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1. Introduction

Non-relativistic quantum mechanics describes atoms, molecules, and both small and large sys-
tems composed of atoms and molecules. Its validity is well-established in a range of conditions
that includes room temperature and atmospheric pressure as well as near-zero temperatures and
low densities. The traditional way in which quantum spin systems arise is by a reduction of the
Hilbert space of states for each atom or molecule to a finite-dimensional subspace. Such a reduc-
tion can often be justified on physical grounds. Other ways in which quantum spin models arises
is as a truncation of a lattice quantum field theory for the purpose of numerical simulation. More
abstractly, quantum spin systems describe collections of qubits in quantum information theory.
Finally, quantum spin systems are also used as toy models in some theories of quantum gravity.

While there certainly are situations where a quantum spin system description would be inade-
quate, for example in conditions where relativistic effects are important, it is fair to say that almost
all interesting features of quantum many-body physics are found in quantum spin models. These
include the complex dynamics due to interactions between the components (be it particles or spins),
the possibility of phase transitions, the important role played by symmetries and spontaneous sym-
metry breaking, the unique behavior typical of quantum phases of matter such as Bose-Einstein
condensation and superfluidity, superconductivity, the integer and fractional quantum Hall effects,
topological order, exotic quasi-particles called anyons etc. Quantum spin models provide the sim-
plest framework in which all these phenomena can be studied in detail. It is also the setting that has
proved to be most amenable to rigorous mathematical analysis. In fact, research on quantum spin
systems has led to significant new development in functional analysis (e.g., the theory of operator
algebras) and representation theory (e.g., quantum groups).

We have two goals in these lectures. The first is to provide a basic introduction to the mathemat-
ical framework for the rigorous study of quantum spin models and to introduce the most important
models. The second goal is to discuss in sufficient detail some of the most important directions of
research on quantum spin models today so that the course provides a foundation for graduate level
research in quantum spin systems.

2. Quantum Spin Systems

2.1. Spins and Qudits. In these lectures, by spin we will be referring to any quantum system with
a finite-dimensional, complex Hilbert space of states, i.e. Cd. This could be the space of physical
spin states of a particle, atom, or molecule. For example, electrons are spin 1/2 particles, meaning
that in addition to its translational degrees of freedom, an electron also has a spin state described
by a vector in C2. In other examples this finite-dimensional Hilbert space may be a subspace
of an infinite dimensional Hilbert space, spanned by the most relevant states for the problem at
hand. The finite-dimensional approximation may provide a convenient, more tractable description
of the systems of interest, perhaps corresponding to finitely many orbitals in a molecule, or may
be introduced for the purpose of simulating the system on a computer. The basic unit of quantum
information, the qubit, has a two-dimensional state space. The d-dimensional generalization of a
qubit is called a qudit.

We will commonly denote by H the complex Hilbert space of states of a quantum system, by
〈·, ·〉 the inner-product, a sequilinear form, which is linear in its second argument and anti-linear
in the first, following the convention standard in the physics literature. The norm induced by this
inner-product is denoted by ‖ · ‖.

Unless stated otherwise, we use the standard inner product on H = Cd, given by

(2.1) 〈u, v〉 =
d∑
i=1

uivi.
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To emphasize the relation with physical spin, one often writes the dimension d as d = 2S + 1 for
half-integer values of the spin S = 0, 1/2, 1, 3/2 . . .. The smallest non-trivial dimension, d = 2,
corresponds to spin 1/2, S = 1/2. Common notations for a choice of orthonormal basis in C2 are
{|0〉, |1〉}, {|+〉, |−〉}, and {|+ 1/2〉, | − 1/2〉}.

2.2. Observables. The algebra of observables of a quantum system with Hilbert space H is the
set of all bounded linear operators on H, denoted by B(H). In the physics literature, the term
observables usually refers to the self-adjoint elements of B(H). Since the algebra structure of B(H)
will be useful, we will refer to B(H) as the algebra of observables and single out the self-adjoint
observables when necessary. The default notation for the algebra of observables will be A.

For a qudit we haveH = Cd and, hence, A = B(H) = Md(C), the set of d×d matrices with entries
in C, which we will also write as Md. Self-adjoint observables A ∈ A, i.e. , A such that A∗ = A,
have real spectrum. In this case, the spectral values, spec(A) ⊂ R, correspond to measurable values
that can be the outcome of a physical experiment.

Let us consider the case of d = 2. In this case, the Hilbert space is H = C2, and the set of
observables is A = M2. It is convenient to have a basis for the set of observables. One such choice
are the identity matrix and the three Pauli matrices:

(2.2) 1l =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

In general, the observables A = Md can be equipped with an inner-product

(2.3) 〈A,B〉HS = Tr(A∗B) for all A,B ∈ A,
where Tr denotes the trace. This inner product is often called the Hilbert-Schmidt inner product.
With respect to 1

2〈·, ·〉HS, the spin matrices (2.2) are orthonormal. The associated norm is the
Hilbert-Schmidt norm. Note, however, that standard norm on observables is the operator norm on
B(H), defined by

(2.4) ‖A‖ = sup
ψ 6=0

‖Aψ‖
‖ψ‖

.

2.3. States. A state of a quantum system with algebra of observables A, which for now is given
by B(H) for some Hilbert space H, is a normalized, positive linear functional on A. This means ω
is a state if it is a linear map ω : A → C that satisfies

(2.5) ω(A∗A) ≥ 0, for all A ∈ A, and ω(1l) = 1.

For A ∈ A, ω(A) is the expected value or expectation of the observable A in the state ω. The

expectation of self-adjoint observables is real and, in general, we have ω(A∗) = ω(A). The variance
of A, Var(A), is given by the familiar formula:

(2.6) Var(A) = ω((A− ω(A)1l)∗(A− ω(A)1l)) = ω(A∗A)− |ω(A)|2.
For any unit vector ψ ∈ H, one can define a state ωψ on B(H) by

(2.7) ωψ(A) = 〈ψ,Aψ〉 for all A ∈ A.
States of this form are called vector states. An alternative expression for ωψ is

(2.8) ωψ = TrPψA,

where Pψ denotes the orthogonal projection defined by

(2.9) Pψ(φ) = 〈ψ, φ〉ψ, φ ∈ H.
It follows from the definition of state given above that the set of states on A is convex. The

extreme points of this convex set are called the pure states. In the finite-dimensional case, i.e.
A = Md, the pure states are precisely the vector states and all states are finite convex combinations
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of vector states, i.e. , for any state ω, there are t1, . . . , tn ≥ 0 and unit vectors ψ1 . . . , ψn ∈ H, such
that

(2.10) ω =
n∑
i=1

tiωψi .

It follows that there is a non-negative matrix ρ ∈Md such that

(2.11) ω(A) = Tr(ρA), for all A ∈Md,

with

(2.12) ρ =
n∑
i=1

tiPψi .

Matrices ρ of the form (2.12) are non-negative and, since the ti are the coefficients in a convex
combination, Trρ =

∑n
i=1 ti = 1. Non-negative matrices of unit trace are called density matrices.

As an example, we now describe the set of density matrices in the case A = M2. ρ ∈ M2 is a
density matrix if and only if

(2.13) ρ =

(
r µ
µ 1− r

)
for some r ∈ [0, 1] and µ ∈ C satisfying

(2.14) |µ|2 ≤ r(1− r)
Another useful parametrization of the 2× 2 density matrices is obtained by expanding then in the
orthornormal basis with respect the the Hilbert-Schmidt inner product given by the Pauli matrices
and the identity, i.e. (2.2):

(2.15) ρ =
1

2
(1l + ~x · ~σ)

where ~x = (x1, x2, x3) ∈ R3 with |~x| ≤ 1 and we have denoted by

(2.16) ~x · ~σ = x1σ
1 + x2σ

2 + x3σ
3

This provides a bijection between the set of all density matrices in M2 and the unit ball in R3. The
extreme points of the unit ball correspond to the pure states, and are in one-to-one correspondence
with the unit vectors ~x ∈ R3 : ‖~x‖ = 1. This set is often referred to as the Bloch sphere.

2.4. Dirac notation. The Dirac bra- and ket notation is very commonly used in quantum mechan-
ics and quantum information theory. It is popular because it provides a convenient way to present
the most frequently encountered operations in Hilbert space. Here, we only give a brief account
of the Dirac notation in the case of finite-dimensional Hilbert spaces. Many aspects generalize
without significant change to the case of infinite-dimensional spaces. We do not consider here the
more liberal usage of the Dirac notation encountered in many physics texts, where it is extended
beyond the Hilbert space context into distribution theory.

Let H be a finite-dimensional Hilbert space. With each φ ∈ H we can associate two linear maps,
which we denote by |φ〉 and 〈φ|.:
(2.17) |φ〉 : C→ H, z 7→ zφ, 〈φ| : H → C : ψ 7→ 〈φ, ψ〉.
In fact, since the linear maps define above depend linearly and anti-linearly on φ, we can consider
| 〉, pronounced ket, and 〈 |, pronounced bra, as linear and antilinear maps themselves:

(2.18) | 〉 : H → L(C,H), φ 7→ |φ〉, 〈 | : H → L(H,C), φ 7→ 〈φ|.
〈 | is the antilinear map identifying H with its dual space H∗, as guaranteed by the Riesz Represen-
tation Theorem. Since H ∼= Cd, with d = dim(H), we can identify |φ〉 with column vector of length
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d, and 〈φ| with a row vector of length d, and consider these vectors as the matrix representation of
the linear maps defined in (2.17).

For any pair φ1, φ2 ∈ H, we can define a rank-one linear map H → H by

(2.19) ψ 7→ 〈φ2, ψ〉φ1.

It is easy to see that this rank-one map is the composition of a |φ1〉 and 〈φ2|, which justifies the
following elegant notation for it:

(2.20) |φ1〉〈φ2|(ψ) = |φ1〉(〈φ2, ψ〉) = 〈φ2, ψ〉φ1.

It is now convenient to use the notation ψ and |ψ〉 for vectors interchangeably, and to use an
alternate notation for the inner product as well:

(2.21) 〈φ, ψ〉 = 〈φ | ψ〉 = 〈φ||ψ〉.
Labeled sets of vectors, such as, e.g. , an orthonormal basis {e1, . . . , ed}, can be written in Dirac

notation using just the labels if this does not lead to confusion: {|1〉, . . . , |d〉}.
Using the Dirac notation, orthonormality and completeness of the basis we can expressed by the

following two equations:

(2.22) 〈i | j〉 = δi,j ,

d∑
i=1

|i〉〈i| = 1l.
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2.5. Finite Quantum Spin Systems. The observables of the quantum systems we have consid-
ered so far are given by the elements of B(H), the bounded linear operators on a complex Hilbert
space. For a finite quantum spin system, H is finite-dimensional and the algebra of observables is
the algebra of d×d matrices with complex entries, Md, where d is the dimension of the Hilbert space.
More generally, one can consider quantum systems with an infinite-dimensional complex Hilbert
space. The algebra of observables will then consist of elements of B(H), the bounded linear opera-
tors on H. B(H) is complete with respect to the metric topology derived from the operator norm
defined in (2.4). It is straightforward to check that the operator norm satisfies ‖AB‖ ≤ ‖A‖‖B‖,
for all A,B ∈ B(H), which in particular implies that the product of observables is continuous in
the norm topology. The completeness and the continuity of the product make B(H) into a Banach
algebra.

