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1. INTRODUCTION

Non-relativistic quantum mechanics describes atoms, molecules, and both small and large sys-
tems composed of atoms and molecules. Its validity is well-established in a range of conditions
that includes room temperature and atmospheric pressure as well as near-zero temperatures and
low densities. The traditional way in which quantum spin systems arise is by a reduction of the
Hilbert space of states for each atom or molecule to a finite-dimensional subspace. Such a reduc-
tion can often be justified on physical grounds. Other ways in which quantum spin models arises
is as a truncation of a lattice quantum field theory for the purpose of numerical simulation. More
abstractly, quantum spin systems describe collections of qubits in quantum information theory.
Finally, quantum spin systems are also used as toy models in some theories of quantum gravity.

While there certainly are situations where a quantum spin system description would be inade-
quate, for example in conditions where relativistic effects are important, it is fair to say that almost
all interesting features of quantum many-body physics are found in quantum spin models. These
include the complex dynamics due to interactions between the components (be it particles or spins),
the possibility of phase transitions, the important role played by symmetries and spontaneous sym-
metry breaking, the unique behavior typical of quantum phases of matter such as Bose-Einstein
condensation and superfluidity, superconductivity, the integer and fractional quantum Hall effects,
topological order, exotic quasi-particles called anyons etc. Quantum spin models provide the sim-
plest framework in which all these phenomena can be studied in detail. It is also the setting that has
proved to be most amenable to rigorous mathematical analysis. In fact, research on quantum spin
systems has led to significant new development in functional analysis (e.g., the theory of operator
algebras) and representation theory (e.g., quantum groups).

We have two goals in these lectures. The first is to provide a basic introduction to the mathemat-
ical framework for the rigorous study of quantum spin models and to introduce the most important
models. The second goal is to discuss in sufficient detail some of the most important directions of
research on quantum spin models today so that the course provides a foundation for graduate level
research in quantum spin systems.

2. QUANTUM SPIN SYSTEMS

2.1. Spins and Qudits. In these lectures, by spin we will be referring to any quantum system with
a finite-dimensional, complex Hilbert space of states, i.e. C%. This could be the space of physical
spin states of a particle, atom, or molecule. For example, electrons are spin 1/2 particles, meaning
that in addition to its translational degrees of freedom, an electron also has a spin state described
by a vector in C2. In other examples this finite-dimensional Hilbert space may be a subspace
of an infinite dimensional Hilbert space, spanned by the most relevant states for the problem at
hand. The finite-dimensional approximation may provide a convenient, more tractable description
of the systems of interest, perhaps corresponding to finitely many orbitals in a molecule, or may
be introduced for the purpose of simulating the system on a computer. The basic unit of quantum
information, the qubit, has a two-dimensional state space. The d-dimensional generalization of a
qubit is called a qudit.

We will commonly denote by H the complex Hilbert space of states of a quantum system, by
(+,+) the inner-product, a sequilinear form, which is linear in its second argument and anti-linear
in the first, following the convention standard in the physics literature. The norm induced by this
inner-product is denoted by || - ||.

Unless stated otherwise, we use the standard inner product on H# = C¢, given by

d
(2.1) (u,v) = Zuﬁvi.
i=1
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To emphasize the relation with physical spin, one often writes the dimension d as d = 25 + 1 for
half-integer values of the spin S = 0,1/2,1,3/2.... The smallest non-trivial dimension, d = 2,
corresponds to spin 1/2, S = 1/2. Common notations for a choice of orthonormal basis in C? are

{10), 10}, {l4):[=)}, and {[ + 1/2),[ = 1/2)}.

2.2. Observables. The algebra of observables of a quantum system with Hilbert space H is the
set of all bounded linear operators on #, denoted by B(H). In the physics literature, the term
observables usually refers to the self-adjoint elements of B(#). Since the algebra structure of B(H)
will be useful, we will refer to B(#) as the algebra of observables and single out the self-adjoint
observables when necessary. The default notation for the algebra of observables will be A.

For a qudit we have H = C? and, hence, A = B(H) = My(C), the set of dx d matrices with entries
in C, which we will also write as M. Self-adjoint observables A € A, i.e. , A such that A* = A,
have real spectrum. In this case, the spectral values, spec(A) C R, correspond to measurable values
that can be the outcome of a physical experiment.

Let us consider the case of d = 2. In this case, the Hilbert space is H = C2, and the set of
observables is A = Ms. It is convenient to have a basis for the set of observables. One such choice
are the identity matrix and the three Pauli matrices:

e R L RN B )

In general, the observables A = M, can be equipped with an inner-product
(2.3) (A,B)ys = Tr(A*B) for all A,B € A,
where Tr denotes the trace. This inner product is often called the Hilbert-Schmidt inner product.
With respect to %(, yus, the spin matrices 1| are orthonormal. The associated norm is the

Hilbert-Schmidt norm. Note, however, that standard norm on observables is the operator norm on
B(H), defined by

14y
2.4 All = =7,
24) L

2.3. States. A state of a quantum system with algebra of observables A, which for now is given
by B(H) for some Hilbert space H, is a normalized, positive linear functional on A. This means w
is a state if it is a linear map w : A — C that satisfies

(2.5) w(A*A) >0, for all A€ A, and w(ll) = 1.
For A € A, w(A) is the ezpected value or expectation of the observable A in the state w. The

expectation of self-adjoint observables is real and, in general, we have w(A*) = w(A). The variance
of A, Var(A), is given by the familiar formula:

(2.6) Var(A) = w((A — w(A)D)*(A — w(A)1)) = w(A*A) — |w(A)]%
For any unit vector ¢ € H, one can define a state wy, on B(H) by

(2.7) wy(A) = (v, Ay) for all A € A.

States of this form are called vector states. An alternative expression for wy, is

(2.8) wy = TrPyA,

where Py, denotes the orthogonal projection defined by

(2.9) Py(9) = (0,600, ¢ €.

It follows from the definition of state given above that the set of states on A is convex. The
extreme points of this convex set are called the pure states. In the finite-dimensional case, i.e.
A = My, the pure states are precisely the vector states and all states are finite convex combinations
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of vector states, i.e. , for any state w, there are ty,...,t, > 0 and unit vectors ¢ ..., ¥, € H, such
that

n
(2.10) W= tiwy,
=1

It follows that there is a non-negative matrix p € My such that

(2.11) w(A) =Tr(pA), forall Ae My,
with
(2.12) p=> tiPy,.

i=1

Matrices p of the form are non-negative and, since the ¢; are the coefficients in a convex
combination, Trp = """ | ¢; = 1. Non-negative matrices of unit trace are called density matrices.

As an example, we now describe the set of density matrices in the case A = Ms. p € Ms is a
density matrix if and only if

(2.13) p= (; . T)

for some r € [0, 1] and p € C satisfying
(2.14) > <r(1—r)

Another useful parametrization of the 2 x 2 density matrices is obtained by expanding then in the
orthornormal basis with respect the the Hilbert-Schmidt inner product given by the Pauli matrices

and the identity, i.e. (2.2)):
1
(2.15) pzi(]l%—f-c?)

where & = (11, 29, 23) € R? with |Z] < 1 and we have denoted by
(2.16) TG =ux10" 4 220% + x30°

This provides a bijection between the set of all density matrices in M, and the unit ball in R3. The
extreme points of the unit ball correspond to the pure states, and are in one-to-one correspondence
with the unit vectors & € R3 : |Z|| = 1. This set is often referred to as the Bloch sphere.

2.4. Dirac notation. The Dirac bra- and ket notation is very commonly used in quantum mechan-
ics and quantum information theory. It is popular because it provides a convenient way to present
the most frequently encountered operations in Hilbert space. Here, we only give a brief account
of the Dirac notation in the case of finite-dimensional Hilbert spaces. Many aspects generalize
without significant change to the case of infinite-dimensional spaces. We do not consider here the
more liberal usage of the Dirac notation encountered in many physics texts, where it is extended
beyond the Hilbert space context into distribution theory.

Let H be a finite-dimensional Hilbert space. With each ¢ € H we can associate two linear maps,
which we denote by |¢) and (¢|.:

(2.17) ) :C = H,z— z¢, (¢|:H—C:— (p,).

In fact, since the linear maps define above depend linearly and anti-linearly on ¢, we can consider
| ), pronounced ket, and ( |, pronounced bra, as linear and antilinear maps themselves:

(2.18) [):H—= LCH),p— o), (|:H—LH,C),¢+— (&

( | is the antilinear map identifying H with its dual space H*, as guaranteed by the Riesz Represen-
tation Theorem. Since H = C?, with d = dim(#), we can identify |¢) with column vector of length
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d, and (¢| with a row vector of length d, and consider these vectors as the matrix representation of
the linear maps defined in (2.17)).
For any pair ¢1, 2 € H, we can define a rank-one linear map H — H by

(219) w — <¢2,¢>¢1.

It is easy to see that this rank-one map is the composition of a |¢1) and (¢2|, which justifies the
following elegant notation for it:

(2.20) [91)(D2|(¥) = |$1)({P2, ) = (d2,¥) 1.

It is now convenient to use the notation v and |¢) for vectors interchangeably, and to use an
alternate notation for the inner product as well:

(2.21) (6, 0) = (| ) = (d]|v).
Labeled sets of vectors, such as, e.g. , an orthonormal basis {ey,...,e4}, can be written in Dirac
notation using just the labels if this does not lead to confusion: {|1),...,|d)}.

Using the Dirac notation, orthonormality and completeness of the basis we can expressed by the
following two equations:

d

(2.22) (i 17y =6ijo D_li)(il = 1.
=1
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2.5. Finite Quantum Spin Systems. The observables of the quantum systems we have consid-
ered so far are given by the elements of B(#), the bounded linear operators on a complex Hilbert
space. For a finite quantum spin system, H is finite-dimensional and the algebra of observables is
the algebra of d x d matrices with complex entries, My, where d is the dimension of the Hilbert space.
More generally, one can consider quantum systems with an infinite-dimensional complex Hilbert
space. The algebra of observables will then consist of elements of B(#), the bounded linear opera-
tors on H. B(H) is complete with respect to the metric topology derived from the operator norm
defined in ([2.4). It is straightforward to check that the operator norm satisfies [|AB|| < || A|||| B,
for all A, B € B(H), which in particular implies that the product of observables is continuous in
the norm topology. The completeness and the continuity of the product make B(#) into a Banach
algebra.

The operation of taking the adjoint of an operator A, denoted by A*, is an anti-linear involution,
meaning (A*)* = A, (A+ B)* = A*+ B*, and (zA)* =ZA*, for all A, B € B(H) and z € C, and is
an algebra anti-morphism: (AB)* = B*A*. One readily checks that ||A*|| and ||A*A| = | A%

M, and, more generally, B(H) are examples of C*-algebras, which we introduce in the next
section.

2.5.1. C*-algebras. A C*-algebra is a Banach algebra equipped with an involution, denoted by s,
satisfying some special properties.

Definition 2.1. Let A be an associative algebra over C that is equipped with a norm || - ||. If A
is complete with respect to this norm and
(2.23) IAB|| < ||A||||B]| for all A,B € A,

then A is called a Banach algebra. A Banach algebra A is called unital if it has an identity element,
which we denote by 1 € A.

In this book the term algebra, unless explicitly stated otherwise, will always refer to an associative
algebra over the complex numbers with a unit, which will routinely be denoted by 1. We will also
assume that the algebra we consider are non-trivial, i.e. ., are not equal to {0}.

