or equal to one ..."
- p. 60, Exercise 2.10, line 3, "... the space of continuous functions that ..."
- p. 76 Hence if we choose $\eta=1 /(2 C) \ldots$
- p. 78 Exercise 3.1:

$$
|T(x)-T(y)|<|x-y| \quad \text { for all } x \neq y \in \mathbb{R}
$$

- p. 79 Exercise 3.5: $\|L+U\|_{\infty}<\|D\|_{\infty}$
- p. 83, 1st line after Theorem 4.7: replace "defined" by "characterized".
- p. 89, Exercise 4.5, add "non-empty": ".. of two non-empty open sets."
- p. 89, Exercise 4.6: remove the last sentence, "Note that..."
- p. 94, line 3 \& 4 from the bottom: the intervals I_{n} and J_{n} should be:

$$
\begin{aligned}
& I_{n}=\left[2^{-k}(2 n-2), 2^{-k}(2 n-1)\right), \\
& J_{n}=\left[2^{-k}(2 n-1), 2^{-k} 2 n\right)
\end{aligned}
$$

- p. 100, line 13: line should end as follows: "...all $x \in M$. Moreover, $\|\bar{T}\|=\|T\| . "$
- p. 109, last line of Definition 5.39: "... in the uniform, or operator norm, topology ...".
- p. 110 Proposition 5.43 should be rewritten as follows:

Proposition 5.43 Let X, Y, Z be Banach spaces. (a) If $S, T \in$ $\mathcal{B}(X, Y)$ are compact, then any linear combination of S and T is compact. (b) If $\left(T_{n}\right)$ is a sequence of compact operators in $\mathcal{B}(X, Y)$ converging uniformly to T, then T is compact. (c) If $T \in \mathcal{B}(X, Y)$ has finite-dimensional range, then T is compact. (d) Let $S \in \mathcal{B}(X, Y)$, $T \in \mathcal{B}(Y, Z)$. If S is bounded and T is compact, or S is compact and T is bounded, then $T S \in \mathcal{B}(X, Z)$ is compact.

- p. 110, line 4 from bottom: replace "(a)-(c)" by "(a)-(b)"
- p. 111, 1st line: replace "(c)-(d)" by "(b)-(c)"
- p. 111, 2nd line after Definition 5.44: replace " norm on X ", by " norm on $Y^{\prime \prime}$.
- p. 116, in equation (5.24), change dummy index to j :

$$
\omega_{i}\left(\sum_{j=1}^{n} x_{j} e_{j}\right)=x_{i}
$$

- p. 116, 3rd line form the bottom, insert commas:"dual space, $\varphi: X \rightarrow$ \mathbb{R}, \ldots "
- p. 119 ...and we say that X is reflexive.
- p. 119, line 5, " ... space."
- p. 121, Exercise 5.6, part (a) should start: "For any non-zero $x \in X$, ..."
- p. 132, last displayed equation should be

$$
\left\langle z, y-y^{\prime}\right\rangle=\left\langle z, x-y^{\prime}\right\rangle-\langle z, x-y\rangle=0 .
$$

- p. 136, line 3 of the 2nd paragraph, replace "One can show" by "It is easy to see".
- p. 136, first sentence of 3rd paragraph should read: "... converges to x, then for each $n \in \mathbb{N}$, there is a finite $J_{n} \subset I$ such that for all J containing J_{n}, one has $\left\|S_{J}-x\right\| \leq 1 / n$."
- p. 140, line 3 should start: " To show that every Hilbert space has an orthonormal basis, we use ..."
- p. 140, 2nd paragraph after the "proof", 2nd line, replace "orthogonalization" by "orthonormalization".
- p. 145 Exercise 6.11: Prove that if \mathcal{M} is a dense linear subspace of a separable Hilbert space \mathcal{H}...
- p. 184, Exercise 7.7, line $4, " 0 \leq x \leq 1 "$ should be " $0 \leq x \leq L$ ".
- p. 186, line 2, displayed equation should be:

$$
x_{n+1}=\alpha x_{n} \quad(\bmod 1),
$$

- p. 191, line 3 of the proof : "... $P: \mathcal{H} \rightarrow \mathcal{H}$ by"
- p. 195, line 9, "...if A is a bounded...".
- p. 195, in Theorem 8.18, "Suppose".
- p. 199 Sentence starting line 6 from bottom should read: "A map $U: \mathcal{H} \rightarrow \mathcal{H}$ is unitary if and only if $U^{*} U=U U^{*}=I$." Delete the rest of the sentence from "...meaning that..."
- p. 200, line 6, remove the second occurrence of "bounded", to read "bounded, skew-adjoint operators"
- p. 203, line 17, "... unitary. The subspace of functions invariant under U consists ..."
- p. 205, line 12, " $B(0,1)$ ", should be replaced by " $B\left(x_{0}, r\right)$ ".
- p. 205, last line: "linear functionals".
- p. 207 Replace first sentence of the last paragraph by: "As the above examples show, the norm of the limit of a weakly convergent sequence may be strictly less than the norms of the terms in the sequence, corresponding to a loss of "energy" in oscillations, at a singularity, or by escape to infinity in the weak limit."
- p. 212 Exercise 8.1. Change last sentence in Part (c) to: "Is a subspace of a Banach space with finite codimension necessarily closed?"
- p. 212 Delete Exercise 8.4.
- p. 214, Exercise 8.19 should read: "Prove that a strongly lowersemicontinuous convex function $f: \mathcal{H} \rightarrow \mathbb{R}$ on a Hilbert space \mathcal{H} is weakly lower-semicontinuous."
- p. 233, line 15 , add $k \geq 1$ in the displayed formula:

$$
\ldots \text { for } n \neq m, k \geq 1 \text {. }
$$

- p. 240, line 1, insert "complex": "... on a complex Hilbert space."
- p. 240, Exercise 9.7: add item: (d) Show that 0 belongs to the continuous spectrum of K.
- p. 241 Beginning of Exercise 9.13 should read:"Suppose that $L: \mathbb{R} \rightarrow$ $\mathcal{B}(\mathcal{H})$ and $A: \mathbb{R} \rightarrow \mathcal{B}(\mathcal{H}) \ldots "$
- p. 242, Exercise 9.18 should begin: "Suppose that A is a compact self-adjoint operator. Let $f \in C(\sigma(a))$, and ..."
- p. 243, Exercise 9.19 should begin: "Let A be a compact selfadjoint linear operator. Prove ...".
- p. 246, 3rd line from the bottom: "theorm" should be "theorem"
- p. 253 , in equation (10.11), add dy:

$$
G f(x)=\int_{0}^{1} g(x, y) f(y) d y
$$

- p. 256 , line 18 , "we choose non-zero solutions v_{1} and $v_{2} . .$. "
- p. 274 Theorem 10.35: $u \Delta v-v \Delta u=\nabla \cdot(u \nabla v-v \nabla u)$
- p. 280

$$
\begin{aligned}
\int_{0}^{T} \int_{\Omega}\left(-u_{t}+\Delta u\right) v d x d t= & \int_{0}^{T} \int_{\Omega} u\left(v_{t}+\Delta v\right) d x d t \\
& -\int_{\Omega}[u v]_{0}^{T} d x+\int_{0}^{T} \int_{\partial \Omega}\left(v \frac{\partial u}{\partial n}-u \frac{\partial v}{\partial n}\right) d S d t
\end{aligned}
$$

- p. 284, Exercise 10.15: in the first displayed equation " $L^{1}(\mathbb{R})$ " should be replaced by " $L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$ ", and the sentence after that equation should read: "Show that A is a densely defined unbounded linear operator in $L^{2}(\mathbb{R})$ that is not closed."
- p. 284, 3rd line from the bottom: "velcity" should be "velocity".
- p. 300

$$
\int_{|x| \geq 1} \frac{\sin n x}{\pi x} \phi(x) d x=\frac{1}{n}\left[\cos n x \frac{\phi(x)}{x}\right]_{-1}^{1}+\frac{1}{n} \int_{|x| \geq 1} \cos n x\left(\frac{\phi(x)}{x}\right)^{\prime} d x
$$

- p. 309, line 2 from the bottom, at end of the line $d x$ should be replaced by $d y$, so end of formula reads $g(y) d y$.
- p. 318

$$
g(x, t)=\frac{1}{(2 \pi t)^{n / 2}} e^{-|x|^{2} /(2 t)}
$$

- p. 320 This equation may be interpreted as the Fourier series expansion...
- p. 330, Exercise 11.13, 2nd sentence should read: "Prove the corresponding results for derivatives and translates of tempered distributions and for the convolution of a test function with a tempered distribution."
- p. 331, Exercise 11.19. Add this sentence at the end of the Exercise: "That is, find a function $f \in L^{2}(\mathbb{R})$ such that \hat{f} is not continuous."
- p. 361, Theorem 12.59. The first line should start : "If $1<p<\infty$, then ..." On the 3rd line of the theorem, before "Moreover", insert the sentence "If μ is σ-finite the same conclusion holds when $p=1$ and $p^{\prime}=\infty$."
- p. 361 In first line of Example 12.61, replace " $1 \leq p<\infty$ " by " $1<$ $p<\infty$ ".
- p. 362 In line 2 of Theorem 12.62, replace" $1 \leq p<\infty$ " by " $1<p<$ ∞ ". Delete the last sentence of the Theorem starting "If $p=\infty$..."
- p. 364 The action of this distribution f on a $W_{0}^{k, p^{\prime}}$-function $u \ldots$
- p. 373 Last sentence in Theorem 12.81 should read:

Then for every bounded linear functional $F: \mathcal{H} \rightarrow \mathbb{C}$ there is a unique element $x \in \mathcal{H}$ such that

$$
a(x, y)=F(y) \quad \text { for all } y \in \mathcal{H} .
$$