The operation of taking the adjoint of an operator A, denoted by A∗, is an anti-linear involution,
meaning (A∗)∗ = A, (A+B)∗ = A∗ +B∗, and (zA)∗ = zA∗, for all A,B ∈ B(H) and z ∈ C, and is
an algebra anti-morphism: (AB)∗ = B∗A∗. One readily checks that ‖A∗‖ and ‖A∗A‖ = ‖A‖2.
Md and, more generally, B(H) are examples of C∗-algebras, which we introduce in the next

section.

2.5.1. C∗-algebras. A C∗-algebra is a Banach algebra equipped with an involution, denoted by ∗,
satisfying some special properties.

Definition 2.1. Let A be an associative algebra over C that is equipped with a norm ‖ · ‖. If A
is complete with respect to this norm and

(2.23) ‖AB‖ ≤ ‖A‖‖B‖ for all A,B ∈ A,
then A is called a Banach algebra. A Banach algebra A is called unital if it has an identity element,
which we denote by 1l ∈ A.

In this book the term algebra, unless explicitly stated otherwise, will always refer to an associative
algebra over the complex numbers with a unit, which will routinely be denoted by 1l. We will also
assume that the algebra we consider are non-trivial, i.e. ., are not equal to {0}.

Definition 2.2. A C∗-algebra A is a Banach algebra with an anti-linear involution, which we will
denote by ∗, satisfying the following properties:

i) (AB)∗ = B∗A∗ for all A,B ∈ A
ii) ‖A∗‖ = ‖A‖ for all A ∈ A (This implies that the ∗ operation w.r.t. the norm ‖ · ‖.)
iii) ‖A∗A‖ = ‖A‖2 for all A ∈ A. (This is called the C∗-property.)

If the C∗-algebra A has a unit, denoted by 1l, it is called unital. It follows from the properties
stated the unit is unique, that 1l∗ = 1l and, if A 6= {0}, that ‖1l‖ = 1.

If A and B are two C∗-algebras, a ∗-morphism (often simply called a morphism) π : A → B is
an algebra morphism that preserves the involution, i.e., π(A∗) = π(A)∗ for all A ∈ A. A morphism
π : A → B is called unit preserving if π(1lA) = 1lB.

A representation of a C∗-algebra A on a Hilbert space H is a unit preserving morphism π : A →
B(H). A representation π is called faithful, if kerπ = {0}, i.e. , if it is a ∗-isomorphism between A
and π(A). A morphism π : A → A is called an automorphism if π is invertible.

A state ω on A is a linear mapping ω : A → C that is non-negative and normalized, i.e.
ω(A∗A) ≥ 0, for all A ∈ A, and ω(1l) = 1.

In the finite dimensional case, i.e. A = Md, we already discussed that states are in one-to-one
correspondence with density matrices. If H is infinite-dimensional, density matrices ρ, defined as
positive operators of trace-class such that Trρ = 1, also define states on B(H), by the formula
ω(A) = TrρA, but there are states on B(H) that are not of this form.

Let A be a C∗-algebra. A ∈ A is called self-adjoint if A∗ = A. The set of all self-adjoint elements
in A will be denoted by Asa. A ∈ A is said to be positive, denoted by A ≥ 0, if there exists B ∈ A
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such that A = B∗B. This notion of positivity allows one to define a partial order on Asa, i.e. for
any A,B ∈ Asa, we write A ≥ B if and only if A−B ≥ 0.

For the derivation of the following important properties see Appendix A, or consult a text on
operator algebras such as [10], [71], or [37].
i) For any A,B ∈ Asa,

(2.24) A ≥ B ⇒ C∗AC ≥ C∗BC for all C ∈ A.
ii) For any A ≥ 0, A ≤ ‖A‖1l, and as a consequence, for any state ω, we have that

(2.25) ‖ω‖ = sup
A 6=0

|ω(A)|
‖A‖

= ω(1l) = 1.

iii) Similarly, for a morphism π, we also have that

(2.26) ‖π‖ = ‖π(1l)‖ = 1 if π 6= 0.

iv) Let A be a C∗-algebra and ω be a state on A. The mapping from A×A to C given by

(2.27) (A,B) 7→ ω(A∗B)

is a sesquilinear form. As a consequence, we have a Cauchy-Schwartz inequality:

(2.28) |ω(A∗B)|2 ≤ ω(A∗A)ω(B∗B) for all A,B ∈ A .
v) Let A be a C∗-algebra and ω be a state on A. The bound

(2.29) |ω(A∗BA)| ≤ ω(A∗A)‖B‖
holds for all A,B ∈ A. As a consequence, for all A ∈ A with ω(A∗A) 6= 0,

(2.30) ωA(B) :=
ω(A∗BA)

ω(A∗A)
for all B ∈ A

defines a state ωA on A. This is the quantum analogue of starting with a measure, e.g. dx on

[0, 1], considering a non-negative function µ with
∫ 1

0 µ(x)dx < ∞, and defining a new, normalized
measure via

(2.31)
µ(x)∫ 1

0 µ(x)dx
dx

2.5.2. Composite systems. Any two quantum systems described by Hilbert spaces H1 and H2 can
be considered as one, composite system. The Hilbert space of the composite system is given by
the tensor product of H1 and H2. The simplest way to describe the tensor product of two finite-
dimensional Hilbert spaces, say with dimensions n and m and inner product 〈·, ·〉1 and 〈·, ·〉2,
respectively, is as the span of an orthonormal basis of simple tensors defined as follows. Let
e1, . . . , en and f1, . . . , fm be orthonormal bases for H1 and H2, then H = H1⊗H2 is defined as the
linear span of nm orthonormal vectors denoted ei ⊗ fj , 1 ≤ i ≤ n, 1 ≤ j ≤ m. The tensor notation
is extended by linearity to identify φ1 ⊗ φ2 ∈ H1 ⊗ H2, for any φ1 ∈ H1, φ2 ∈ H2. Such vectors
are called simple tensors. From the orthonormality of the basis it then follows that the the inner
product is uniquely determined by the following formula for simple tensors:

(2.32) 〈φ1 ⊗ φ2, ψ1 ⊗ ψ2〉 = 〈φ1, ψ1〉1〈φ2, ψ2〉2
There are several ways to define the tensor product for infinite-dimensional, Hilbert spaces H1 and
H2, all of which lead to a Hilbert space H with the following properties: (i) there is a bilinear
bijection of H1 ×H2 into a subset of H (the set of simple tensors), (ii) the inner product of simple
tensors factorizes as in (2.32), and (iii) the linear span of the simple tensors is dense in H, which
is unique up to unitary equivalence. See, e.g., [8,65], for the details of a construction of the tensor
product of two arbitrary Hilbert spaces. It is straightforward to extend the notion of tensor product
from two to any finite number of Hilbert spaces.
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The combination of two (or more) spins, meaning, considering a physical context in which both
exist, is described as a composite systems using the tensor product of the Hilbert spaces of the
individual systems.

Let us start by considering two spins, with Hilbert spaces of dimension d1 and d2. The Hilbert
space for the composite system is then:

(2.33) H = H1 ⊗H2
∼= Cd1d2

Such a system is often referred to as bipartite. The algebra of observables is again given by B(H),
and it can also be obtained as a tensor product since

(2.34) Md1d2
∼= Md1 ⊗Md2 ,

where Md1 ⊗Md2 is the linear span of the tensor products of two matrices A = (ai,j) ∈ Md1 , and
B = (bk,l) ∈Md2 , defined by

(2.35) A⊗B = (ci,k;j,l), with ci,k;j,l = ai,jbk,l.

Systems 1 and 2 are called subsystems of the composite system. One can identify their algebra of
observables with subalgebras of Md1d2 . E.g., Md1

∼= Md1 ⊗ 1l2 ⊂Md1 ⊗Md2 .
One way to appreciate the uniquely quantum (versus classical) behavior of states is to consider

marginals of pure states. Pure states of a classical bipartite system with a finite state space
Ω = Ω1 × Ω2, are given by Dirac measures concentrated in a point (ξ1, ξ2) ∈ Ω. The marginals of
classical pure states are then Dirac measures in the points ξi ∈ Ωi, which are also pure. In contrast,
what distinguishes quantum from classical structure states (quantum probability versus classical
probability) can be seen as exactly the property that any state of system 1 is the marginal of a
pure state on for composite system containing system 1 as a tensor factor [15].

The marginals of a pure state for a bipartite quantum system given by a unit vector ψ ∈ H1⊗H2,
are pure iff the pure state is separable, i.e. , ψ is a simple tensor [66]. The marginals of the Bell states
coincide with the maximally mixed state described by the density matrix 1

21l2 (see the Example
below).

Considering the marginals of a state of a bipartite system is simply considering its restrictions
from A1⊗A2 to the subalgebras A1⊗ 1l and 1l⊗A2. In the case of finite-dimensional state spaces,
all states are uniquely represented by a density matrix. Hence there is a corresponding well-
defined operation on density matrices describing the restriction process. For all density matrices
ρ ∈Md1 ⊗Md2 there is a unique density matrix ρ1 in Md1 , such that

(2.36) Trρ(A⊗ 1l) = Trρ1A

The map ρ 7→ ρ1 is often denoted by Tr2 and is called the partial trace.
Example: Take d1 = d2 = 2. Denote by {|0〉, |1〉} an orthonormal basis of C2. Let ψ ∈

H1 ⊗H2 = C2 ⊗ C2 be the normalized vector

(2.37) ψ =
1√
2

(|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉)

Note that ψ is a maximally entangled state. For A ∈ A1, A⊗ 1l ∈ A. The restriction (or marginal)
of the state defined by ψ is easily calculated:

Tr|ψ〉〈ψ|(A⊗ 1l) = 〈ψ, (A⊗ 1l)ψ〉

=
1

2
(〈0|A|0〉+ 〈1|A|1〉) =

1

2
TrA.(2.38)

Hence

(2.39) Tr2|ψ〉〈ψ| =
1

2
1l.
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Vector states given by simple tensors are product states. More generally, a state ω on an algebra
of observables of the form A = A1⊗A2, is called a product state if there exist states ω1 on A1 and
ω2 on A2, such that for all A1 ∈ A1 and A2 ∈ A2, one has ω(A1 ⊗A2) = ω1(A1)ω2(A2).