Definition 2.2. A C"*-algebra A is a Banach algebra with an anti-linear involution, which we will
denote by x*, satisfying the following properties:

i) (AB)* = B*A* for all A,B € A

ii) ||A*|| = ||A|| for all A € A (This implies that the % operation w.r.t. the norm || - ||.)

iii) [|A*A|| = ||A||? for all A € A. (This is called the C*-property.)

If the C*-algebra A has a unit, denoted by 1, it is called unital. It follows from the properties
stated the unit is unique, that 1* = 1 and, if A # {0}, that ||1|| = 1.

If A and B are two C*-algebras, a x-morphism (often simply called a morphism) = : A — B is
an algebra morphism that preserves the involution, i.e., 7(A*) = w(A)* for all A € A. A morphism
m: A — B is called unit preserving if 7(14) = 1g.

A representation of a C*-algebra A on a Hilbert space H is a unit preserving morphism 7 : A —
B(H). A representation 7 is called faithful, if ker m = {0}, i.e. , if it is a x-isomorphism between A
and 7(A). A morphism 7 : A — A is called an automorphism if 7 is invertible.

A state w on A is a linear mapping w : A — C that is non-negative and normalized, i.e.
w(A*A) >0, for all A € A, and w(1) = 1.

In the finite dimensional case, i.e. A = My, we already discussed that states are in one-to-one
correspondence with density matrices. If H is infinite-dimensional, density matrices p, defined as
positive operators of trace-class such that Trp = 1, also define states on B(#), by the formula
w(A) = TrpA, but there are states on B(H) that are not of this form.

Let A be a C*-algebra. A € A is called self-adjoint if A* = A. The set of all self-adjoint elements
in A will be denoted by Ass. A € A is said to be positive, denoted by A > 0, if there exists B € A



8

such that A = B*B. This notion of positivity allows one to define a partial order on As,, i.e. for
any A, B € Ag,, we write A > B if and only if A — B > 0.

For the derivation of the following important properties see Appendix A, or consult a text on
operator algebras such as [10], [71], or [37].
i) For any A, B € Asa,

(2.24) A>B = C(CrAC>C*BC forall C e A.
ii) For any A > 0, A < ||A||1, and as a consequence, for any state w, we have that
(2.25) o = sup “EL iy — 1.
azo 1A
iii) Similarly, for a morphism 7, we also have that
(2.26) Il = e (D) =1 if = £ 0,
iv) Let A be a C*-algebra and w be a state on A. The mapping from A x A to C given by
(2.27) (A,B) —» w(A*B)
is a sesquilinear form. As a consequence, we have a Cauchy-Schwartz inequality:
(2.28) lw(A*B)|? < w(A*A)w(B*B) forall A Bec A.
v) Let A be a C*-algebra and w be a state on .A. The bound
(2.29) W(A*BA)| < w(A" A)|B]
holds for all A, B € A. As a consequence, for all A € A with w(A*A) # 0,
(2.30) wa(B) = m forall Be A

defines a state wa on A. This is the quantum analogue of starting with a measure, e.g. dx on
[0, 1], considering a non-negative function p with fol pu(x)dr < oo, and defining a new, normalized
measure via

p(x)
fol p(z)dx

2.5.2. Composite systems. Any two quantum systems described by Hilbert spaces H; and Ho can
be considered as one, composite system. The Hilbert space of the composite system is given by
the tensor product of H; and Ho. The simplest way to describe the tensor product of two finite-
dimensional Hilbert spaces, say with dimensions n and m and inner product (-,-); and (:,-)s,
respectively, is as the span of an orthonormal basis of simple tensors defined as follows. Let
€1,...,en and fi,..., fi, be orthonormal bases for H; and Hs, then H = H1 ® Ho is defined as the
linear span of nm orthonormal vectors denoted e; ® f;, 1 < ¢ <n,1 < j < m. The tensor notation
is extended by linearity to identify ¢1 ® ¢o € H1 @ Ha, for any ¢1 € Hi,¢p2 € Ha. Such vectors
are called simple tensors. From the orthonormality of the basis it then follows that the the inner
product is uniquely determined by the following formula for simple tensors:

(2.32) (91 ® d2,¥1 @ 2) = (d1,91)1(b2, V2)2

There are several ways to define the tensor product for infinite-dimensional, Hilbert spaces Hi and
Hs, all of which lead to a Hilbert space H with the following properties: (i) there is a bilinear
bijection of H; x Hso into a subset of H (the set of simple tensors), (ii) the inner product of simple
tensors factorizes as in , and (iii) the linear span of the simple tensors is dense in H, which
is unique up to unitary equivalence. See, e.g., [8,/65], for the details of a construction of the tensor
product of two arbitrary Hilbert spaces. It is straightforward to extend the notion of tensor product
from two to any finite number of Hilbert spaces.

(2.31)
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The combination of two (or more) spins, meaning, considering a physical context in which both
exist, is described as a composite systems using the tensor product of the Hilbert spaces of the
individual systems.

Let us start by considering two spins, with Hilbert spaces of dimension d; and ds. The Hilbert
space for the composite system is then:

(2.33) H=H; @ Hy = Ch®

Such a system is often referred to as bipartite. The algebra of observables is again given by B(H),
and it can also be obtained as a tensor product since

(234) Md1d2 = Md1 ® MdQ,

where My, ® My, is the linear span of the tensor products of two matrices A = (a; ;) € My,, and
B = (b].“l) S MdQ, defined by

(2.35) A® B = (Cigyj1), with ;g1 = aijbe.

Systems 1 and 2 are called subsystems of the composite system. One can identify their algebra of
observables with subalgebras of My, 4,. E.g., My, = My, ® 1o C My, @ My,.

One way to appreciate the uniquely quantum (versus classical) behavior of states is to consider
marginals of pure states. Pure states of a classical bipartite system with a finite state space
Q = Q1 x Qg, are given by Dirac measures concentrated in a point (£1,£2) € . The marginals of
classical pure states are then Dirac measures in the points &; € €);, which are also pure. In contrast,
what distinguishes quantum from classical structure states (quantum probability versus classical
probability) can be seen as exactly the property that any state of system 1 is the marginal of a
pure state on for composite system containing system 1 as a tensor factor |15].

The marginals of a pure state for a bipartite quantum system given by a unit vector ¥ € Hi ®Ha,
are pure iff the pure state is separable, i.e. , 1 is a simple tensor [66]. The marginals of the Bell states
coincide with the maximally mixed state described by the density matrix %]12 (see the Example
below).

Considering the marginals of a state of a bipartite system is simply considering its restrictions
from A; ® Ay to the subalgebras A; ® 1 and 1® As. In the case of finite-dimensional state spaces,
all states are uniquely represented by a density matrix. Hence there is a corresponding well-
defined operation on density matrices describing the restriction process. For all density matrices
p € Mg, ® Mg, there is a unique density matrix p; in My, , such that

(2.36) Trp(A® 1) = Trp1 A

The map p — p1 is often denoted by Tre and is called the partial trace.
Example: Take di = dy = 2. Denote by {|0),]1)} an orthonormal basis of C2. Let ¢ €
H1 ® Ha = C2 ® C? be the normalized vector

1
(2.37) V=7

Note that v is a maximally entangled state. For A € A;, A® 1 € A. The restriction (or marginal)
of the state defined by 1 is easily calculated:

Trlp)(Pl(A® 1) =
(2.38) =

(10) @ 1) +[1) ©10))

(. (A® 1))
5 (01410) + (1] 4]1)) = JTrA
Hence

(2.39) Tro) (0] = 311
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Vector states given by simple tensors are product states. More generally, a state w on an algebra
of observables of the form A = A; ® As, is called a product state if there exist states wy; on A; and
wg on Ay, such that for all A; € A; and Ay € Ay, one has w(A; ® Az) = wi(A1)wa(A2).

Definition 2.3. A state on a tensor product algebra A; ® As is called separable if it is a convex
combination of product states. A state is called entangled if it is not separable.

If d1,ds > 2 not all vectors ¢ € H can be written as ¥ = 11 ® 12, and only those that are of
this form define separable states. A vector state is either a product state or entangled. There is
no analogue of entangled states for classical systems. Quantum information theory is of interest
exactly due to the existence of entangled states.

One of the most commonly used measures of entanglement for a bipartite system is the entan-
glement entropy. For a pure state given by a unit vector ¢ € H; ® Ha, the entanglement entropy,
Sg(v), is defined as the entropy of the restriction of the state to either one of its subsystems (the
value is the same for both subsystems). Concretely:

(2.40) Sp(¥) = —Trp1log p1, with p1 = Tra, [¥)(¥)].

For a general state given by a density matrix p, the entanglement entropy is defined by the following
minimization problem:

(2.41) Sp(p) = mf{> t:Sp(hi) | p =Y tiln) (i}

which is an infinum over all decompositions of p as a convex combination of pure states. This mea-
sure of entanglement is also called entanglement of formation, because of an equivalent operational
definition [52]. One can easily check that Sg(p) = 0 iff p is separable. The maximum value of Sg
is min(log dy,log dy), and it is easy to construct states that attain this maximal value. Such states
are called mazimally entangled. In the case di = do = 2, the maximally entangled states are the
so-called Bell states of the form (e; ® f1 +ea® f2)/v/2, for two arbitrary orthonormal bases {e1, e2}
and {f1, fo} of C2.

2.5.3. Dynamics. One to the most important observables of any quantum spin system is the Hamil-
tonian, which has the physical interpretation of the total energy of the system. For a system
consisting of N spins, the Hilbert space is

N
(2.42) Hy = Q) H;
j=1

and the algebra of observables is
N
(2.43) Ay =) A;
j=1

where A; = B(H;). The Hamiltonian is a selfadoint element H* = H € Ay. Its importance stems
from its role as generator of the dynamics of the system. For any pure state of the system at time
t = 0, given by ¢ € Hy, the state at any time ¢t € R is given by the solution of the Schrodinger
equation:

P () = Hp(r) with (0) = v,

As is well-known, the solution of this vector-valued linear equation is given by
(2.45) Y(t) = Uphg, with Uy = e H,

Since H is self-adjoint, U; is unitary for all ¢ € R and it is easy to see that U = U_;, and that
UUg = Upys, t,s €R, dce. , {Uy | t € R} is a one-parameter group of unitaries.

(2.44)
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Denote by po = |¥g)(1bg]. Then the density matrix corresponding to the solution of (2.44)), i.e.
(2.49), is

(2.46) p(t) = () (W (t)| = UrpoU; -
This is the solution of the operator-valued equation

.d .
(2.47) ip(t) = [ p(t)] with p(0) = po

This is sometimes called the Schrodinger-Liouville equation. It has a unique solution p; which, for
an arbitrary initial density matrix pg, is a density matrix for all ¢.

The dynamics of a finite spin system can equivalently be described in the so-called Heisenberg
picture, by evolving the observables rather than the states. This change of perspective is particularly
useful in the context of infinite systems because, while there is no a priori infinite volume Hilbert
space, there is a well-defined observable algebra for the infinite system (see following lectures). The
equivalence of the Schrodinger and Heisenberg descriptions of the dynamics is established by the
following relations:

(2.48) wpt)(A) = Trp(t)A = TrUpoU; A = TrpoU; AU = wp, (U AUL),
for any observable A € A. This justifies the following definition of time-evolved observables:
(2.49) A(t) =UjAU; forany Ae A andteR.
These time-dependent observables satisfy the Heisenberg equation:
d
(2.50) %A(t) = i[H, A(t)] with A(0) = A,
and (2.48)) becomes, for any A € A,
(2.51) Trp(t)A = TrpoA(t).