Definition 2.3. A state on a tensor product algebra A1 ⊗A2 is called separable if it is a convex
combination of product states. A state is called entangled if it is not separable.

If d1, d2 ≥ 2 not all vectors ψ ∈ H can be written as ψ = ψ1 ⊗ ψ2, and only those that are of
this form define separable states. A vector state is either a product state or entangled. There is
no analogue of entangled states for classical systems. Quantum information theory is of interest
exactly due to the existence of entangled states.

One of the most commonly used measures of entanglement for a bipartite system is the entan-
glement entropy. For a pure state given by a unit vector ψ ∈ H1 ⊗H2, the entanglement entropy,
SE(ψ), is defined as the entropy of the restriction of the state to either one of its subsystems (the
value is the same for both subsystems). Concretely:

(2.40) SE(ψ) = −Trρ1 log ρ1, with ρ1 = TrH2 |ψ〉〈ψ|.
For a general state given by a density matrix ρ, the entanglement entropy is defined by the following
minimization problem:

(2.41) SE(ρ) = inf{
∑

tiSE(ψi) | ρ =
∑

ti|ψi〉〈ψi|}

which is an infinum over all decompositions of ρ as a convex combination of pure states. This mea-
sure of entanglement is also called entanglement of formation, because of an equivalent operational
definition [52]. One can easily check that SE(ρ) = 0 iff ρ is separable. The maximum value of SE
is min(log d1, log d2), and it is easy to construct states that attain this maximal value. Such states
are called maximally entangled. In the case d1 = d2 = 2, the maximally entangled states are the
so-called Bell states of the form (e1⊗f1 +e2⊗f2)/

√
2, for two arbitrary orthonormal bases {e1, e2}

and {f1, f2} of C2.

2.5.3. Dynamics. One to the most important observables of any quantum spin system is the Hamil-
tonian, which has the physical interpretation of the total energy of the system. For a system
consisting of N spins, the Hilbert space is

(2.42) HN =
N⊗
j=1

Hj

and the algebra of observables is

(2.43) AN =
N⊗
j=1

Aj

where Aj = B(Hj). The Hamiltonian is a selfadoint element H∗ = H ∈ AN . Its importance stems
from its role as generator of the dynamics of the system. For any pure state of the system at time
t = 0, given by ψ0 ∈ HN , the state at any time t ∈ R is given by the solution of the Schrödinger
equation:

(2.44) i
d

dt
ψ(t) = Hψ(t) with ψ(0) = ψ0.

As is well-known, the solution of this vector-valued linear equation is given by

(2.45) ψ(t) = Utψ0, with Ut = e−itH .

Since H is self-adjoint, Ut is unitary for all t ∈ R and it is easy to see that U∗t = U−t, and that
UtUs = Ut+s, t, s ∈ R, i.e. , {Ut | t ∈ R} is a one-parameter group of unitaries.
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Denote by ρ0 = |ψ0〉〈ψ0|. Then the density matrix corresponding to the solution of (2.44), i.e.
(2.45), is

(2.46) ρ(t) = |ψ(t)〉〈ψ(t)| = Utρ0U
∗
t .

This is the solution of the operator-valued equation

(2.47) i
d

dt
ρ(t) = [H, ρ(t)] with ρ(0) = ρ0

This is sometimes called the Schrödinger-Liouville equation. It has a unique solution ρt which, for
an arbitrary initial density matrix ρ0, is a density matrix for all t.

The dynamics of a finite spin system can equivalently be described in the so-called Heisenberg
picture, by evolving the observables rather than the states. This change of perspective is particularly
useful in the context of infinite systems because, while there is no a priori infinite volume Hilbert
space, there is a well-defined observable algebra for the infinite system (see following lectures). The
equivalence of the Schrödinger and Heisenberg descriptions of the dynamics is established by the
following relations:

(2.48) ωρ(t)(A) = Trρ(t)A = TrUtρ0U
∗
t A = Trρ0U

∗
t AUt = ωρ0(U∗t AUt),

for any observable A ∈ A. This justifies the following definition of time-evolved observables:

(2.49) A(t) = U∗t AUt for any A ∈ A and t ∈ R.
These time-dependent observables satisfy the Heisenberg equation:

(2.50)
d

dt
A(t) = i[H,A(t)] with A(0) = A,

and (2.48) becomes, for any A ∈ A,

(2.51) Trρ(t)A = Trρ0A(t).

Example: The Quantum Heisenberg Model, introduced by Heisenberg almost a century ago [35].
To each x ∈ Z associate the single-site Hilbert space Hx = C2. For any finite interval Λ = [a, b] ⊂

Z, consider the Hilbert space

(2.52) HΛ =

b⊗
x=a

C2 = C2b−a+1

and the corresponding observable algebra

(2.53) AΛ =
b⊗

x=a

M2 = M2b−a+1

To each i = 1, 2, 3, and any x ∈ Λ associate a self-adjoint observable σix ∈ AΛ by setting

(2.54) σix = 1l⊗ · · · ⊗ 1l⊗ σi ⊗ 1l⊗ · · · ⊗ 1l

where the only non-trivial operator, σi above, occurs in the xth factor of AΛ. The quantum
Heisenberg Hamiltonian on volume Λ is then the self-adjoint observable

HΛ = −J
b−1∑
j=a

~σx · ~σx+1

= −J
b−1∑
x=a

(
σ1
xσ

1
x+1 + σ2

xσ
2
x+1 + σ3

xσ
3
x+1

)
(2.55)

with J ∈ R a parameter.
If J > 0, this is called the (quantum) ferromagnetic Heisenberg chain.
If J < 0, this is called the (quantum) anti-ferromagnetic Heisenberg chain.
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In the Exercises you are asked to prove some basic properties of the Heisenberg chain with
periodic boundary conditions.
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3. Appendix: C∗-algebras

It this appendix, we review some of the basic properties of abstract C∗-algebras. These prop-
erties are familiar when the C∗-algebra is a subalgebra of B(H), for some Hilbert space H. Since
the algebra of observables of an infinite quantum spin system, introduced in ??, is a priori not
represented on a Hilbert space, it is important to understand the basic properties of abstract C∗-
algebras. This appendix is based on Sections 2.1-2.3 - of [10], to which we refer the reader for
complete details and further information.

3.1. C∗-algebras. A complex vector space A is an associative algebra if it is equipped with a
bilinear product, i.e. to each pair A,B ∈ A there corresponds a unique element AB ∈ A, in such
a way that:

i) A(BC) = (AB)C for all A,B,C ∈ A,
ii) A(B + C) = AB +AC for all A,B,C ∈ A,
iii) αβ(AB) = (αA)(βB) for all α, β ∈ C and all A,B ∈ A.

If an algebra A contains an identity element, i.e., 1l ∈ A such that 1lA = A = A1l, for all A ∈ A, A
is called unital. A subspace B ⊂ A that is also an algebra with respect to the operations of A is
called a subalgebra of A.

An associative algebra A is a ∗-algebra if it has a map A 7→ A∗ with the properties:
i) (A∗)∗ = A for all A ∈ A (∗ is an involution),
ii) (AB)∗ = B∗A∗ for all A,B ∈ A (∗ is an antimorphism),
iii) (αA+ βB)∗ = αA∗ + βB∗ for all α, β ∈ C and all A,B ∈ A (∗ is antilinear).

Here, and below, we will denote by z and |z| the complex conjugate and modulus of z ∈ C,
respectively. A subset B of a ∗-algebra A is called self-adjoint if A ∈ B implies A∗ ∈ B.

An algebra A is called a normed algebra if there is a mapping ‖ · ‖ : A → R with the properties:
i) ‖A‖ ≥ 0 for all A ∈ A and ‖A‖ = 0 if and only if A = 0,
ii) ‖αA‖ = |α|‖A‖ for all α ∈ C and all A ∈ A,
iii) ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all A,B ∈ A,
iv) ‖AB‖ ≤ ‖A‖‖B‖ for all A,B ∈ A.

For any A ∈ A, the quantity ‖A‖ is called the norm of A. The norm on a normed algebra A defines
a metric topology on A, called the uniform topology or norm topology, and if A is complete with
respect to this topology, then A is called a Banach algebra. A ∗-algebra A is a normed ∗-algebra
A if one has ‖A∗‖ = ‖A‖ for all A ∈ A. A normed ∗-algebra is a Banach ∗-algebra if it is complete
with respect to its norm topology.

The main object of interest in the section can now be defined.

Definition 3.1. A C∗-algebra is a Banach ∗-algebra A with the property that

(3.1) ‖A∗A‖ = ‖A‖2 for all A ∈ A.
The condition (3.1) is called the C∗-property. It is easy to see that (3.1) implies the ∗ property

of the norm: ‖A∗‖ = ‖A‖ for all A ∈ A. Here are some important examples.
Example: Let H be a complex Hilbert space and denote by A = B(H) the set of bounded linear

operators over H. With the ∗ operation given by the adjoint operation and the norm corresponding
to the operator norm, A is a C∗-algebra. �

Example: Let X be a topological space and let C(X) denote the space of bounded and con-
tinuous complex-valued functions on X. C(X) is a an commutative algebra for the pointwise
multiplication of functions. Equipped with the supremum norm and the ∗-operation given by
complex conjugation, C(X) becomes a C∗-algebra. �

Example: Let H be a complex Hilbert space and denote by C ⊂ B(H) the set of compact
operators over H. One easily checks that any uniformly closed subalgebra of B(H) that is also
a self-adjoint subset, is a C∗-sub-algebra of B(H). This is the case with the algebra of compact
operators C. Note that 1l 6∈ C. �
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The following theorem shows that, as in the last example, any C∗ algebra can be regarded as a
closed subalgebra of B(H) for some Hilbert space H.

Theorem 3.2. Any C∗-algebra A is isomorphic to a norm-closed self-adjoint algebra of bounded
linear operators on a Hilbert space H.

For a proof of this theorem see, e.g., [10, Theorem 2.1.10].
The availability of an identity in a C∗-algebra describing the observables of a physical system is

important. Let A be a C∗-algebra. If A has an indentity, it is necessarily unique; if both 1l and 1l′

are identities, then 1l = 1l1l′ = 1l′. It is easy to verify that 1l∗ is an identity, and hence we must have
1l∗ = 1l. Moreover,

(3.2) ‖1l‖ = ‖1l∗1l‖ = ‖1l‖2 and ‖A‖ = ‖1lA‖ ≤ ‖1l‖‖A‖.
Thus either ‖1l‖ = 1 or A = {0}, which is a trivial case we shall ignore; we will always assume that
‖1l‖ = 1. A C∗-algebra A with an identity is called a unital C∗-algebra.

It is not the case that all C∗-algebras possess an identity. As mentioned above, the C∗-algebra of
the compact operators on a Hilbert space H has an identity if and only if H is finite-dimensional.
In general, it is possible to adjoin an identity to any C∗-algebra. We briefly describe this procedure.

Let A be a C∗-algebra with no identity. Consider the collection of pairs

(3.3) Ã = {(α,A) : α ∈ C and A ∈ A} .
Equip Ã with the vector space properties

(3.4) (α,A) + (β,B) = (α+ β,A+B) and α(β,B) = (αβ, αB)

In addition, declare a product and involution by setting

(3.5) (α,A)(β,B) = (αβ, αB + βA+AB) and (α,A)∗ = (α,A∗)

One can check, see also Proposition 2.1.5 in [10], that the quantity

(3.6) ‖(α,A)‖ = sup{‖αB +AB‖ : B ∈ A, ‖B‖ = 1}
defines a norm on Ã and with respect to this norm, Ã is a C∗-algebra. The algebra A can be
identified with the C∗-subalgebra of Ã formed by the pairs (0, A). Ã is often called the C∗-algebra

obtained by adjoining an identity to A. The notation Ã =: C1l +A and similarly (α,A) =: α1l +A
is common.

With this construction in mind, we will only work with unital C∗-algebras in these notes.

3.2. Spectral theory in a C∗-algebra. The goal of this section is to provide quick introduction
to the basic facts of spectral theory in a C∗-algebra. For more details and more general statements,
we refer the interested reader to, e.g., [10, Section 2.2.1]. Unless otherwise state, we will assume A
is a unital C∗-algebra..

An element A ∈ A is said to be invertible if there exists an element A−1 ∈ A, called the inverse
of A, which satisfies

(3.7) AA−1 = A−1A = 1l .

One readily checks that if A is invertible, then the inverse is unique. A number of other properties
also immediately follow:

i) If A is invertible, then so is A−1 and (A−1)−1 = A.
ii) If A is invertible, then so is A∗ and (A∗)−1 = (A−1)∗.
iii) If A and B are invertible, then so is AB and (AB)−1 = B−1A−1.

Definition 3.3. The resolvent set of an element A ∈ A, denoted by resA(A), is the set of all λ ∈ C
for which λ1l− A is invertible. The spectrum of any A ∈ A, denoted by specA(A), is then defined
to be the complement of resA(A) in C. Given A ∈ A and λ ∈ resA(A), the inverse (λ1l − A)−1 is
called the resolvent of A at λ.
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For a non-unital C∗-algebrasA, one can still define the notion of spectrum by setting specA(A) :=

specÃ(A), where Ã is the unique algebra obtained from A by adjoining an identity.
For all A ∈ A and any λ ∈ C with ‖A‖ < |λ|, it is easy to see that

(3.8)
1

λ

∞∑
n=0

(
A

λ

)n
defines a norm-convergent sum. It is then readily checked that this element is the inverse of λ1l−A.
Hence, λ ∈ resA(A) and thus specA(A) is a bounded subset of C; namely

(3.9) spec(A) ⊂ {λ ∈ C : |λ| ≤ ‖A‖} .
Straightforward manipulations with Neumann series, defined similarly to (3.8), allow one to show
that for any A ∈ A, resA(A) is open, and thus specA(A) is closed. One readily verifies that the
mapping λ 7→ (λ1l− A)−1 is continuous on resA(A). It is also important to observe that for every
A ∈ A, specA(A) is non-empty. This fact is a consequence of the next result.

First, an important definition. For any A ∈ A define the spectral radius of A by

(3.10) ρ(A) = sup{|λ| : λ ∈ specA(A)} .

Proposition 3.4. For any A ∈ A, one has that

(3.11) ρ(A) = lim
n→∞

‖An‖1/n = inf
n
‖An‖1/n ≤ ‖A‖ .

In particular, the above limit exists and if the righthand side of (3.11) vanishes, then 0 ∈ spec(A).
Therefore, the spectrum of any A ∈ A is a non-empty compact set.

A proof of this result can be found, e.g., in [10, Proposition 2.2.2].
One can characterize the spectrum of certain special classes of elements A ∈ A. An element

A ∈ A is said to be normal if A∗A = AA∗, and A ∈ A is called self-adjoint if A∗ = A. The set of
all self-adjoint elements of A will be denoted by Asa. It is often useful to observe that each A ∈ A
can be written as a linear combination of self-adjoint elements:

(3.12) A = A1 + iA2 with A1 =
A+A∗

2
and A2 =

A−A∗

2i
and A1 and A2 are commonly referred to as the real and imaginary parts of A respectively.

An element A ∈ A is called an isometry if A∗A = 1l, and A ∈ A is said to be unitary if
A∗A = 1l = AA∗.

The following statement collects some facts proven, e.g., [10, Theorem 2.2.5].

Theorem 3.5. Let A be a unital C∗-algebra.
i) If A ∈ A is normal, then ρ(A) = ‖A‖.
ii) If A ∈ A is unitary, then

specA(A) ⊂ {λ ∈ C : |λ| = 1} .
iii) If A ∈ A is self-adjoint, then

specA(A) ⊂ [−‖A‖, ‖A‖] .
iv) For any A ∈ A and any polynomial P ,

specA (P (A)) = P (specA(A)) .

Two important consequences follow now from the results previously stated.
First, if A is a ∗-algebra and there exists a norm on A with the C∗ property and with respect to

which A is closed, then this norm is unique. Hence the norm on a C∗-algebra is unique.
Next, let B be a C∗-sub-algebra of some C∗-algebra A. Then, for any A ∈ B,

specA(A) = specB(A)
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Thus, there is no ambiguity in the definition of the spectrum of an element A in a C∗-algebra, and
so we may simply write spec(A)A = spec(A).

3.3. Positive elements. In this section, we review some of their basic properties of positive ele-
ments a unital C∗-algebra A. As we shall see, the cone of positive elements introduces a partial
order on A.

Definition 3.6. An element A ∈ A is said to be positive if A is self-adjoint and spec(A) ⊂ [0,∞).
We will denote by A+ the set of all positive elements A ∈ A.

As a consequence of Theorem 3.5 iii), we actually know that if A ∈ A is positive, then

spec(A) ⊂ [0, ‖A‖] .
In fact, since it is easy to verify that

spec(λ1l−A) = λ− spec(A) for all λ ∈ C and A ∈ A ,
we immediately conclude that

(3.13) A ∈ A+ ⇒ ‖A‖1l−A ∈ A+ .

Similar arguments allow one to prove that if A ∈ Asa, then A is positive if and only if

(3.14)

∥∥∥∥1l− A

‖A‖

∥∥∥∥ ≤ 1 .

Positive elements allow for the definition of a square root, which is an important building block
for developing functional calculus in C∗-algebras. A first result in this direction is the following.

Theorem 3.7. [10, Theorem 2.2.10] A ∈ Asa is positive if and only if A = B2 for some B ∈ Asa.
In fact, for each A ∈ A+, there is a unique B ∈ A+ for which A = B2.

Given the above result, we can now make the following definitions. For any A ∈ A+, the square-
root of A, which we denote by A1/2, is defined by A1/2 = B, where B ∈ A+ is the unique element
described in Theorem 3.7 above. Moreover, for any A ∈ Asa, it is clear that spec(A2) ⊂ [0, ‖A‖2],
combine e.g. Theorem 3.5 iii) and iv). Thus A2 ∈ A+, and so we may therefore define the modulus

of A, which we denote at |A|, by setting |A| = (A2)1/2.
The following fact is a useful observation about the set of positive operators.

Proposition 3.8. The set A+ ⊂ A of positive elements is a uniformly closed convex cone satisfying
A+ ∩ (−A+) = {0}. Moreover, if A ∈ Asa, then with A± = (|A| ±A)/2 one sees that

i) A± ∈ A+,
ii) A = A+ −A−,
iii) A+A− = 0.

The elements A± are the unique elements with these properties.

A proof of Proposition 3.8 can be found e.g. in [10, Proposition 2.2.11]. The decomposition for
A ∈ Asa, i.e. A = A+ −A− in ii) above, is called the orthogonal decomposition of A.

The following fact is crucial.

Theorem 3.9. A ∈ A+ if and only if A = B∗B for some B ∈ A.

A proof of this result can be found in [10, Theorem 2.2.12].
Given Theorem 3.9, one can now extend the notion of modulus to all A ∈ A. In fact, for any

A ∈ A, it is clear that A∗A ∈ A+. In this case, we define |A| = (A∗A)1/2 to be the modulus of A.
Moreover, if A ∈ A is invertible, then an analogue of the polar decomposition holds:

(3.15) A = U |A| with U = A|A|−1

and one can check that the U given above is unitary. One final result on decompositions is occa-
sionally of use.
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Lemma 3.10. Every A ∈ A can be written as

(3.16) A =

4∑
j=1

ajUj where each aj ∈ C satisfies |aj | ≤
‖A‖

2
,

and each Uj is unitary.

The proof of the above follows from (3.12) and the observation that for any A ∈ Asa with
‖A‖ ≤ 1, one can readily check that

(3.17) A =
U+ + U−

2
with unitaries U± = A± i

√
1l−A2 .

Using the fact that A+ is a convex cone, one can introduce an order relation on the self-adjoint
elements of A. If A,B ∈ Asa, we write that A ≥ B, or B ≤ A, if A−B ∈ A+.

The following proposition identifies some important features of this partial order.

Proposition 3.11. Let A be a unital C∗-algebra.
i) If A ≥ 0 and A ≤ 0, then A = 0.
ii) If A ≥ B and B ≥ C, then A ≥ C.
iii) If A ≥ 0, then ‖A‖1l ≥ A.
iv) If A ≥ B ≥ 0, then C∗AC ≥ C∗BC ≥ 0 for all C ∈ A.

3.4. Representations. It is often useful to consider mappings between C∗-algebras that preserve
the structure. These are ∗-morphism. A particularly important sub-class of these are the represen-
tations. We introduce these notions in this subsection.

Definition 3.12. Let A and B be unital C∗-algebras. A mapping π : A → B is called a ∗-morphism
between A and B if it satisfies:

i) π(αA+ βB) = απ(A) + βπ(B) for all α, β ∈ C and A,B ∈ A,
ii) π(AB) = π(A)π(B) for all A,B ∈ A,
iii) π(A∗) = π(A)∗ for all A ∈ A.

Remarks:
1) The phrase morphism may refer to mappings satisfying only properties i) and ii) above.