Example: The Quantum Heisenberg Model, introduced by Heisenberg almost a century ago [35].
To each z € Z associate the single-site Hilbert space H, = C2. For any finite interval A = [a, b] C
Z, consider the Hilbert space

b
(2.52) Ha=Q)C?=c*""
r=a
and the corresponding observable algebra
b
(2.53) Ap = ®M2 = Mop—at1
r=a

To each i = 1,2,3, and any = € A associate a self-adjoint observable oi € A\ by setting
(2.54) =1  -@ledele o1

where the only non-trivial operator, o’ above, occurs in the xth factor of Ax. The quantum
Heisenberg Hamiltonian on volume A is then the self-adjoint observable

b—1
Hy = —JY &p Gop
i=a

b—1
(2.55) = —J Z (onohiy + ool g+ a;‘ﬁafgﬂ)
r=a

with J € R a parameter.
If J > 0, this is called the (quantum) ferromagnetic Heisenberg chain.
If J < 0, this is called the (quantum) anti-ferromagnetic Heisenberg chain.
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In the Exercises you are asked to prove some basic properties of the Heisenberg chain with
periodic boundary conditions.
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3. APPENDIX: C*-ALGEBRAS

It this appendix, we review some of the basic properties of abstract C*-algebras. These prop-
erties are familiar when the C*-algebra is a subalgebra of B(#), for some Hilbert space H. Since
the algebra of observables of an infinite quantum spin system, introduced in ?7, is a priori not
represented on a Hilbert space, it is important to understand the basic properties of abstract C*-
algebras. This appendix is based on Sections 2.1-2.3 - of [10], to which we refer the reader for
complete details and further information.

3.1. C*-algebras. A complex vector space A is an associative algebra if it is equipped with a
bilinear product, i.e. to each pair A, B € A there corresponds a unique element AB € A, in such
a way that:

i) A(BC) = (AB)C for all A,B,C € A,

ii) A(B+C)=AB+ AC for all A,B,C € A,

iii) aB(AB) = (aA)(BB) for all a,5 € C and all A, B € A.
If an algebra A contains an identity element, i.e., 1 € A such that 1A = A = All, forall A€ A, A
is called unital. A subspace B C A that is also an algebra with respect to the operations of A is
called a subalgebra of A.

An associative algebra A is a x-algebra if it has a map A — A* with the properties:

i) (A*)* = Afor all A€ A (* is an involution),

ii) (AB)* = B*A* for all A, B € A (* is an antimorphism),

iii) (0 A + BB)* = @A* + BB* for all o, 3 € C and all A, B € A (* is antilinear).
Here, and below, we will denote by Z and |z| the complex conjugate and modulus of z € C,
respectively. A subset B of a x-algebra A is called self-adjoint if A € B implies A* € B.

An algebra A is called a normed algebra if there is a mapping || - || : A — R with the properties:

i) ||A]l > 0 for all A € A and ||A]| = 0 if and only if A =0,

i) ||aA|l = ||| Al for all « € C and all A € A,

iii) ||[A+ B| < ||Al| + || B]| for all A, B € A,

iv) |AB|| < ||A]|||B]| for all A, B € A.
For any A € A, the quantity || A|| is called the norm of A. The norm on a normed algebra A defines
a metric topology on A, called the uniform topology or norm topology, and if A is complete with
respect to this topology, then A is called a Banach algebra. A x-algebra A is a normed x-algebra
A if one has || A*|| = ||A]| for all A € A. A normed x-algebra is a Banach x-algebra if it is complete
with respect to its norm topology.

The main object of interest in the section can now be defined.

Definition 3.1. A C*-algebra is a Banach x-algebra A with the property that

(3.1) |A*A| = ||A|*> for all A € A.
The condition ({3.1)) is called the C*-property. It is easy to see that (3.1]) implies the x property
of the norm: ||A*|| = ||AJ| for all A € A. Here are some important examples.

Example: Let H be a complex Hilbert space and denote by A = B(H) the set of bounded linear
operators over H. With the * operation given by the adjoint operation and the norm corresponding
to the operator norm, A is a C*-algebra. O

Example: Let X be a topological space and let C(X) denote the space of bounded and con-
tinuous complex-valued functions on X. C(X) is a an commutative algebra for the pointwise
multiplication of functions. Equipped with the supremum norm and the x-operation given by
complex conjugation, C'(X) becomes a C*-algebra. O

Example: Let H be a complex Hilbert space and denote by C C B(H) the set of compact
operators over H. One easily checks that any uniformly closed subalgebra of B(H) that is also
a self-adjoint subset, is a C*-sub-algebra of B(#). This is the case with the algebra of compact
operators C. Note that 1 ¢ C. O
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The following theorem shows that, as in the last example, any C* algebra can be regarded as a
closed subalgebra of B(H) for some Hilbert space H.

Theorem 3.2. Any C*-algebra A is isomorphic to a norm-closed self-adjoint algebra of bounded
linear operators on a Hilbert space H.

For a proof of this theorem see, e.g., [10, Theorem 2.1.10].

The availability of an identity in a C*-algebra describing the observables of a physical system is
important. Let A be a C*-algebra. If A has an indentity, it is necessarily unique; if both 1 and 1’
are identities, then 1 = 11’ = 1’. It is easy to verify that 1* is an identity, and hence we must have
1* = 1. Moreover,

(3.2) ) = 272 = [[0f* and [A[ = [[2A] < [2]]A]l.

Thus either ||1|| =1 or A = {0}, which is a trivial case we shall ignore; we will always assume that
||| = 1. A C*-algebra A with an identity is called a unital C*-algebra.

It is not the case that all C*-algebras possess an identity. As mentioned above, the C*-algebra of
the compact operators on a Hilbert space ‘H has an identity if and only if H is finite-dimensional.
In general, it is possible to adjoin an identity to any C*-algebra. We briefly describe this procedure.

Let A be a C*-algebra with no identity. Consider the collection of pairs

(3.3) A={(a,A):acCand Ac A}.

Equip A with the vector space properties

(3.4) (, A) + (B,B) =(a+B,A+ B) and «(f,B)=(af,aB)
In addition, declare a product and involution by setting

(3.5) (a,A)(B,B) = (aB,aB+ A+ AB) and (a,A)" = (a,A")
One can check, see also Proposition 2.1.5 in [10], that the quantity

(3.6) (e, A)| = sup{l|aB + AB|| : B € A, |B|| = 1}

defines a norm on A and with respect to this norm, A is a C*-algebra. The algebra A can be
identified with the C*-subalgebra of A formed by the pairs (0, A). A is often called the C*-algebra
obtained by adjoining an identity to .A. The notation A =: Cl 4 A and similarly (o, A) =: ol + A
is common.

With this construction in mind, we will only work with unital C*-algebras in these notes.

3.2. Spectral theory in a C"*-algebra. The goal of this section is to provide quick introduction
to the basic facts of spectral theory in a C*-algebra. For more details and more general statements,
we refer the interested reader to, e.g., [10, Section 2.2.1]. Unless otherwise state, we will assume .4
is a unital C*-algebra..

An element A € A is said to be invertible if there exists an element A~! € A, called the inverse
of A, which satisfies

(3.7) AAT = ATTA=1.

One readily checks that if A is invertible, then the inverse is unique. A number of other properties
also immediately follow:

i) If A is invertible, then so is A~! and (A~!)~! = A.

ii) If A is invertible, then so is A* and (A*)~! = (A~1)*.

iii) If A and B are invertible, then so is AB and (AB)™!' = B~1A~1.

Definition 3.3. The resolvent set of an element A € A, denoted by res4(A), is the set of all A € C
for which A1 — A is invertible. The spectrum of any A € A, denoted by spec 4(A), is then defined
to be the complement of res4(A) in C. Given A € A and X € resy(A), the inverse (A1 — A)71 is
called the resolvent of A at .
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For a non-unital C*-algebras A, one can still define the notion of spectrum by setting spec 4(A) :=
spec j(A), where A is the unique algebra obtained from A by adjoining an identity.
For all A € A and any A € C with ||A| < |)|, it is easy to see that

(3.8) % g;) (f) '

defines a norm-convergent sum. It is then readily checked that this element is the inverse of A1 — A.
Hence, A € res4(A) and thus spec 4(A) is a bounded subset of C; namely

(3.9) spec(A) C{ e C: A < [|A]}.

Straightforward manipulations with Neumann series, defined similarly to , allow one to show
that for any A € A, resa(A) is open, and thus spec 4(A) is closed. One readily verifies that the
mapping A — (A — A)~! is continuous on res4(A). It is also important to observe that for every
A € A, spec4(A) is non-empty. This fact is a consequence of the next result.

First, an important definition. For any A € A define the spectral radius of A by

(3.10) p(A) = sup{|A| : A € specy(A4)}.
Proposition 3.4. For any A € A, one has that
(3.11) p(A) = lim [|A™|V" = inf | A"V < ||A] .

In particular, the above limit exists and if the righthand side of vanishes, then 0 € spec(A).
Therefore, the spectrum of any A € A is a non-empty compact set.

A proof of this result can be found, e.g., in [10, Proposition 2.2.2].

One can characterize the spectrum of certain special classes of elements A € A. An element
A € A is said to be normal if A*A = AA*, and A € A is called self-adjoint if A* = A. The set of
all self-adjoint elements of A will be denoted by Ag,. It is often useful to observe that each A € A
can be written as a linear combination of self-adjoint elements:

* *
A+ A and Ay — A—‘A
24
and A; and Ay are commonly referred to as the real and imaginary parts of A respectively.

An element A € A is called an isometry if A*A = 1, and A € A is said to be unitary if
A*A=1=AA".

The following statement collects some facts proven, e.g., [10, Theorem 2.2.5].

(312) A=A +1Ay with A1 =

Theorem 3.5. Let A be a unital C*-algebra.
i) If A € A is normal, then p(A) = || A|.
ii) If A € A is unitary, then

spec 4(A) C{A e C: |\ =1}.
iit) If A € A is self-adjoint, then
spec4(A) [ All [[A]]].
iv) For any A € A and any polynomial P,
spec4 (P(A)) = P (spec 4(A)) -

Two important consequences follow now from the results previously stated.

First, if A is a x-algebra and there exists a norm on A with the C* property and with respect to
which A is closed, then this norm is unique. Hence the norm on a C*-algebra is unique.

Next, let B be a C*-sub-algebra of some C*-algebra A. Then, for any A € B,

spec 4 (A) = specg(A)
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Thus, there is no ambiguity in the definition of the spectrum of an element A in a C*-algebra, and
so we may simply write spec(A) 4 = spec(A).

3.3. Positive elements. In this section, we review some of their basic properties of positive ele-
ments a unital C*-algebra A. As we shall see, the cone of positive elements introduces a partial
order on A.

Definition 3.6. An element A € A is said to be positive if A is self-adjoint and spec(A) C [0, 00).
We will denote by A, the set of all positive elements A € A.

As a consequence of Theorem iii), we actually know that if A € A is positive, then
spec(A) C [0, [|A]].
In fact, since it is easy to verify that
spec(Al — A) = A —spec(A) forallAe Cand A€ A,

we immediately conclude that

(313) A€A+ = HAHI[—AEA+
Similar arguments allow one to prove that if A € Ag,, then A is positive if and only if
A
(3.14) 1-—|l<1.
IA]

Positive elements allow for the definition of a square root, which is an important building block
for developing functional calculus in C*-algebras. A first result in this direction is the following.