Property iii) makes π a ∗-morphism. We only consider ∗-morphisms below.
2) A ∗-morphism π : A → B is said to be unit preserving if π(1lA) = 1lB.
3) Any ∗-morphism π fromA to B necessarily preserves positivity in the sense that: π : A+ → B+.

Indeed, for any A ∈ A+, A = B∗B and hence,

π(A) = π(B∗B) = π(B∗)π(B) = π(B)∗π(B) ∈ B+ .

The following proposition demonstrates that ∗-morphism are bounded, hence continuous.

Proposition 3.13. Let A and B be unital C∗-algebras. Any ∗-morphism π : A → B is bounded,
in fact

(3.18) ‖π(A)‖ ≤ ‖A‖ for all A ∈ A.
In addition, the range of π, namely π(A) := {π(A) : A ∈ A}, is a C∗-subalgebra of B.

Proof. We begin with the following observation. Let P = π(1lA). It is easy to check that P ∈ Bsa

and moreover, P 2 = P , i.e. P is a projection. As a consequence, B′ = PBP is a C∗-subalgebra of
B. On this C∗-sub-algebra, P acts as the identity, and it is also the case that π(A) ⊂ B′.

Now, it is sufficient to check (3.18) for A ∈ Asa. In fact, suppose this bound holds for all A ∈ Asa.
Then, for any A ∈ A,

(3.19) ‖π(A)‖2 = ‖π(A)∗π(A)‖ = ‖π(A∗A)‖ ≤ ‖A∗A‖ = ‖A‖2

where we have used the C∗-property in both A and B′.
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Now, suppose A ∈ Asa. It is clear then that π(A) ∈ B′sa, i.e. π(A)∗ = π(A∗) = π(A). Using
Theorem 3.5 i), the norm of π(A) can be calculated using the spectral radius, i.e.,

(3.20) ‖π(A)‖ = ρ(π(A)) = sup{|λ| : λ ∈ specB′(π(A))} .

One readily checks that

(3.21) specB′(π(A)) ⊂ specA(A) ,

and therefore,

(3.22) ‖π(A)‖ ≤ sup{|λ| : λ ∈ specA(A)} = ‖A‖

since A ∈ Asa. An argument for the remainder of this proof can be found in [10, Proposition
2.3.1]. �

Let A and B be unital C∗-algebras. A ∗-morphism π from A to B is said to be a ∗-isomorphism
if it is one-to-one and onto. Clearly π is a ∗-isomorphism if and only if ker(π) = {0}, where

ker(π) := {A ∈ A : π(A) = 0} .

Definition 3.14. Let A be a C∗-algebra. A representation of A is a pair (H, π) where H is a
complex Hilbert space and π is a ∗-morphism from A to B(H). The representation (H, π) is said
to be faithful if and only if π is a ∗-isomorphism from A to π(A), i.e., if and only if ker(π) = {0}.

If A is a C∗-algebra and (H, π) is a representation, then H is called the representation space;
the operators π(A) ∈ B(H) are called the representatives of A, and π is often referred to as a
representation of A on H.

Proposition 3.15. Let (H, π) be a representation of a C∗-algebra A. The representation is faithful
if and only if it satisfies each of the following equivalent conditions:

i) ker(π) = {0},
ii) ‖π(A)‖ = ‖A‖ for all A ∈ A,
iii) for all A ∈ A+, A 6= 0, we have π(A) ≥ 0 and π(A) 6= 0.

A proof of this result can be found in [10, Proposition 2.3.3].

Definition 3.16. Let A be a C∗-algebra. A ∗-isomorphism τ from A to A is called an automor-
phism on A.

An immediate consequence of Proposition 3.15 and Definition 3.16 is the following.

Corollary 3.17. Let A be a C∗-algebra and τ be an automorphism on A. τ is norm-preserving,
i.e.

(3.23) ‖τ(A)‖ = ‖A‖ for all A ∈ A.

3.5. States. Another notion of crucial importance for the theory of C∗-algebras is that of states.
States are essential, of course, also in applications to physical systems. Again, let A be a unital
C∗-algebra.

The dual of A, which we denote by A∗, is the collection of all continuous linear functionals over
A. For any f ∈ A∗, we define the norm of f to be

(3.24) ‖f‖ := sup{|f(A)| : A ∈ A and ‖A‖ = 1}.

Definition 3.18. A linear functional ω over A is said to be positive if

ω(A∗A) ≥ 0 for all A ∈ A.

A positive linear functional ω over a C∗-algebra A is said to be a state if ‖ω‖ = 1.
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Recall that A ∈ A+ if and only if A = B∗B for some B ∈ A. Moreover, for A,B ∈ Asa, A ≥ B
if and only if A−B ∈ A+. It follows that ω(A) ∈ R if A ∈ Asa, and A ≥ B implies ω(A) ≥ ω(B).

States and representations are intimately connected. To see this, let A be a unital C∗-algebra,
and let (H, π) be a representation of A. For any non-zero Ω ∈ H, define

(3.25) ωΩ(A) = 〈Ω, π(A)Ω〉 for all A ∈ A .

It is clear that any such ωΩ is linear on A. In addition,

(3.26) ωΩ(A∗A) = 〈Ω, π(A∗A)Ω〉 = ‖π(A)Ω‖2 ≥ 0

and so ωΩ is positive as well. If ‖Ω‖ = 1 and π is non-degenerate, then one can check that ‖ωΩ‖ = 1.
In this case, then ωΩ is a state on A. States of this type are called vector states of the representation
(H, π). In fact, one can prove that every state over a C∗-algebra is a vector state in a suitable
representation ??.

The following lemma underlies the most basic properties of states .

Lemma 3.19 (Cauchy-Schwarz). Let ω be a positive linear functional over A. It follows that

i) ω(A∗B) = ω(B∗A) for all A,B ∈ A,
ii) |ω(A∗B)|2 ≤ ω(A∗A)ω(B∗B) for all A,B ∈ A.

Proof. Let A,B ∈ A and λ ∈ C. By positivity of ω

(3.27) ω ((λA+B)∗(λA+B)) ≥ 0 .

Using linearity, one finds that this is equivalent to

(3.28) |λ|2ω(A∗A) + λω(A∗B) + λω(B∗A) + ω(B∗B) ≥ 0

The necessary and sufficient conditions for the positivity of this quadratic form on λ are exactly
the conditions given above. �

There are a number of immediate and important consequences.

Corollary 3.20. Let ω be a positive linear functional over A. It follows that
i) ω(A∗) = ω(A) for all A ∈ A.
ii) ω(1l) = ‖ω‖ = sup{ω(A∗A) : ‖A‖ = 1}.
iii) |ω(A)|2 ≤ ω(A∗A)‖ω‖ for all A ∈ A.
iv) |ω(A∗BA)| ≤ ω(A∗A)‖B‖ for all A,B ∈ A.

Proof. The proof of i) follows from Lemma 3.19 i) by taking B = 1l. To see that the first equality
in ii) is true, observe that

(3.29) 0 ≤ ω(1l∗1l) = ω(1l) =
ω(1l)

‖1l‖
≤ ‖ω‖

where we have used uniqueness of the identity, i.e. that 1l∗ = 1l, and non-triviality of A, i.e. that
‖1l‖ = 1. It is also clear that, for any A ∈ A

(3.30) |ω(A)|2 = |ω(1l∗A)|2 ≤ ω(1l)ω(A∗A)

where we have applied Lemma 3.19 ii). If we further assume that A ∈ A satisfies ‖A‖ = 1, then
(3.30) implies

(3.31) ‖ω‖2 ≤ ω(1l)‖ω‖

where we have used that ‖A∗A‖ = ‖A‖2 = 1. If ‖ω‖ = 0, then (3.29) shows that ω(1l) = 0 as well.
Otherwise, ω(1l) = ‖ω‖ now follows by combining the inequalities proven in (3.29) and (3.31). The
claim in iii) now follows from (3.30). In fact, the second equality in ii) also follows from (3.30).
Finally, iv) follows from the application of ii) to the positive functional B 7→ ω(A∗BA). �
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Note that iv) implies that, for any A ∈ A with ω(A∗A) 6= 0,

(3.32) ωA(B) :=
ω(A∗BA)

ω(A∗A)
for all B ∈ A

defines a state ωA on A. This is the quantum analogue of starting with a measure, e.g. dx on

[0, 1], considering a non-negative function µ with
∫ 1

0 µ(x)dx < ∞, and defining a new, normalized
measure via

(3.33)
µ(x)∫ 1

0 µ(x)dx
dx
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4. General Framework for Finite and Infinite Quantum Spin Systems

The general framework introduced in this chapter will allow us to consider infinite quantum
spin systems as C∗-dynamical systems. In particular we will construct the dynamics for infinite
quantum spin systems as a strongly continuous one-parameter group of automorphism of the algebra
of quasi-local observables. We start by studying the dynamics of finite quantum spin systems.

4.1. The Dynamics of Finite Systems. Let Λ be a finite set. For each x ∈ Λ we have a quantum
system described by a finite-dimensional Hilbert space of dimension dx ≥ 2. These are the ‘spins’
that form the spin system. The Hilbert space for the finite spin system is then

(4.1) HΛ =
⊗
x∈Λ

Cdx .

The algebra of observables of the systems is

(4.2) AΛ =
⊗
x∈Λ

Mdx .

Due to the tensor product structure, for any Λ1 ⊂ Λ, the collection of observables AΛ1 may
be regarded as a subset of the observables in AΛ by identifying A ∈ AΛ1 with A ⊗ 1lΛ\Λ1

∈
AΛ1 ⊗AΛ\Λ1

= AΛ. With this in mind, we will consider AΛ1 as a subalgebra of AΛ.
An interaction Φ is a mapping Φ : P(Λ)→ AΛ (where P(Λ) denotes the set of all subsets of Λ)

with the property that: For each X ∈ P(Λ), Φ(X) ∈ AX and Φ(X)∗ = Φ(X). For any Z ⊂ Λ, the
Hamiltonian corresponding to Φ in the volume Z is given by

(4.3) HZ =
∑

X∈P(Z)

Φ(X)

Example An interaction, ΦH , for the Heisenberg spin chain on an interval [a, b] ⊂ Z is given by

(4.4) ΦH(X) =

{
−J~σj~σj+1 if X = {j, j + 1}

0 otherwise

and therefore we have

(4.5) H[a,b] =
∑

X∈P([a,b])

ΦH(X) = −J
b−1∑
j=a

~σj~σj+1

as in (2.55) above.
The Heisenberg dynamics, which we will denote by τΛ

t , generated by the Hamiltonian HΛ (cor-
responding to the interaction Φ) is an automorphism of the algebra AΛ defined as follows:

(4.6) τΛ
t (A) = U∗Λ(t)AUΛ(t), for all A ∈ AΛ,

where UΛ(t) is the unitary operator

(4.7) UΛ(t) = e−itHΛ ∈ AΛ.