Theorem 3.7. [10, Theorem 2.2.10] A € As, is positive if and only if A= B? for some B € As,.
In fact, for each A € A, there is a unique B € A, for which A = B2.

Given the above result, we can now make the following definitions. For any A € A, the square-
root of A, which we denote by A2, is defined by A2 = B, where B € A, is the unique element
described in Theorem [3.7| above. Moreover, for any A € As,, it is clear that spec(A?) C [0, ||A]/?],
combine e.g. Theorem [3.5iii) and iv). Thus A% € A, , and so we may therefore define the modulus
of A, which we denote at |A[, by setting |A| = (A42)1/2.

The following fact is a useful observation about the set of positive operators.

Proposition 3.8. The set Ay C A of positive elements is a uniformly closed convex cone satisfying
Ay N (=Ay) ={0}. Moreover, if A € Asa, then with Ay = (|A| £ A)/2 one sees that

7’) A:t € A+;
Qi) A=A, — A,
iii) Ay A_ = 0.

The elements Ay are the unique elements with these properties.

A proof of Proposition can be found e.g. in [10, Proposition 2.2.11]. The decomposition for
A€ Aga,ie. A=Ay — A_ in ii) above, is called the orthogonal decomposition of A.
The following fact is crucial.

Theorem 3.9. A € Ay if and only if A= B*B for some B € A.

A proof of this result can be found in [10, Theorem 2.2.12].

Given Theorem one can now extend the notion of modulus to all A € A. In fact, for any
A € A, it is clear that A*A € A,. In this case, we define |A| = (A*A)'/? to be the modulus of A.
Moreover, if A € A is invertible, then an analogue of the polar decomposition holds:

(3.15) A=U|A| with U= AJA|™!

and one can check that the U given above is unitary. One final result on decompositions is occa-
sionally of use.
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Lemma 3.10. Fvery A € A can be written as

4l

4
(3.16) A= ZajUj where each aj € C satisfies |aj| < 5

Jj=1
and each Uj 1is unitary.

The proof of the above follows from and the observation that for any A € Ay, with
||A|| <1, one can readily check that
U +U-

2

Using the fact that A4 is a convex cone, one can introduce an order relation on the self-adjoint
elements of A. If A, B € As,, we write that A > B,or B< A if A—Be€ A,.

The following proposition identifies some important features of this partial order.

(3.17) A= with unitaries Uy = A+ i/ 11— A2,

Proposition 3.11. Let A be a unital C*-algebra.
i) I[fA>0 and A <0, then A= 0.
ii) If A> B and B> C, then A> C.
iit) If A >0, then ||A||1 > A.
i) If A> B >0, then C*AC > C*BC > 0 for all C € A.

3.4. Representations. It is often useful to consider mappings between C*-algebras that preserve
the structure. These are x-morphism. A particularly important sub-class of these are the represen-
tations. We introduce these notions in this subsection.

Definition 3.12. Let A and B be unital C*-algebras. A mapping 7 : A — B is called a *-morphism
between A and B if it satisfies:

i) m(aA+ BB) = an(A) + fn(B) for all , 8 € C and A, B € A,

ii) 1(AB) = w(A)n(B) for all A,B € A,

iii) w(A*) = w(A)* for all A € A.

Remarks:

1) The phrase morphism may refer to mappings satisfying only properties i) and ii) above.
Property iii) makes 7 a *-morphism. We only consider *-morphisms below.

2) A x-morphism 7 : A — B is said to be unit preserving if 7(14) = 1p.

3) Any #-morphism 7 from A to B3 necessarily preserves positivity in the sense that: = : A, — By.
Indeed, for any A € A, A = B*B and hence,

m(A) =7(B*B) = n(B*)n(B) = n(B)*n(B) € B; .
The following proposition demonstrates that *-morphism are bounded, hence continuous.

Proposition 3.13. Let A and B be unital C*-algebras. Any x-morphism 7w : A — B is bounded,
in fact

(3.18) lm(A)|| < ||A||  for all A € A.

In addition, the range of w, namely w(A) := {w(A) : A € A}, is a C*-subalgebra of B.

Proof. We begin with the following observation. Let P = 7(1l4). It is easy to check that P € Bg,
and moreover, P?> = P, i.e. P is a projection. As a consequence, B = PBP is a C*-subalgebra of
B. On this C*-sub-algebra, P acts as the identity, and it is also the case that 7(A) C B'.

Now, it is sufficient to check (3.18)) for A € Ag,. In fact, suppose this bound holds for all A € Ag,.
Then, for any A € A,

(3.19) Iw (AP = [[m(A)*x(A)]| = (A" A)| < [|[A*A]| = || Al
where we have used the C*-property in both A and B’.



18

Now, suppose A € Ag,. It is clear then that 7(A) € BL,, i.e. 7(A)* = n(4*) = n(A). Using

Theorem i), the norm of m(A) can be calculated using the spectral radius, i.e.,

(3.20) [ (A)[| = p(m(A)) = sup{[A[ : A € spec (w(A))}.
One readily checks that
(3.21) spec (m(A)) C spec4(A4),

and therefore,
(3.22) [ (A)]| < sup{|A]: A € spec4(A)} = [| Al

since A € Aga. An argument for the remainder of this proof can be found in [10, Proposition
2.3.1]. O

Let A and B be unital C*-algebras. A *-morphism 7 from A to B is said to be a *-isomorphism
if it is one-to-one and onto. Clearly 7 is a *-isomorphism if and only if ker(7) = {0}, where

ker(r):={Ae€ A:n(A) =0}.

Definition 3.14. Let A be a C*-algebra. A representation of A is a pair (H,n) where H is a
complex Hilbert space and 7 is a x-morphism from A to B(H). The representation (H, ) is said
to be faithful if and only if 7 is a x-isomorphism from A to m(.A), i.e., if and only if ker(7) = {0}.

If A is a C*-algebra and (H,7) is a representation, then # is called the representation space;
the operators w(A) € B(H) are called the representatives of A, and 7 is often referred to as a
representation of A on H.

Proposition 3.15. Let (H, ) be a representation of a C*-algebra A. The representation is faithful
if and only if it satisfies each of the following equivalent conditions:

i) ker(m) = {0},
i) || (A)|| = || Al for all A € A,
iii) for all A€ Ay, A#0, we have m(A) > 0 and 7w(A) # 0.

A proof of this result can be found in [10, Proposition 2.3.3].

Definition 3.16. Let A be a C*-algebra. A x-isomorphism 7 from A to A is called an automor-
phism on A.

An immediate consequence of Proposition [3.15] and Definition is the following.

Corollary 3.17. Let A be a C*-algebra and T be an automorphism on A. T is norm-preserving,
i.e.

(3.23) I7(A)]| = Al for all A€ A,

3.5. States. Another notion of crucial importance for the theory of C*-algebras is that of states.
States are essential, of course, also in applications to physical systems. Again, let A be a unital
C*-algebra.

The dual of A, which we denote by A*, is the collection of all continuous linear functionals over
A. For any f € A*, we define the norm of f to be

(3.24) [f]] := sup{[f(A)[ : A € A and [|A[| = 1}.
Definition 3.18. A linear functional w over A is said to be positive if
w(A*A) >0 forall Ae A

A positive linear functional w over a C*-algebra A is said to be a state if |Jw|| = 1.
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Recall that A € A, if and only if A = B*B for some B € A. Moreover, for A,B € As,, A > B
if and only if A — B € A;. It follows that w(A4) € R if A € Ag,, and A > B implies w(A) > w(B).

States and representations are intimately connected. To see this, let A be a unital C*-algebra,
and let (H, ) be a representation of A. For any non-zero €2 € H, define

(3.25) wo(A) = (Q,m(A)Q) forall Aec A.
It is clear that any such wq is linear on A. In addition,
(3.26) wa(A*A) = (Q,7(A*A)Q) = |[7(A)Q|*> >0

and so wq is positive as well. If |Q|| = 1 and 7 is non-degenerate, then one can check that ||wq| = 1.
In this case, then wq, is a state on A. States of this type are called vector states of the representation
(H, 7). In fact, one can prove that every state over a C*-algebra is a vector state in a suitable
representation 77.

The following lemma underlies the most basic properties of states .

Lemma 3.19 (Cauchy-Schwarz). Let w be a positive linear functional over A. It follows that
i) w(A*B) = w(B*A) for all A,B € A,
i) |w(A*B)|? < w(A*A)w(B*B) for all A,B € A.

Proof. Let A, B € A and A € C. By positivity of w

(3.27) w((M+B)*(AMA+B))>0.
Using linearity, one finds that this is equivalent to
(3.28) IANPw(A*A) + Aw(A*B) + M\w(B*A) + w(B*B) > 0

The necessary and sufficient conditions for the positivity of this quadratic form on A are exactly
the conditions given above. O

There are a number of immediate and important consequences.

Corollary 3.20. Let w be a positive linear functional over A. It follows that

i) w(A*) =w(A) for all A € A.

i) w(ll) = J|w|| = sup{w(A*A) : |A]| = 1}.

i) |w(A)|? < w(A*A)||w|| for all A € A.

i) [w(A*BA)| < w(A*A)||B|| for all A, B € A.
Proof. The proof of i) follows from Lemma i) by taking B = 1. To see that the first equality
in ii) is true, observe that
w(1)
]
where we have used uniqueness of the identity, i.e. that 1* = 1, and non-triviality of A, i.e. that
||| = 1. It is also clear that, for any A € A
(3.30) w(A)]? = [w(@*A)]* < w(Dw(A*A)
where we have applied Lemma ii). If we further assume that A € A satisfies ||A|| = 1, then
(3.30) implies
(3.31) ol < w(D)wl]
where we have used that ||A* Al = ||A||> = 1. If ||w]|| = 0, then (3.29) shows that w(1) = 0 as well.
Otherwise, w(1) = ||w|| now follows by combining the inequalities proven in (3.29) and (3.31)). The

claim in iii) now follows from (3.30)). In fact, the second equality in ii) also follows from (3.30]).
Finally, iv) follows from the application of ii) to the positive functional B — w(A*BA). O

(3.29) 0 < w(l'1) = w(ll) = < ]|
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Note that iv) implies that, for any A € A with w(A*A) # 0,

w(A*BA)
.32 B)y=——~*
(3:32) walB) ="
defines a state wa on A. This is the quantum analogue of starting with a measure, e.g. dx on

O, 1 s considering a non-negative function 1% with ! HAT dx < 00, and defining a new, normalized
g g 0 g
measure via

forall Be A

3.33 ﬂdw
539 fol p(w)da
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4. GENERAL FRAMEWORK FOR FINITE AND INFINITE QUANTUM SPIN SYSTEMS

The general framework introduced in this chapter will allow us to consider infinite quantum
spin systems as C*-dynamical systems. In particular we will construct the dynamics for infinite
quantum spin systems as a strongly continuous one-parameter group of automorphism of the algebra
of quasi-local observables. We start by studying the dynamics of finite quantum spin systems.

4.1. The Dynamics of Finite Systems. Let A be a finite set. For each x € A we have a quantum
system described by a finite-dimensional Hilbert space of dimension d, > 2. These are the ‘spins’
that form the spin system. The Hilbert space for the finite spin system is then

(4.1) Ha =) C.

€A

The algebra of observables of the systems is

(4.2) Ax = Q) Mq,.
€A

Due to the tensor product structure, for any A; C A, the collection of observables 4j, may
be regarded as a subset of the observables in Ay by identifying A € Aj, with A ® Ty, €
Ap, @ Apya, = Ap. With this in mind, we will consider Ajx, as a subalgebra of A,.

An interaction @ is a mapping ® : P(A) — Ap (where P(A) denotes the set of all subsets of A)
with the property that: For each X € P(A), ®(X) € Ax and ®(X)* = ®(X). For any Z C A, the
Hamiltonian corresponding to ® in the volume Z is given by

(4.3) Hz= > &(X)
XeP(2)

Example An interaction, ® g, for the Heisenberg spin chain on an interval [a,b] C Z is given by

o —J0_"j0_"j+1 ifX:{j7j+1}
(4.4) ®n(X) = { 0 otherwise
and therefore we have
b—1
(4.5) Hop= Y. @u(X)=-JY &djn
XeP([a,b]) Jj=a

as in (2.55)) above.

The Heisenberg dynamics, which we will denote by 7/, generated by the Hamiltonian Hj (cor-
responding to the interaction ®) is an automorphism of the algebra A, defined as follows:

(4.6) MA) = UL (t)AUA(t), for all A € Ay,
where Uy (t) is the unitary operator
(4.7) Up(t) = e MHA ¢ A,

The automorphisms TtA provide the solutions to the Heisenberg equation for the time-evolution of
observables:

(4.8) LAY = ilHp, 7 ().

a’t
Often, we consider finite volume subsystems of some infinite system of spins labeled by a count-
able set I'. A common situation is a spin systems defined on the lattice Z”.
A typical model will be defined by specifying a global interaction ® which is a mapping

(4.9) ®:Py(2) = | An,

n>1
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with Py(Z") being the set of finite subsets of ZY and the union of the observable algebras is
defined inductively using that Ay, C Aj,,,. (Under the additional assumption that the sequence
is exhaustive, i.e., Up,A,, = Z", this union is independent of the chosen sequence.) The same
conditions on the interaction, i.e., ®(X)* = ®(X) € Ax apply. We often investigate properties of
finite-volume Hamiltonians corresponding to this fixed interaction:

(4.10) Hy=Hy, = Y ®X)
XeP(An)
For the dynamics, it is clear that if Ay C A, then

(4.11) M(A) € Ay, for any A € Ay, and all ¢ € R.
However, it is generally the case that
(4.12) MA) ¢ Ap, for any A € Ax, and t # 0.

Let’s examine this further in the context of a one-dimensional systems with nearest neighbor
interactions, such as the one-dimensional Heisenberg model. Let Hpy denote the Hamiltonian for
such a system on [—N, N] C Z:

N-1
(4.13) Hy= Y hjjer with hjju = —J3; G € A
j=—N

The corresponding Heisenberg dynamics, i.e. 7{¥(-), can be defined by the series for the exponential

of its generator i[Hy,-|:

. it)?
(4.14) 7N(A) = N 1(A) = A+ it[Hy, Al + (221) [Hy,[Hy,A]| + -+, forany A€ Ay .

To gain some insight in the structure of the dynamics, consider A € Ay i.e. an observable that
acts non-trivially only at the origin. Then, using the local form of the Hamiltonian, i.e. (4.13)),
and the fact that observables with spatially disjoint support commute, we find that the first order
term is

(4.15) [HN,A] = ([h—l,(b A} + [h()’l,A]) S A{fl,O,l}'

A similar calculation shows that

(4.16) [Hy, [Hn, A]] € Af—2,-1,0,1,2}

and in for general n > 0,

(417) ([HN, ])n(A) € A[— min(n,N),min(n,N)]-

As a consequence, if we take B € Ay, for some z € [—N, N], one readily sees that
(4.18) [ (4), B] = O(|t),

suggesting that, for A € Aygy, the commutator of N (A) with B € Az}, is small for ¢ small and z
large. One observes, however, that direct analysis of the series expansion does not look appealing
due to the fast growth in n of the number of terms that contribute at order n. In any case, we are
interested in an explicit estimate for the norm of commutators of this type. The following Lemma
shows how such estimates could be used.

Lemma 4.1. Let Hy and Ha be two complex Hilbert spaces. Suppose that, fore >0, A € B(H1®Hz2)
satisfies

(4.19) 1[4, 1@ B]|| < €||B],
for all B € B(Hza). Then there exists A’ € B(H1), ||A'|| < |4, such that
(4.20) A @1— Al <e
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So, if A € B(H1 ® Hs) has a small commutator with all B € B(Hz), then A is well-approximated
by observable in B(H1), i.e., one with support in the complement of the support of the B’s.
If dim(H2) < oo, the local operator in the statement of the lemma can be taken to be

1
4.21 A= ——TrA
( ) dim(H2) 2

where Try denotes the partial trace over Hs.
Proof of Lemma in the finite-dimensional case: If dim Ho < 0o, a simple application of Schur’s
Lemma shows that, for B € B(H3),
1
(4.22) —TrB = / U*BU dU,
dlm(HQ) U(Hz2)

where U(#H2) is the unitary group and dU is the normalized Haar-measure on U(#H2). From this
expression, we see that A" as defined in (4.21)) can be expressed by

(4.23) A’®Il—/ (1@ UHA(LI®U)dU
U(Hz2)

Then,

(4.24) Nol— A= / (e U9AIeU) - (1o U%) (1o U)A} dU,

U(H2)

and so

(4.25) [A"® 1 - Al S/ (M@ UY)[A, (T U)]||dU < e
U(H2)

since ||U|| < 1. This completes the proof for the case of finite-dimensional H2. For a proof in the
case of arbitrary Hilbert spaces and further discussion see [50]. t

In our analysis of commutator bounds we will use solutions of Schrodinger equations with time-
dependent Hamiltonians, or so-called non-autonomous quantum systems. This is of course an
interesting subject in its own right. Here, we limit ourselves to the simplest situation: that of a
norm-continuous function ¢t — H(t) € B(H). We are interested in the initial value problem

S0 = i@
(4.26) P(0) = Yy €H.

Existence and uniqueness of the solutions follows from standard results for differential equantions.
The following construction shows that the solution can be expressed in terms of a family of unitary
operators on H, which, for reasons that will become clear later, we will denote by U(t,0). U(t,0)
is given by the following absolutely convergent series, called the Dyson series or sometimes ‘time-
ordered exponential’:

(4.27) U(t,0) = 11+nzl(—i)n /0 it /0 dts- - /O dt H(0)H(ts) - H (k).

It is straightforward to verify that

(4.28) %U(t,o) — LHWU,0), U(0,0) =1,

which immediately implies that ¢(¢) = U(t,0)1(0) solved (4.26]), for all )9 € H. By taking adjoints
of both sides of (4.28) we obtain a similar equation for U(¢,0)*:

(4.29) %U(t,o)* U0 H(E), U(0,0) =1,
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Using and we find that the derivative of U(t,0)*U(t,0) vanishes for all ¢ € R, and
we conclude that U(t,0) is unitary as claimed. Therefore, for s,¢ € R, we can define a unitary
Ul(t,s) = U(t,0)U(s,0)*. Tt is easy to verify that U(t, s) satisfies U(t,s)* = U(t,s)~! = U(s,t) and
the cocycle property: U(t,s)U(s,r) = U(t,r), for r,s,t € R.

The Heisenberg dynamics of observables can then be given in terms of a co-cycle of automor-
phisms 7; s defined by

(4.30) Tes(A) =U(t,s)*AU(t,s), A € B(H).
The automorphisms satisfy the equation
d
(4.31) S Te0(A) = im0 ([H(1), A]) = i[7e0(H (1)), Te0(A)]).

4.2. Infinite Systems. We already indicated that one is often interested in families of finite
systems defined on finite subsets A of an infinite set I, with an interaction ® defined on Py(T'),
the finite subsets of I'. This will be the starting point for the definition of infinite quantum spin
systems.

Let (I',d) be a countable metric space. We will impose certain regularity conditions on (I, d).
An example to keep in mind is Z” with the usual graph (i.e., the ¢!) distance. To each = € T, we
associate a finite-dimensional, single-site Hilbert space of states H, = C%. As before, the algebra
of observables at the site x will be denoted by A, = B(H;) = My,. For any finite volume A C T,
we then have

(4.32) Ha=QRHe and Ay =) A,
xEA zEA

As we have seen, if Ag C A are two finite subsets of I', then Ap, C Ap. It therefore makes sense
to consider the union over all finite subsets of I':

(4.33) Arc = | Aa.
ACT

The C*-algebra of all quasi-local observables is the norm completion of A}S’C:
Il

(4.34) Ap = Af°
An interaction ® is a map from the finite subsets of I to AFC, O :Py(l) — AIFOC, that satisfies
(4.35) O(X)" =®(X) e Ax for each X € Py(I').

The Heisenberg dynamics associated to this interaction is then defined for any finite A C I' in terms
of the self-adjoint finite-volume Hamiltonian

(4.36) Hy= ) @(X),

XCA
For each A € Py(T"), the finite-volume dynamics is given by

(4.37) MA) = A Ao A for any A € Ap and t € R.

So far, we have a family, labeled by A € Py(T"), of one-parameter groups of *-automorphisms on
Ap. We are interested in a framework where it makes sense to consider infinite systems describing
bulk matter. Note that one can regard the 7/* as automorphisms defined on A/, with A C A/, .Alf"c,
or Ar, for which Ay is an invariant subspace. Therefore, it makes sense to consider the convergence
of 7/ as automorphisms on Ar as A /T

A convenient way to express sufficient conditions for the existence of the infinite-volume limit of
the dynamics (and other quantities), is by means of a function F' : [0,00) — (0, 00), which we will

refer to as an F-function if it satisfies the following properties:
i. Non-increasiing: for 0 < r < s, we have F(r) > F(s);
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ii. Uniform integrability:

(4.38) |F|| = sup Y F(d(z,y)) < oo
zel’ yel'
iii. Conwolution condition: There exists C'r < oo such that for any z,y € I’
(4.39) > F(d(w,2))F(d(z,y)) < CpF(d(x,y))
zel

For example, if I' = Z¥, then for any ¢ > 0, one can take
(4.40) F(r) = (14 r)" @9
which is clearly, uniformly integrable. Moreover, it is easy to check that the convolution property
holds with
(4.41) Cp = 27| F|

works in ((4.39).
It is also convenient to observe that if F' is an F-function on (I',d) - as described above, then
for any a > 0,

(4.42) Fy(r)=e *"F(r)

also satisfies the required properties required i-iii) above (i.e. Fy is also an F-function on (T',d))
with || Fy|| < ||F|| and CFg, < Cp.