The automorphisms τΛ
t provide the solutions to the Heisenberg equation for the time-evolution of

observables:

(4.8)
d

dt
τΛ
t (A) = i[HΛ, τ

Λ
t (A)].

Often, we consider finite volume subsystems of some infinite system of spins labeled by a count-
able set Γ. A common situation is a spin systems defined on the lattice Zν .

A typical model will be defined by specifying a global interaction Φ which is a mapping

(4.9) Φ : P0(Zν)→
⋃
n≥1

AΛn
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with P0(Zν) being the set of finite subsets of Zν and the union of the observable algebras is
defined inductively using that AΛn ⊂ AΛn+1 . (Under the additional assumption that the sequence
is exhaustive, i.e., ∪nΛn = Zν , this union is independent of the chosen sequence.) The same
conditions on the interaction, i.e., Φ(X)∗ = Φ(X) ∈ AX apply. We often investigate properties of
finite-volume Hamiltonians corresponding to this fixed interaction:

(4.10) Hn = HΛn =
∑

X∈P(Λn)

Φ(X)

For the dynamics, it is clear that if Λ1 ⊂ Λ, then

(4.11) τΛ1
t (A) ∈ AΛ1 for any A ∈ AΛ1 and all t ∈ R.

However, it is generally the case that

(4.12) τΛ
t (A) /∈ AΛ1 for any A ∈ AΛ1 and t 6= 0.

Let’s examine this further in the context of a one-dimensional systems with nearest neighbor
interactions, such as the one-dimensional Heisenberg model. Let HN denote the Hamiltonian for
such a system on [−N,N ] ⊂ Z:

(4.13) HN =

N−1∑
j=−N

hj,j+1 with hj,j+1 = −J~σj · ~σj+1 ∈ A{j,j+1}

The corresponding Heisenberg dynamics, i.e. τNt (·), can be defined by the series for the exponential
of its generator i[HN , ·]:

(4.14) τNt (A) = eit[HN ,·](A) = A+ it[HN , A] +
(it)2

2!
[HN , [HN , A]] + · · · , for any A ∈ A[−N,N ].

To gain some insight in the structure of the dynamics, consider A ∈ A{0} i.e. an observable that
acts non-trivially only at the origin. Then, using the local form of the Hamiltonian, i.e. (4.13),
and the fact that observables with spatially disjoint support commute, we find that the first order
term is

(4.15) [HN , A] = ([h−1,0, A] + [h0,1, A]) ∈ A{−1,0,1}.

A similar calculation shows that

(4.16) [HN , [HN , A]] ∈ A{−2,−1,0,1,2}

and in for general n ≥ 0,

(4.17) ([HN , ·])n(A) ∈ A[−min(n,N),min(n,N)].

As a consequence, if we take B ∈ A{x} for some x ∈ [−N,N ], one readily sees that

(4.18) [τNt (A), B] = O(|t||x|),
suggesting that, for A ∈ A{0}, the commutator of τNt (A) with B ∈ A{x}, is small for t small and x
large. One observes, however, that direct analysis of the series expansion does not look appealing
due to the fast growth in n of the number of terms that contribute at order n. In any case, we are
interested in an explicit estimate for the norm of commutators of this type. The following Lemma
shows how such estimates could be used.

Lemma 4.1. Let H1 and H2 be two complex Hilbert spaces. Suppose that, for ε > 0, A ∈ B(H1⊗H2)
satisfies

(4.19) ‖[A, 1l⊗B]‖ ≤ ε‖B‖,
for all B ∈ B(H2). Then there exists A′ ∈ B(H1), ‖A′‖ ≤ ‖A‖, such that

(4.20) ‖A′ ⊗ 1l−A‖ ≤ ε
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So, if A ∈ B(H1⊗H2) has a small commutator with all B ∈ B(H2), then A is well-approximated
by observable in B(H1), i.e., one with support in the complement of the support of the B’s.

If dim(H2) <∞, the local operator in the statement of the lemma can be taken to be

(4.21) A′ =
1

dim(H2)
Tr2A,

where Tr2 denotes the partial trace over H2.

Proof of Lemma 4.1 in the finite-dimensional case: If dimH2 <∞, a simple application of Schur’s
Lemma shows that, for B ∈ B(H2),

(4.22)
1

dim(H2)
TrB =

∫
U(H2)

U∗BU dU,

where U(H2) is the unitary group and dU is the normalized Haar-measure on U(H2). From this
expression, we see that A′ as defined in (4.21) can be expressed by

(4.23) A′ ⊗ 1l =

∫
U(H2)

(1l⊗ U∗)A(1l⊗ U) dU

Then,

(4.24) A′ ⊗ 1l−A =

∫
U(H2)

{(1l⊗ U∗)A(1l⊗ U)− (1l⊗ U∗)(1l⊗ U)A} dU,

and so

(4.25) ‖A′ ⊗ 1l−A‖ ≤
∫
U(H2)

‖(1l⊗ U∗)[A, (1l⊗ U)]‖ dU ≤ ε

since ‖U‖ ≤ 1. This completes the proof for the case of finite-dimensional H2. For a proof in the
case of arbitrary Hilbert spaces and further discussion see [50]. �

In our analysis of commutator bounds we will use solutions of Schrödinger equations with time-
dependent Hamiltonians, or so-called non-autonomous quantum systems. This is of course an
interesting subject in its own right. Here, we limit ourselves to the simplest situation: that of a
norm-continuous function t 7→ H(t) ∈ B(H). We are interested in the initial value problem

d

dt
ψ(t) = −iH(t)ψ(t)

ψ(0) = ψ0 ∈ H.(4.26)

Existence and uniqueness of the solutions follows from standard results for differential equantions.
The following construction shows that the solution can be expressed in terms of a family of unitary
operators on H, which, for reasons that will become clear later, we will denote by U(t, 0). U(t, 0)
is given by the following absolutely convergent series, called the Dyson series or sometimes ‘time-
ordered exponential’:

(4.27) U(t, 0) = 1l +

∞∑
n=1

(−i)n
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtnH(t1)H(t2) · · ·H(tn).

It is straightforward to verify that

(4.28)
d

dt
U(t, 0) = −iH(t)U(t, 0), U(0, 0) = 1l,

which immediately implies that ψ(t) = U(t, 0)ψ(0) solved (4.26), for all ψ0 ∈ H. By taking adjoints
of both sides of (4.28) we obtain a similar equation for U(t, 0)∗:

(4.29)
d

dt
U(t, 0)∗ = iU(t, 0)∗H(t), U(0, 0)∗ = 1l,
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Using (4.28) and (4.29) we find that the derivative of U(t, 0)∗U(t, 0) vanishes for all t ∈ R, and
we conclude that U(t, 0) is unitary as claimed. Therefore, for s, t ∈ R, we can define a unitary
U(t, s) = U(t, 0)U(s, 0)∗. It is easy to verify that U(t, s) satisfies U(t, s)∗ = U(t, s)−1 = U(s, t) and
the cocycle property: U(t, s)U(s, r) = U(t, r), for r, s, t ∈ R.

The Heisenberg dynamics of observables can then be given in terms of a co-cycle of automor-
phisms τt,s defined by

(4.30) τt,s(A) = U(t, s)∗AU(t, s), A ∈ B(H).

The automorphisms satisfy the equation

(4.31)
d

dt
τt,0(A) = iτt,0([H(t), A]) = i[τt,0(H(t)), τt,0(A)]).

4.2. Infinite Systems. We already indicated that one is often interested in families of finite
systems defined on finite subsets Λ of an infinite set Γ, with an interaction Φ defined on P0(Γ),
the finite subsets of Γ. This will be the starting point for the definition of infinite quantum spin
systems.

Let (Γ, d) be a countable metric space. We will impose certain regularity conditions on (Γ, d).
An example to keep in mind is Zν with the usual graph (i.e., the `1) distance. To each x ∈ Γ, we
associate a finite-dimensional, single-site Hilbert space of states Hx = Cdx . As before, the algebra
of observables at the site x will be denoted by Ax = B(Hx) = Mdx . For any finite volume Λ ⊂ Γ,
we then have

(4.32) HΛ =
⊗
x∈Λ

Hx and AΛ =
⊗
x∈Λ

Ax

As we have seen, if Λ0 ⊂ Λ are two finite subsets of Γ, then AΛ0 ⊂ AΛ. It therefore makes sense
to consider the union over all finite subsets of Γ:

(4.33) Aloc
Γ =

⋃
Λ⊂Γ

AΛ.

The C∗-algebra of all quasi-local observables is the norm completion of Aloc
Γ :

(4.34) AΓ = Aloc
Γ

‖·‖
.

An interaction Φ is a map from the finite subsets of Γ to Aloc
Γ , Φ : P0(Γ)→ Aloc

Γ , that satisfies

(4.35) Φ(X)∗ = Φ(X) ∈ AX for each X ∈ P0(Γ).

The Heisenberg dynamics associated to this interaction is then defined for any finite Λ ⊂ Γ in terms
of the self-adjoint finite-volume Hamiltonian

(4.36) HΛ =
∑
X⊂Λ

Φ(X),

For each Λ ∈ P0(Γ), the finite-volume dynamics is given by

(4.37) τΛ
t (A) = eitHΛAe−itHΛ for any A ∈ AΛ and t ∈ R.

So far, we have a family, labeled by Λ ∈ P0(Γ), of one-parameter groups of ∗-automorphisms on
AΛ. We are interested in a framework where it makes sense to consider infinite systems describing
bulk matter. Note that one can regard the τΛ

t as automorphisms defined on AΛ′ , with Λ ⊂ Λ′, Aloc
Γ ,

or AΓ, for which AΛ is an invariant subspace. Therefore, it makes sense to consider the convergence
of τΛ

t as automorphisms on AΓ as Λ↗ Γ.
A convenient way to express sufficient conditions for the existence of the infinite-volume limit of

the dynamics (and other quantities), is by means of a function F : [0,∞)→ (0,∞), which we will
refer to as an F-function if it satisfies the following properties:

i. Non-increasiing: for 0 ≤ r ≤ s, we have F (r) ≥ F (s);
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ii. Uniform integrability:

(4.38) ‖F‖ = sup
x∈Γ

∑
y∈Γ

F (d(x, y)) <∞

iii. Convolution condition: There exists CF <∞ such that for any x, y ∈ Γ

(4.39)
∑
z∈Γ

F (d(x, z))F (d(z, y)) ≤ CFF (d(x, y))

For example, if Γ = Zν , then for any ε > 0, one can take

(4.40) F (r) = (1 + r)−(ν+ε)

which is clearly, uniformly integrable. Moreover, it is easy to check that the convolution property
holds with

(4.41) CF = 2ν+ε‖F‖
works in (4.39).