In terms of any F-function on (I',d), we can define a Banach space of interactions ® with the
norm

(4.43) 12llr = sup = —5 E (X
z,yel’ XCT:
z,yeX
Then, Bp(I') = {® | ® is an interaction s.t. |®||r < co}. This norm || - ||, often referred to as an

F-norm, expresses the decay of the interaction strength at long distances: for each pair of points
z,y € I', the sum over all interaction terms which involve this pair must decay faster than F', in
the sense that for any x,y € I', we have

(4.44) Yo X))l < @l FF(d(,y)).
syex

A commonly used bound for the total interaction energy per spin is

(4.45) |H‘I>|Ho—sup > qu’ Xl

D xS X1
IEX

and is an easy exercise to show [|®[|, < || F||||®||r. We then also have the frequently used bound

(4.46) sup > [ @(X)]| < [|F)[|®]
€L xepy(r)
zeX

5. LIEB-ROBINSON BOUNDS

We will now state and prove a version of the quasi-locality estimates known as Lieb-Robinson
bounds. Lieb-Robinson bounds can be expressed a number of different forms, and the precise
manner typically depends on the application one has in mind. Often one is considering a dynamics
generated by nearest neighbor interactions. In this case, it seems intuitively clear that the spread
of the interactions through the system should depend on the surface area of the support of a local
observable, not its volume.
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Let A € Py(I"). For any X C A, we will denote the surface of X in A by

(5.1) SAX)={ZCcA:ZnX#Dand ZN(A\X) #0}
and set S(X) = Sp(X) for brevity. The ®-boundary of a set X € Py(I") is then defined to be
(5.2) 9pX = {z€ X :3Z€S(X) withz € Z and (Z) £0}.

It is clear that for general ®, 0 X = X, but if ® is finite range and X is sufficiently large, we have
that 0p X is a proper subset of X.
A Lieb-Robinson bound may be stated as follows.

Theorem 5.1 (Lieb-Robinson Bound [?,[34,44,51]). Let ® € Br(I'), X,Y,A € Py(T'), such that
X,NY = 0. Then, for all A € Ax and B € Ay, we have the estimate

2]l Al
F
holds for all t € R. Here the quantity D(X,Y) is given by

(53) H[TtA(A)vB]H < <e2||‘I>HF Crlt] _ 1) D(X, Y)’

(5.4) DX, Y)=min¢ > > F(dz,y), Y > F(d(z,y))

zeX y€daY €0 X yeY

Before we prove this bound, a number of comments are useful in interpreting this theorem.

First, one always has the trivial bound ||[7*(A), B]|| < 2||A||||B||. This trivial estimate is usually
better when |¢| is large and also holds when X NY = ().

Next, if ® is exponentially decaying, i.e. there is @ > 0 for which ® € B, (I') with F,(r) =
e " F(r), then

D(X,Y) < min Z Z F(d(z,y)), Z Z F(d(z,y)) b e~ 2dXY)
z€X y€0aY z€0p X yey
(5.5) < min{|9X], |06 Y|} || F|le9*Y)

In this case, the bound (j5.3)) implies

2 1Al B | F . —a |d(Xx,y)=22laCa
(5.6) Il (), Bl < W min {|9p.X |, [9pY [} & 10OV -2 ],

a
If @ is finite range on Z", then ® € Bg, (Z") for all a > 0. For ® € Bp,, with a > 0, (5.6) can be
interpreted as a bound on the velocity of propagation given by

_ 2]@]uCa
oo,

It is also important to observe that for fixed local observables A and B, the bounds above,
and similarly if applicable, are independent of the volume A € Py(I"). This will be key in our
proof of the existence of the infinite-volume dynamics.

Finally, we note that the bound above only depends on the minimal cardinality of ®-boundaries.
Hence, one may still obtain useful estimates even in cases where one of the corresponding observables
has support growing with the volume A.

In the proof of Theorem we will use the lemma below, which provide a simple estimate for
the growth of solutions of a class of differential equations in a Banach space. In this lemma the
derivative is to be interpreted as a limit in the Banach space norm and the integrals in the proof
may be interpreted as Riemann or Bochner integrals.

(57) VP,a
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Let X be a Banach space and let I be a finite or infinite interval C R. Suppose A : I — B(X)
be a continuous function with values in the bounded linear operators on X considered with the
operator norm, and denote by z(¢) the solution of the differential equation

(5.8) Bue(t) = A(t) z(t)

with initial condition x(tp) = z¢p € X. We say that the family of operators A(t) is norm-preserving
if for every xg € X, the mapping v : X — X which associates xop — x(t), i.e., y(xo) = x(t),
satisfies

(5.9) | ve(zo) || = ||zo|| foralltel.

Some obvious examples are the case where X is a Hilbert space and A(t) is anti-hermitian for
each t, or when X is a x-algebra of operators on a Hilbert space with a spectral norm and, for each
t, A(t) is a derivation commuting with the x-operation.

Lemma 5.2. Let A(t), fort € I C R, be a family of norm preserving operators on a Banach space
X. For any continuous function b : I — X, the solution of

(5.10) dy(t) = Alt)y(t) + b(t),
with boundary condition y(to) = yo, satisfies the bound

max(to,t)
(5.11) o) = ) | < [ ) s,
min(to,t)
Proof. For any t € R, let x(t) be the solution of
(5.12) Ox(t) = A(t) x(t)

with boundary condition x(0) = xg, and let 44 be the linear mapping which takes xy to x(¢). By
variation of constants, the solution of the inhomogeneous equation ([5.10)) may be expressed as

(5.13) o) = (w+ [0 s )

The estimate ([5.11)) follows from ([5.13) as A(t) is norm preserving. O

Proof of Theorem [5.1: We prove (5.3)) in two steps. First, we use Lemma to establish a basic

inequality, see (5.20)) below. Next, using properties of the F-function, iteration of (5.20)) yields (5.3])
as claimed. Without loss of generality we may assume that X, Y C A.

First note that, the roles of A and B, and hence the roles their respective supports, X and Y,
can be interchanged. This is due to the automorphism property of the dynamics, which gives

(5.14) I[7%(B), Alll = |I7* (72(B), A]) || = ll[7*(4), Bl

and the argument below can be applied to the left hand side of ([5.14]).
Therefore, without loss of generality, we can assume that

(5.15) DX,Y)= > Y F(dxy))
€I X yeY

To prove (5.20f), consider the function
(5.16) F) = [ (75(4)) . B],

where A and B are as in the statement of the theorem. Note that the inner dynamics, 7% (A),
corresponds to evolution by the local Hamiltonian Hy, as defined e.g. in (4.3), with X being the
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support of the observable A. It is straightforward to verify
£y = i[r ([Ha — Hx,7%(4)]) , B]
=i Yy [[#@2), 7 (7(A)],B]

ZeSN(X)
(5.17) = i Y [F@2). f0] —i Y [#ENA), 7 (2(2), B]] .
ZeSA(X) ZeSn(X)

where for the last equality we used the Jacobi identity. The first term in (5.17)) above is norm
preserving, and therefore, Lemma [5.2] implies that
max{0,t}

(5.18) 17 (7 %(4)), BII < II[A, B]ll + 2|1 Al Z / [l7}(®(2)), B]|| ds.

78 min{0,t}

To ease notation, we will assume that ¢t > 0 for the remalnder of the argument. Changing the sign
of t is equivalent to changing the sign of ® and therefore leaves the estimate unchanged. For any
Z € Py(T'), introduce the quantity

AA), B
(5.19) oM zet) = sup NI BIL
AcAy: Al
A#0

Since supp(tX,(A)) € X and |[7X(A)|| = ||A|| (both for all ¢ € R), the inequality (5.18) clearly

implies

t
(5.20) CR(X;t) < CR(X;0) +2 ) ch(Z)H/ CA(Z;s)ds
ZESA(X) 0
Note: it is clear from that single-site interaction terms, i.e. those of the form ®({z}) for
some z € I', do not contribute to this locality estimate.
The claim in now follows from by iteration. In fact, it is clear from the definition,
see , that for any finite Z C A,

(5.21) C5(Z;0) < 2| Bl 6y (2)
where dy is defined by
[ 1 ifZnY #0,
(5.22) ov(Z) = { 0 otherwise.
To prove (5.3)), let N > 1. Tteration of ([5.20} using ) yields
(5.23) Cp(X;t) <2||B| ( Z ) + Ry (t)
where

(5.24) = oo > HH@ oy (Zn)

Z1€SA(X) ZQGSA(Zl) ZnGSA(Zn—l)

and

CEURELED DD SENTED DI A A

Z1€SA(X) Z2€SA(2Z1) ZN+1ESA(ZN)

N+1
(5.25) X HH‘I)(ZJ)” Cg(ZN+1;SN+1)dSN+1dsN---d81
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The remainder term Ryy;(t) is estimated as follows. First, we bound Cg(Z N+1; SN+1) with
2||B|| using its definition (5.19). Next, we note that the sums above are over chains of sets
(Zl,ZQ, s ,ZN+1) which satisfy Z; N0 X # @ and Zj N Zj_l #* B for 2 < j < N + 1. Therefore,
there are points wi, wa, - -+ ,wy4+1 € Awithw; € Z1N0s X and w; € Z;NZ;_1 forall2 < j < N+1.
A simple upper bound on these sums is then obtained by estimating

EEUNEED VHED SRR SENNEED DD >

Z1E€SA(X) Z2eSp(Z1) ZN+1€SA(ZN) w1 €0 X W2,...,wN42EA Z1,- Z N1 CA:
wk,wk+1€Zk,k:1,...,N+1

where we have used that the last set Zy 11 must contain more than one point since Zn 1 € Sp(Zn).
By (4.44)

(5.27) Yo 2@l < 2] F(d(wy, wyr1))

ZkCA:
Wi, Wk 41E€E Lk

and the convolution property, we find that

(2t)N+l N+1
Rnia(t) < 2’|B||'m Z Z Z HH(I)(ZJ)

' Z1€SA(X) Z2€SA(Z1) Zny1€ESA(ZN) \J=1

N+1

@t @] p)N !
S LR o= D DINED DI | R C TN
w1 E€0p X wa,...,wN4+2EA k=1
2|B|| (2t||®||pCp)NFT

(5.28) < IB]] . 2r]12]rCr) Z Z d(w1, wN+2))

Cr (N +1)!

w1 €0 X WN2EA

Since F' is uniformly summable and X is finite, this bound clearly shows that Ry.1(t) goes to 0
as N — oo. We have proven that

(20)"

(5.29) CAX1) < 21BIS an -
n=1

The coefficients a,, are bounded similarly. In fact, using the additional constraint that the final
set Z, must intersect Y, we find that

@
YyeY €0 X
and therefore,

(5.31) Cp(xit) < 2L (eeimiee 1) $° S P

F YeY x€Ip X
]

In combination with Lemma the Lieb-Robinson bounds of Theorem show that the time
evolution of a local observable with support in X € Py(I'), yields an observable which, up to a
small correction, is localized in a larger but still finite region. More precisely, for X € Py(T"), and
with [|®]|, < oo, for some a > 0 and vg 4 is the quantity defined in (5.7)), define

Xoaltl+7r)={z el |dxz,X) <vpqlt|+r}.
Then, for A € Ax, define

(TtA(A))X(vq)’a|t|+T) = TrHA\X(U¢7a|t\+r)TtA(A)'
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Then (7*(A)) x (v t}+r) € Ax(vaalti+r) C Ar and

2[|All1X] -
A A
173" (A) = (73" (A)) x40 | < ——5— [F1e™"

a
This observation, and the fact that the bound above is uniform in A, is a clear indication that
the dynamics of local observables under the interaction with the infinite system on I', should be
well-defined. We prove that this is indeed the case in the next section.

5.1. Existence of the Dynamics. Lieb-Robinson bounds can be used to establish the existence
of a limiting dynamics for interactions ® € Br(I"). To see this we will consider limits of the finite
volume dynamics along increasing, exhaustive sequences {A,}, i.e., for all n > 1, A, € Py(I),
A, C Ap41, and for any z € T, there exists an n > 1 for which z € A,,.

Theorem 5.3. Let ® € Bp(T'). Along any increasing, exhaustive sequence {A,} of finite subsets
of ', the norm limit

(5.32) 7(A) = lim 7" (A)

exists for allt € R and A € A{S’C. The convergence in is uniform for t in compact sets,
and moreover, it is independent of the choice of exhaustive sequence {A,}. The collection {T;}ier,
which we denote by the infinite volume dynamics corresponding to ®, defines a strongly continuous,
one parameter group of x-automorphisms on Ar.

Proof. Let A € AX° and denote by X = supp(A4) € Py(T'). Take m > 1 large enough so that
X C Ay,. For any n > m, we have that,

(53 ) =) = [ (e () ) as
and since
(5.34) % (TSAn (ﬁ‘_rg (A)) ) = jrhn ([HAn - HAm,TtA_W;(A)D ,

it is clear that for ¢t > 0

(5.35) It (A) =)l < Y I[r (A), 2(2)]|| ds.
ZeSp,, (Am)

(Again, analogous results hold for ¢ < 0.) The estimate continues by dividing the above sum on Z:

t
I (A) = 7 (A < 24l > @@+ > /H[TSA”“(A),@(Z)HIdS
Zesy,, (Am): zeSy, (Am): 0
ZNX D ZNX=0

241ty Y o 2@

z€X 2€Ap\Am ZCAn:
n\ mx,ze%

IN

(5.36) +2HCAH/O(€2”(I)”FCFS—1)dS Soole@)ll Y. Fdx,z))

ZeSy,, (Am): reX,z€Z
ZNX=0
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where we have used Theorem [5.1] on the second sum above. Observe that

Yo lle@ll Y, Flz) < Y Y Y Fldez) ) |22

ZeSp,, (Am): xeX,2€Z 2€X 2/ €Ap\Am 2E€EAR ZCAn:
ZNX=0 z,2'€Z
< Rle >, Y. D Fld(w,2)F(d(z,2)

z€X 2/'eAp\Am 2EAR

Cllelr . > Fldx,2))

z€X 2/ €Ap\Am

(5.37)

IN

Altogether then, we have shown that

(5.38) mAn<A>—TtAm<A>\szrmuu%(/@ eZ”‘I’”FC’”ds>Z Y. Fd(x,2))

z€X z€A\Am

This proves that the sequence of finite volume evolutions is Cauchy and hence convergent; at least
on AIFOC. The remaining claims follow by elementary arguments. In particular, see the Exercise 15
of Sections 1-3. O

By general arguments of semi-group theory (see, e.g., [11][Proposition 6.2.3]), the strongly con-

tinuous, one-parameter group of x-automorphisms {7 };cg is generated by a closed operator ¢ in the

following sense. For all A € Al°°, using an estimate in terms of || ®||r, one can show the existence

of the limit in Ar:

(5.39) d(A) = lim [Hy, A.
A—T
and ¢ is the closure of this operator, meaning the domain of the generally unbounded operator ¢,

dom(d), contains AR as a core. For A € dom(d), we have
d

(5.40) 5Tt (A) = 0(re(A)) = im(3(4)),

and it is customary to write 7 = eitd
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6. GROUND STATES AND EQUILIBRIUM STATES

For a quantum spin system associated with a finite set A, the Hamiltonian Hy = H) € A, is
a self-adjoint operator acting on a finite-dimensional complex Hilbert space Hp. Its spectrum is a
finite set of real eigenvalues and a ground state is defined to be any state wg that minimizes the
energy, i.e. , such that

(6.1) wo(Hp) = min{w(Hy) | w a state on Ay }.

It is a simple exercise to show that ground states of finite quantum spin systems are exactly those
states that have density matrices with a range that is a subspace of the eigenspace corresponding
to the smallest eigenvalue of Hy. The ground state of the system is unique if and only if this
eigenvalue is simple.

For a finite quantum spin system with Hamiltonian Hjp, thermal equilibrium at inverse temper-
ature § € [0,00) is the unique state, the Gibbs state, given by the density matrix pg defined as
follows:

(6.2) pg = ie_ﬁHA, Zg = Tre PHA,
Zg

In the sections below we derive some basic properties and equivalent characterizations of ground
states and equilibrium states, which will be useful to formulate these concepts in the infinite system
setting.

6.1. Ground States. Let Ey(A) denote the smallest eigenvalue of the Hamiltonian H on a finite-
dimensional Hilbert space Ha. In this context Eg(A) is the ground-state energy, and any state w
on Ay such that w(Hy) = Ey(A) is a ground state. In the following proposition it is shown that
the set of all ground states for the system with Hamiltonian Hy is the set of all states satisfying
w(A*[Hp, A]) > 0, for all A € Ay, and that this property is inherited by limits of sequences of
ground states of finite-volume systems defined on a sequence A,, € Py(I"), defined by an interaction
¢ € Bp(I'), for any F-function F.

It is clear that to any sequence of finite volumes {A,} with A,, — T, there correspond one or
more sequences of ground-states wy,. Using the Banach-Alaoglu theorem, it is easy to see that
each of these sequences has an accumulation point (and a convergent subsequence).

Note that there is no simple definition of a limit of the Hilbert spaces H,,,, nor of the Hamil-
tonians Hy,, but it makes perfect sense to consider the limiting states on A, and, by unique
continuous extension, also on Ar. This provides a good option for defining ground states for the
infinite volume T.

Proposition 6.1.

(i) Let w be a state of a system with Hamiltonian H on a finite-dimensional Hilbert space H,
i.e. , suppose that the range of the density matriz p of w is a subspace of the eigenspace of H
corresponding to its smallest eigenvalue Ey. Then we have

(6.3) w(A*[H,A]) >0, for all A € B(H).

Conversely, every state on B(H) satisfying is a ground state of the system.
(7i) Let {A,} be an exhaustive sequence of finite volumes in I'. For each n > 1, let wy, be a ground
state of Hy,,. If

(6.4) wn(A) = w(A)  for all A e Ak°
and
(6.5) oa, (A) == [Hp,, Al = 0(A)  for all A e AKC

in the strong sense (i.e. in norm), then w is a state on AR satisfying

(6.6) w(A*5(A)) >0, for all A € AKXC.
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Proof. (i). Observe that
w(A*[H,A]) = TrpA*[H, 4]
(6.7) = TrpA*HA—-TrHpA*A = TrpA*(H — Ep1)A > 0

where we have used Hp = Egp and Hp > Eyl.

To prove the converse, assume that there exists 0 # ¢ € ranp such that Hy # Egy and consider
A = |1po) ()| where g # 0 and Hvg = Eptbg. An easy calculation shows that w(A*[H, A]) < 0.
Therefore, w does not satisfy .

(ii). To study the limit n — oo, we write

w(A0(A)) — wa,, (A4, (4))
(6.8)  =w(A"(6(4) = 0a,(A))) + (w —wa,) (A" (64, (A4) — 6(A))) + (w — wa, ) (A"0(A)).

The limit of the first terms vanishes because of (6.5) and the fact that states are bounded linear
functionals of unit norm. For the last term, for each € > 0, pick B € A%¢ such that || A*§(A)—B|| < ¢
and use this to see that
(6.9) limsup |(w — wa,, )(A*0(A))] < 2e.

n
Since € is arbitrary, we can conclude that also the third term of vanishes in the limit n — oo,
and the claimed result follows. O

Note that there are in general many sequences Hp, such that holds with the same generator
0. The limits of ground states of each such sequence of finite-volume Hamiltonians will all satisfy
and it will make sense to consider them all as ground states of the C*-dynamical system
(Ar, {rr = ¢ | t € R}). Therefore, we adopt the following definition.

Definition 6.2. Let A be a C*-algebra and {r; = ¢® | t € R} be a strongly continuous one-
parameter group of automorphisms of A. Then, a state w on A is a ground-state for 7 if

(6.10) w(A*§(A)) > 0 for all A € dom(s).

Note that it suffices to require (6.10)) for A in a core for 4. In the context of quantum spin systems
defined by an interaction ® € Bp(I'), a convenient core for J is given by the local observables A}
The next proposition shows that ground states are time-invariant, i.e. , wo7 = w, for all t € R.

Proposition 6.3. Let A be a C*-algebra and {m; = €™ | t € R} be a strongly continuous one-
parameter group of automorphisms of A. Then, the following three conditions are equivalent:

i.woT =w, forallt € R;
ii. w(6(A)) =0, for all A € dom(d);
iii. w(A*6(A)) € R, for all A € dom(9).

We leave the proof of this proposition as an exercise for the reader. (Hint: w(d(A*A)) =
2iIm[w(A*§(A))].)

6.2. Thermal Equilibrium, the Free Energy, and the Variational Principle for Gibbs
States. For a finite spin systems, the thermal equilibrium state at inverse temperature 8 € [0, 00),
can be defined as the minimizer of the free energy functional. This provides a definition of equilib-
rium states analogous to the definition of ground states as those states that minimize the energy.
As we shall see, ground states correspond to zero temperature, i.e. , 5 = +00.

In order to define the free energy functional, we start with von Neumann’s definition of the
entropy, S(p), of a state defined by a density matrix p:

(6.11) S(p) = —Trplog p.
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Here plog p is defined through the functional calculus with the continuous function xlog z : [0, 1] —
R. When H is finite-dimensional the entropy is finite for all p and satisfies the bound

(6.12) 0 < S(p) <logdimH,

the proof of which we leave as an exercise.
Let H = H* € B(H) be the Hamiltonian of a finite quantum spin system. The Gibbs state at
inverse temperature 5 € (0,00) for the system with Hamiltonian H is defined by the density matrix

1
Z(P)

The normalization factor Z () is called the partition function. We will denote the Gibbs state by

wg. The parameter 3 corresponds to the temperature 7' in the sense that 3 = (kpT)~!, where kp

is Boltzmann’s constant. Thus 7" = 0 corresponds to 5 — oo, and in turn to the ground state.
For B € (0,00), the free-energy functional Fp is given by

(6.14) Fs(p) = TrpH — 37'5(p).

(6.13) pg = e P with Z(8) = Tre PH.

Proposition 6.4. pg is the unique density matriz that minimizes Fg, i.e. , for all density matrices
p we have

(6.15) Fs(pg) < Fp(p), and Fs(p) = Fs(pg) = p = ps-

Using this proposition, the minimum value of Fj is easily seen to be given by f(8) = —3~!log Z(3)
and is called the free energy of the system at inverse temperature 5.
The proof of this proposition follows from a simple application of the following lemma.

Lemma 6.5 (Klein [58], Ohya-Petz [53]). Let A and B be two non-negative definite matrices
satisfying 0 < A, B < 1 and such that ker B C ker A. Then

1
(6.16) TrA(log A — log B) > Tr(A = B) + 5 Tr(A - B)?

Proof. The function f(x) = —zlogz, x > 0, continuously extended such that f(0) = 0, is easily
seen to be concave. In fact f € C?((0,00)) with

(6.17) @) = —

X

By the Taylor Remainder Theorem and the expression for f”, it follows that for all  and y such
that 0 < x < y < 1, there exists a £ such that x < & <y and

(615) F) = @) = (= 0 () = =52~ )2F(€) 2 5 (e )

As A and B are non-negative definite, they are diagonalizable. Denote their eigenvalues by a; and b;,
and the corresponding orthonormal eigenvectors by ; and ;, respectively. From the assumptions
it follows that 0 < a;,b; < 1. Using the spectral decompositions of A and B, i.e.,

(6.19) A = ) ailea (el

(6.20) B = Zbi!¢i><¢z‘|

(6.21) Z i) (il Z |[i) (i = 1
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we see that

1
TrA(log A —log B) = Tr(A = B) — S Tr(A — B)?

= S Tl il (] [f(A) +F(B) + (A~ B)f/(B) — L(A?+ B - 2AB)}

]
1
= STl el [~ )+ 1) + (a5~ 007 09 — (a0
]
>0
where the last inequality follows from applying (6.18) term by term. O

Now to prove Proposition we can apply Lemma [6.5 with A = p, where p is an arbitrary
density matrix, and B = pg. Note than ker B = {0}. This gives
e PH

(6.22) B(fs— F(8) = Trplogp—Trplog (Z(ﬁ)>

1
(6.23) > STr(p—ps)* 20

If the RHS vanishes, we have p = pg. Hence the minimum of Fjy is uniquely attained for p = pg.