It is also convenient to observe that if F is an F -function on (Γ, d) - as described above, then
for any a ≥ 0,

(4.42) Fa(r) = e−arF (r)

also satisfies the required properties required i-iii) above (i.e. Fa is also an F -function on (Γ, d))
with ‖Fa‖ ≤ ‖F‖ and CFa ≤ CF .

In terms of any F -function on (Γ, d), we can define a Banach space of interactions Φ with the
norm

(4.43) ‖Φ‖F = sup
x,y∈Γ

1

F (d(x, y))

∑
X⊂Γ:
x,y∈X

‖Φ(X)‖.

Then, BF (Γ) = {Φ | Φ is an interaction s.t. ‖Φ‖F <∞}. This norm ‖ · ‖F , often referred to as an
F -norm, expresses the decay of the interaction strength at long distances: for each pair of points
x, y ∈ Γ, the sum over all interaction terms which involve this pair must decay faster than F , in
the sense that for any x, y ∈ Γ, we have

(4.44)
∑
X⊂Γ:
x,y∈X

‖Φ(X)‖ ≤ ‖Φ‖FF (d(x, y)).

A commonly used bound for the total interaction energy per spin is

(4.45) |||Φ|||0 = sup
x∈Γ

∑
X∈P0(Γ)
x∈X

1

|X|
‖Φ(X)‖.

and is an easy exercise to show |||Φ|||0 ≤ ‖F‖‖Φ‖F . We then also have the frequently used bound

(4.46) sup
x∈Γ

∑
X∈P0(Γ)
x∈X

‖Φ(X)‖ ≤ ‖F‖‖Φ‖F .

5. Lieb-Robinson Bounds

We will now state and prove a version of the quasi-locality estimates known as Lieb-Robinson
bounds. Lieb-Robinson bounds can be expressed a number of different forms, and the precise
manner typically depends on the application one has in mind. Often one is considering a dynamics
generated by nearest neighbor interactions. In this case, it seems intuitively clear that the spread
of the interactions through the system should depend on the surface area of the support of a local
observable, not its volume.
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Let Λ ∈ P0(Γ). For any X ⊂ Λ, we will denote the surface of X in Λ by

(5.1) SΛ(X) = {Z ⊂ Λ : Z ∩X 6= ∅ and Z ∩ (Λ \X) 6= ∅}

and set S(X) = SΓ(X) for brevity. The Φ-boundary of a set X ∈ P0(Γ) is then defined to be

(5.2) ∂ΦX = {x ∈ X : ∃Z ∈ S(X) with x ∈ Z and Φ(Z) 6= 0 } .

It is clear that for general Φ, ∂ΦX = X, but if Φ is finite range and X is sufficiently large, we have
that ∂ΦX is a proper subset of X.

A Lieb-Robinson bound may be stated as follows.

Theorem 5.1 (Lieb-Robinson Bound [?, 34, 44, 51]). Let Φ ∈ BF (Γ), X,Y,Λ ∈ P0(Γ), such that
X,∩Y = ∅. Then, for all A ∈ AX and B ∈ AY , we have the estimate

(5.3)
∥∥[τΛ

t (A), B]
∥∥ ≤ 2 ‖A‖ ‖B‖

CF

(
e2 ‖Φ‖F CF |t| − 1

)
D(X,Y ),

holds for all t ∈ R. Here the quantity D(X,Y ) is given by

(5.4) D(X,Y ) = min

∑
x∈X

∑
y∈∂ΦY

F (d(x, y)) ,
∑

x∈∂ΦX

∑
y∈Y

F (d(x, y))

 .

Before we prove this bound, a number of comments are useful in interpreting this theorem.
First, one always has the trivial bound ‖[τΛ

t (A), B]‖ ≤ 2‖A‖‖B‖. This trivial estimate is usually
better when |t| is large and also holds when X ∩ Y 6= ∅.

Next, if Φ is exponentially decaying, i.e. there is a > 0 for which Φ ∈ BFa(Γ) with Fa(r) =
e−arF (r), then

D(X,Y ) ≤ min

∑
x∈X

∑
y∈∂ΦY

F (d(x, y)) ,
∑

x∈∂ΦX

∑
y∈Y

F (d(x, y))

 e−ad(X,Y )

≤ min {|∂ΦX|, |∂ΦY |} ‖F‖e−ad(X,Y )(5.5)

In this case, the bound (5.3) implies

(5.6)
∥∥[τΛ

t (A), B]
∥∥ ≤ 2 ‖A‖ ‖B‖ ‖F‖

Ca
min {|∂ΦX| , |∂ΦY |} e

−a
[
d(X,Y )− 2‖Φ‖aCa

a
|t|
]
,

If Φ is finite range on Zν , then Φ ∈ BFa(Zν) for all a > 0. For Φ ∈ BFa , with a > 0, (5.6) can be
interpreted as a bound on the velocity of propagation given by

(5.7) vΦ,a =
2‖Φ‖aCa

a
.

It is also important to observe that for fixed local observables A and B, the bounds above, (5.3)
and similarly (5.6) if applicable, are independent of the volume Λ ∈ P0(Γ). This will be key in our
proof of the existence of the infinite-volume dynamics.

Finally, we note that the bound above only depends on the minimal cardinality of Φ-boundaries.
Hence, one may still obtain useful estimates even in cases where one of the corresponding observables
has support growing with the volume Λ.

In the proof of Theorem 5.1 we will use the lemma below, which provide a simple estimate for
the growth of solutions of a class of differential equations in a Banach space. In this lemma the
derivative is to be interpreted as a limit in the Banach space norm and the integrals in the proof
may be interpreted as Riemann or Bochner integrals.
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Let X be a Banach space and let I be a finite or infinite interval ⊂ R. Suppose A : I → B(X)
be a continuous function with values in the bounded linear operators on X considered with the
operator norm, and denote by x(t) the solution of the differential equation

(5.8) ∂tx(t) = A(t)x(t)

with initial condition x(t0) = x0 ∈ X. We say that the family of operators A(t) is norm-preserving
if for every x0 ∈ X, the mapping γt : X → X which associates x0 → x(t), i.e., γt(x0) = x(t),
satisfies

(5.9) ‖ γt(x0) ‖ = ‖x0 ‖ for all t ∈ I.

Some obvious examples are the case where X is a Hilbert space and A(t) is anti-hermitian for
each t, or when X is a ∗-algebra of operators on a Hilbert space with a spectral norm and, for each
t, A(t) is a derivation commuting with the ∗-operation.

Lemma 5.2. Let A(t), for t ∈ I ⊂ R, be a family of norm preserving operators on a Banach space
X. For any continuous function b : I → X, the solution of

(5.10) ∂ty(t) = A(t)y(t) + b(t),

with boundary condition y(t0) = y0, satisfies the bound

(5.11) ‖ y(t) − γt(y0) ‖ ≤
∫ max(t0,t)

min(t0,t)
‖ b(s) ‖ ds.

Proof. For any t ∈ R, let x(t) be the solution of

(5.12) ∂tx(t) = A(t)x(t)

with boundary condition x(0) = x0, and let γt be the linear mapping which takes x0 to x(t). By
variation of constants, the solution of the inhomogeneous equation (5.10) may be expressed as

(5.13) y(t) = γt

(
y0 +

∫ t

0
(γs)

−1 (b(s)) ds

)
.

The estimate (5.11) follows from (5.13) as A(t) is norm preserving. �

Proof of Theorem 5.1: We prove (5.3) in two steps. First, we use Lemma 5.2 to establish a basic
inequality, see (5.20) below. Next, using properties of the F -function, iteration of (5.20) yields (5.3)
as claimed. Without loss of generality we may assume that X,Y ⊂ Λ.

First note that, the roles of A and B, and hence the roles their respective supports, X and Y ,
can be interchanged. This is due to the automorphism property of the dynamics, which gives

(5.14) ‖[τΛ
−t(B), A]‖ = ‖τΛ

t

(
[τΛ
−t(B), A]

)
‖ = ‖[τΛ

t (A), B]‖

and the argument below can be applied to the left hand side of (5.14).
Therefore, without loss of generality, we can assume that

(5.15) D(X,Y ) =
∑

x∈∂ΦX

∑
y∈Y

F (d(x, y))

To prove (5.20), consider the function

(5.16) f(t) =
[
τΛ
t

(
τX−t(A)

)
, B
]
,

where A and B are as in the statement of the theorem. Note that the inner dynamics, τX−t(A),
corresponds to evolution by the local Hamiltonian HX , as defined e.g. in (4.3), with X being the
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support of the observable A. It is straightforward to verify

f ′(t) = i
[
τΛ
t

([
HΛ −HX , τ

X
−t(A)

])
, B
]

= i
∑

Z∈SΛ(X)

[[
τΛ
t (Φ(Z)) , τΛ

t

(
τX−t(A)

)]
, B
]

= i
∑

Z∈SΛ(X)

[
τΛ
t (Φ(Z)) , f(t)

]
− i

∑
Z∈SΛ(X)

[
τΛ
t (τX−t(A)),

[
τΛ
t (Φ(Z)) , B

]]
.(5.17)

where for the last equality we used the Jacobi identity. The first term in (5.17) above is norm
preserving, and therefore, Lemma 5.2 implies that

(5.18) ‖[τΛ
t (τX−t(A)), B]‖ ≤ ‖[A,B]‖ + 2 ‖A‖

∑
Z∈SΛ(X)

∫ max{0,t}

min{0,t}

∥∥[τΛ
s (Φ(Z)), B]

∥∥ ds.
To ease notation, we will assume that t ≥ 0 for the remainder of the argument. Changing the sign
of t is equivalent to changing the sign of Φ and therefore leaves the estimate unchanged. For any
Z ∈ P0(Γ), introduce the quantity

(5.19) CΛ
B(Z; t) = sup

A∈AZ :

A 6=0

‖[τΛ
t (A), B]‖
‖A‖

.

Since supp(τX−t(A)) ⊂ X and ‖τX−t(A)‖ = ‖A‖ (both for all t ∈ R), the inequality (5.18) clearly
implies

(5.20) CΛ
B(X; t) ≤ CΛ

B(X; 0) + 2
∑

Z∈SΛ(X)

‖Φ(Z)‖
∫ t

0
CΛ
B(Z; s)ds.

Note: it is clear from (5.20) that single-site interaction terms, i.e. those of the form Φ({z}) for
some z ∈ Γ, do not contribute to this locality estimate.