6.3. The Kubo-Martin-Schwinger condition. Again, we consider a finite-dimensional Hilbert
space H, and a Hamiltonian H = H* € A = B(H). Denote the Heisenberg dynamics by 7. Since
H is bounded it is straightforward to define the analytic continuation of 74(A) for all t € C. A state
w on A is called a 8-KMS state if, for all A, B € A, it satisfies

(6.24) w(Aris(B)) = w(BA).

Proposition 6.6. w is a B-KMS state if and only if w = wg, i.e. , the KMS state coincides with
the Gibbs state.

Proof. First, the KMS property of the Gibbs state follows from a simple computation using the
dynamics and the cyclicity of the trace:

(6.25) Tre_BHAeitHBe_itH’t:iﬁ = Tre PH Ae PH BePH = Tre PHBA.

For the other direction, we use an orthonormal basis of eigenvectors of H, |1),...,|n), with eigenval-
ues Aq, ..., Ap. The S-KMS property of state with density matrix p with A = |i)(j| and B = |k)({|
then reads

(6.26) Trpli)(jle” M) (1| = Trp|k)(1]3) (i,
which translates into
(6.27) kg (l ] p | iye? M=) =505 | p| k).

since p is a density matrix, at least on of its diagonal matrix elements is non-zero, say (i | p | 7) > 0.
With [ = 7 and k # j, the above relation implies that p is in fact diagonal in the eigenbasis of H.
Finally, with | = ¢ and k = j, we obtain that there is a constant c such that

(6.28) (i | p|i)yePr =c.
It follows that p is the Gibbs state. U

Note that the arguments in the proof of this proposition rely on the finite-dimensionality of the
Hilbert space.
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6.4. The Energy-Entropy Balance inequalities. A third criterion for thermal equilibrium is
expressed by a family of inequalities called the Energy-Entropy- Balance (EEB) inequalities. Again,
for now we only consider finite systems and define §(-) = [H, -]. Then, we say that w satisfies EEB
at inverse temperature g if, for all X € A
X*X

(6.29) w(X*[H, X]) > B w(X*X)log <ZEXX§> for all X € A.

Our next goal is to prove that, for a finite system, the EEB inequalities uniquely characterize
the Gibbs state. First we prepare some auxiliary material that is also useful more generally.

The formulation of the EEB inequalities uses the function f : [0,4+00) x [0, +00) — (—00, +00]
defined by

xlog% ifx,y >0
(6.30) flz,y) =120 ifz=0,9>0
400 ifx>0,y=0

In the following, whenever we write something of the form xzlog(z/y), we mean f as defined
above. We will use the following elementary properties of f.

Proposition 6.7. The function f defined in has the following properties:
(i) f is lower semicontinuous.

(ii) f is jointly convex in (x,y).

(iii) f is homogeneous of degree one. i.e., for all A > 0,

fAz, Ay) = Af(x,y)
(iv) For all finite sequences of non-negative numbers t;, x;,y;, i = 1,...,n, one has

FO tiws, Y tiy) < tif (@i, i),
We leave the proof of this proposition as an exercise for the reader.

Theorem 6.8 ( [25,26]). Let w be a state on A. The following are equivalent conditions:
(i) w is the Gibbs state corresponding to H and inverse temperature 3.
(ii) For all X € A one has

w(X*X)
w(X X*)

It is worth noting that the equilibrium condition expressed by the EEB is equivalent to the KMS
condition in the general context of C*-dynamical systems (see |11][Theorem 5.3.15]).

In the context of finite quantum spin systems, the theorem says that the Gibbs state satisfies
the inequalities for all X € A, and that it is the only state that does so. We will derive
this property from the variational principle following a common procedure: we will define suitable
curves in the space of all states that pass through the Gibbs state, or emanate from it, and compute
and estimate the derivative of the free energy functional along these curves. The EEB inequalities
will follow from expressing that the state w minimizes the free energy functional. The converse
direction will be proved by explicit computation. In order to define curves in the space of all states
we use a class of semigroups on A described in the next section. Their definition and essential
properties are as follows.

Let X € B(H). Define Lx : B(H) — B(H), by

Lx(A) = X*AX — %(X*XA +AXTX)

(6.31) Bw(X*[H, X]) > w(X*X)log = F(w(X*X),w(XX"))
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Clearly, as ||Lx(A)|| < 2||X|?||All, Lx is a bounded linear transformation on the Banach space
B(H). Therefore, we can define

n(A) = X (4)

(7¢)t>0 is a semigroup with the following properties: (1) = 1, and :(A) is positive for all ¢ > 0
and A > 0. For a prove of this and other important properties see, e.g., the lecture notes by Michael
Wolf [70]. A map ~; with this property is called a positive map and Lx generates a semigroup of
such maps. From these properties it immediately follows that, for all ¢, there is a unique density
matrix p; such that

Trpi A = Trpy(A)

pt is obtained from p by application of another semigroup of positive maps, 7/, which are the
adjoints of 44 with respect to the Hilbert-Schmidt inner product on B(H). Its generator is given by

* * 1 * *
Lx(p) = XpX _i(X Xp+ pX*X).

In the finite-dimensional context, - is a well-defined bounded linear transformation on 4 for all
t € R. The norm of it, however, diverges as t — —oo. So although we have curves p;, in the space
of density matrices defined for all ¢ € R, we will only use ¢ > 0. In infinite-dimensional situations
v¢ is in general not defined for ¢ < 0.

Proof of Theorem[6.8 The proof of the EEB inequalities consists in deriving the following two
relations:

TrpH — TrpgH
m =

(6.32) ltiw " wg(X*[H, X])
. S(pt) = S(ps) N wp(X*X)
(6.33) lgf(r]l - > wg(X*X)log s (XX")

Here, pg = po, and wg(A) = TrpgA. The EEB inequalities then follow from the Variational
Principle. Since

Fa(pt) — Fz(pg) 2 0

and therefore, for all ¢ > 0, we must have

TepeH —TrpsH _ 1.5(pe) = S(pp)
t -3 t
Below we take the limit ¢ | 0, compute the LHS and prove a lower bound for the RHS. The resulting
inequalities will turn out to be the EEB inequalities.
The derivative of the energy is easy to compute:
d

1
Swu(H)| g = (L (H)) = Trpp X HX — S Trpp(X* X H + HX"X)

We are interested in the derivative in p = pg. As [pg, H] = 0, the last two terms are equal and can
be combined. The result is (6.32).

For the entropy term we will need to differentiate operator valued functions of the type log A;.
This is non-trivial. Usually the log function is defined by its series expansion around 1. To compute
the derivative we will use the identity

<l 1 1
logz = — = dt
o L1+t z+t
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for x > 0. So, for invertible A; > 0, we consider

d d [®] 1 1
—logA; = — - d
at B dt J, [1+s At+s} °

_ /OOO(At +s)! <;At> (A +5)ds

Here, we used the operator identity A=!(B — A)B~! = A~! — B~! to compute
d d
—(A) P = A7 (=4 ) A
a4 t (dt t> t
When we apply this to —S(p;) we get
d < 1 1
Trp—1 = T —Lj —dt
rpdt ngt‘t:O rP/O o1t X(P)p+t

= Trpp~ ' Li(p)

= TrLx(p)
Now we can compute the derivative of the entropy term:
d d d
%S(pt)‘tzo = _Trﬁpt‘tzo - Trpt% 1Og(p'f)‘tzo
—TrLx(p)logp — TrLx (p)
= —TrLx(p)logp
where we used that TrL% (p) = TrpLx (1) = 0.
Now we have to estimate (6.34). We will prove that
1 1
—TrpLx(logp) = —TrpX*(logp)X + §TrpX*X log p + §Trp(log p)X*X

v

f(TrpX* X, Trp X X™)
where f is the function defined in . To this end we use the spectral decomposition of p:
p="> pildi)(dil o
Using this we can write the LHS of the inequality as follows:
= pildi, X7¢5) log pj (5, X i) + Y _ pilog pi (i, X*5) (65, X 1)
ij ij

If we let a;; denote the matrix elements (¢;, X ¢;), this can be written as
> fpi pi)lais|?
ij
Property (iv) of Proposition [6.7| then yields
~TrpLx(logp) > fO_ pilaiil,)  pjlai?)
ij ij

= f(TrpX*X, TrpXX™)

This concludes the proof of (i) = (ii) in Theorem

The opposite direction proceeds by solving the EEB inequalities. Suppose the Hamiltonian has
eigenvalues \; and an orthonormal basis of eigenvectors ¢;. We will use the basis Ej;; for the
matrices:

Eij = |¢i)(diloj, Ei; =Ej, EijEgy=0;Ey



39

The spectral decomposition of the Hamiltonian can then be written as
H=> \Ej.
i

First, we note that if w satisfies (6.31]), then the corresponding density matrix commutes with the
Hamiltonian. This follows from the fact that the inequalities imply that, for all X,
TrpX*HX — TrpX*XH € R
and, as
Im TrpX*HX — TrpX*XH = Tr X" X|[p, H]
for arbitrary X € A, this implies [p, H] = 0. Hence, p has a spectral decomposition of the form

p= Z piEii
)

Now, take X = E;; in the EEB inequalities. Then [H, X] = (A\; — A;)Ej;, and the EEB inequality
becomes:

,3()\, - )\j)Tl"pEjj > f(Tl"pEjj,TrpEii)
By calculating the expectations this is

o
(6.34) BN = Njpj > fpj, pi) = pjlog p%

We will first show that (6.34)) implies that p; > 0, for all i. Suppose that for some i, p; = 0, and
that p; > 0 for some j, which must be the case since p is a density matrix. Then, the RHS of (6.34])
equals 400, while the LHS is finite. We conclude that p; > 0 for all i. Therefore we can divide

both sides of (6.34) by p; to obtain:
B(hi— Aj) = log%

7
By interchanging the roles of ¢ and j in this inequality we see that the following equalities must

hold for all ¢ and j:
0
B(Xi = Aj) = log =~

Pi

or, equivalently
pi = constant x e*ﬁ/\i,

where the constant is fixed by the normalization of p. This completes the proof that pg is the only
density matrix satisfying the EEB inequalities for a fixed H and § > 0. U
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7. INFINITE SYSTEMS AND THE GNS REPRESENTATION

There is a close connection between representations and states of a C*-algebra. The key to this
connection is the so-called GNS construction, attributed to Israel Gelfand and Mark Naimark and,
independently, Irving Segal, whose initials provided the name. The GNS constructions associates
with each state w on a C*-algebra a canonical representation, which is unique up to unitary equiv-
alence. We will discuss the GNS representation in its general setting first, and then apply it to the
context of quantum spin systems. In particular,in the case of ground states of infinite quantum
spin