The claim in (5.3) now follows from (5.20) by iteration. In fact, it is clear from the definition,
see (5.19), that for any finite Z ⊂ Λ,

(5.21) CΛ
B(Z; 0) ≤ 2 ‖B‖ δY (Z)

where δY is defined by

(5.22) δY (Z) =

{
1 if Z ∩ Y 6= ∅,
0 otherwise.

To prove (5.3), let N ≥ 1. Iteration of (5.20) using (5.21) yields

(5.23) CΛ
B(X; t) ≤ 2‖B‖

(
δY (X) +

N∑
n=1

an
(2t)n

n!

)
+RN+1(t)

where

(5.24) an =
∑

Z1∈SΛ(X)

∑
Z2∈SΛ(Z1)

· · ·
∑

Zn∈SΛ(Zn−1)

 n∏
j=1

‖Φ(Zj)‖

 δY (Zn)

and

RN+1(t) = 2N+1
∑

Z1∈SΛ(X)

∑
Z2∈SΛ(Z1)

· · ·
∑

ZN+1∈SΛ(ZN )

∫ t

0

∫ s1

0
· · ·
∫ sN

0
×

×

N+1∏
j=1

‖Φ(Zj)‖

CΛ
B(ZN+1; sN+1)dsN+1dsN · · · ds1(5.25)



29

The remainder term RN+1(t) is estimated as follows. First, we bound CΛ
B(ZN+1; sN+1) with

2‖B‖ using its definition (5.19). Next, we note that the sums above are over chains of sets
(Z1, Z2, · · · , ZN+1) which satisfy Z1 ∩ ∂ΦX 6= ∅ and Zj ∩ Zj−1 6= ∅ for 2 ≤ j ≤ N + 1. Therefore,
there are points w1, w2, · · · , wN+1 ∈ Λ with w1 ∈ Z1∩∂ΦX and wj ∈ Zj∩Zj−1 for all 2 ≤ j ≤ N+1.
A simple upper bound on these sums is then obtained by estimating

(5.26)
∑

Z1∈SΛ(X)

∑
Z2∈SΛ(Z1)

· · ·
∑

ZN+1∈SΛ(ZN )

∗ ≤
∑

w1∈∂ΦX

∑
w2,...,wN+2∈Λ

∑
Z1,...,ZN+1⊂Λ:

wk,wk+1∈Zk,k=1,...,N+1

∗

where we have used that the last set ZN+1 must contain more than one point since ZN+1 ∈ SΛ(ZN ).
By (4.44)

(5.27)
∑
Zk⊂Λ:

wk,wk+1∈Zk

‖Φ(Zk)‖ ≤ ‖Φ‖FF (d(wk, wk+1))

and the convolution property, we find that

RN+1(t) ≤ 2‖B‖ · (2t)N+1

(N + 1)!

∑
Z1∈SΛ(X)

∑
Z2∈SΛ(Z1)

· · ·
∑

ZN+1∈SΛ(ZN )

N+1∏
j=1

‖Φ(Zj)‖


≤ 2‖B‖ · (2t‖Φ‖F )N+1

(N + 1)!

∑
w1∈∂ΦX

∑
w2,...,wN+2∈Λ

N+1∏
k=1

F (d(wk, wk+1))

≤ 2‖B‖
CF

· (2t‖Φ‖FCF )N+1

(N + 1)!

∑
w1∈∂ΦX

∑
wN+2∈Λ

F (d(w1, wN+2))(5.28)

Since F is uniformly summable and X is finite, this bound clearly shows that RN+1(t) goes to 0
as N →∞. We have proven that

(5.29) CΛ
B(X; t) ≤ 2‖B‖

∞∑
n=1

an ·
(2t)n

n!

The coefficients an are bounded similarly. In fact, using the additional constraint that the final
set Zn must intersect Y , we find that

(5.30) an ≤
(C‖Φ‖F )n

CF

∑
y∈Y

∑
x∈∂ΦX

F (d(x, y))

and therefore,

(5.31) CB(X; t) ≤ 2 ‖B‖
CF

(
e2CF ‖Φ‖F t − 1

) ∑
y∈Y

∑
x∈∂ΦX

F (d(x, y)),

�

In combination with Lemma 4.1, the Lieb-Robinson bounds of Theorem 5.1 show that the time
evolution of a local observable with support in X ∈ P0(Γ), yields an observable which, up to a
small correction, is localized in a larger but still finite region. More precisely, for X ∈ P0(Γ), and
with ‖Φ‖a <∞, for some a > 0 and vΦ,a is the quantity defined in (5.7), define

X(vΦ,a|t|+ r) = {x ∈ Γ | d(x,X) ≤ vΦ,a|t|+ r}.

Then, for A ∈ AX , define

(τΛ
t (A))X(vΦ,a|t|+r) = TrHΛ\X(vΦ,a|t|+r)

τΛ
t (A).
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Then (τΛ
t (A))X(vΦ,a|t|+r) ∈ AX(vΦ,a|t|+r) ⊂ AΛ and

‖τΛ
t (A)− (τΛ

t (A))X(vΦ,a|t|+r)‖ ≤
2 ‖A‖ |X|

Ca
‖F‖ e−ar.

This observation, and the fact that the bound above is uniform in Λ, is a clear indication that
the dynamics of local observables under the interaction with the infinite system on Γ, should be
well-defined. We prove that this is indeed the case in the next section.

5.1. Existence of the Dynamics. Lieb-Robinson bounds can be used to establish the existence
of a limiting dynamics for interactions Φ ∈ BF (Γ). To see this we will consider limits of the finite
volume dynamics along increasing, exhaustive sequences {Λn}, i.e., for all n ≥ 1, Λn ∈ P0(Γ),
Λn ⊂ Λn+1, and for any z ∈ Γ, there exists an n ≥ 1 for which z ∈ Λn.

Theorem 5.3. Let Φ ∈ BF (Γ). Along any increasing, exhaustive sequence {Λn} of finite subsets
of Γ, the norm limit

(5.32) τt(A) = lim
n→∞

τΛn
t (A)

exists for all t ∈ R and A ∈ Aloc
Γ . The convergence in (5.32) is uniform for t in compact sets,

and moreover, it is independent of the choice of exhaustive sequence {Λn}. The collection {τt}t∈R,
which we denote by the infinite volume dynamics corresponding to Φ, defines a strongly continuous,
one parameter group of ∗-automorphisms on AΓ.

Proof. Let A ∈ Aloc
Γ and denote by X = supp(A) ∈ P0(Γ). Take m ≥ 1 large enough so that

X ⊂ Λm. For any n ≥ m, we have that,

(5.33) τΛn
t (A)− τΛm

t (A) =

∫ t

0

d

ds

(
τΛn
s

(
τΛm
t−s(A)

))
ds,

and since

(5.34)
d

ds

(
τΛn
s

(
τΛm
t−s(A)

))
= iτΛn

s

([
HΛn −HΛm , τ

Λm
t−s(A)

])
,

it is clear that for t > 0

(5.35) ‖τΛn
t (A)− τΛm

t (A)‖ ≤
∑

Z∈SΛn (Λm)

∫ t

0
‖[τΛm

s (A),Φ(Z)]‖ ds.

(Again, analogous results hold for t ≤ 0.) The estimate continues by dividing the above sum on Z:

‖τΛn
t (A)− τΛm

t (A)‖ ≤ 2‖A‖t
∑

Z∈SΛn
(Λm):

Z∩X 6=∅

‖Φ(Z)]‖+
∑

Z∈SΛn
(Λm):

Z∩X=∅

∫ t

0
‖[τΛm

s (A),Φ(Z)]‖ ds

≤ 2‖A‖t
∑
x∈X

∑
z∈Λn\Λm

∑
Z⊂Λn:
x,z∈Z

‖Φ(Z)‖

+
2‖A‖
C

∫ t

0
(e2‖Φ‖FCF s − 1) ds

∑
Z∈SΛn

(Λm):

Z∩X=∅

‖Φ(Z)‖
∑

x∈X,z∈Z
F (d(x, z))(5.36)
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where we have used Theorem 5.1 on the second sum above. Observe that∑
Z∈SΛn

(Λm):

Z∩X=∅

‖Φ(Z)‖
∑

x∈X,z∈Z
F (d(x, z)) ≤

∑
x∈X

∑
z′∈Λn\Λm

∑
z∈Λn

F (d(x, z))
∑
Z⊂Λn:
z,z′∈Z

‖Φ(Z)‖

≤ ‖Φ‖F
∑
x∈X

∑
z′∈Λn\Λm

∑
z∈Λn

F (d(x, z))F (d(z, z′))

≤ C‖Φ‖F
∑
x∈X

∑
z′∈Λn\Λm

F (d(x, z′))(5.37)

Altogether then, we have shown that

(5.38) ‖τΛn
t (A)− τΛm

t (A)‖ ≤ 2‖A‖‖Φ‖F
(∫ t

0
e2‖Φ‖FCF sds

)∑
x∈X

∑
z∈Λn\Λm

F (d(x, z))

This proves that the sequence of finite volume evolutions is Cauchy and hence convergent; at least
on Aloc

Γ . The remaining claims follow by elementary arguments. In particular, see the Exercise 15
of Sections 1-3. �

By general arguments of semi-group theory (see, e.g., [11][Proposition 6.2.3]), the strongly con-
tinuous, one-parameter group of ∗-automorphisms {τt}t∈R is generated by a closed operator δ in the
following sense. For all A ∈ Aloc

Γ , using an estimate in terms of ‖Φ‖F , one can show the existence
of the limit in AΓ:

(5.39) δ(A) = lim
Λ→Γ

[HΛ, A].

and δ is the closure of this operator, meaning the domain of the generally unbounded operator δ,
dom(δ), contains Aloc

Γ as a core. For A ∈ dom(δ), we have

(5.40)
d

dt
τt(A) = iδ(τt(A)) = iτt(δ(A)),

and it is customary to write τt = eitδ.
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6. Ground States and Equilibrium States

For a quantum spin system associated with a finite set Λ, the Hamiltonian HΛ = H∗Λ ∈ AΛ is
a self-adjoint operator acting on a finite-dimensional complex Hilbert space HΛ. Its spectrum is a
finite set of real eigenvalues and a ground state is defined to be any state ω0 that minimizes the
energy, i.e. , such that

(6.1) ω0(HΛ) = min{ω(HΛ) | ω a state on AΛ}.
It is a simple exercise to show that ground states of finite quantum spin systems are exactly those
states that have density matrices with a range that is a subspace of the eigenspace corresponding
to the smallest eigenvalue of HΛ. The ground state of the system is unique if and only if this
eigenvalue is simple.

For a finite quantum spin system with Hamiltonian HΛ, thermal equilibrium at inverse temper-
ature β ∈ [0,∞) is the unique state, the Gibbs state, given by the density matrix ρβ defined as
follows:

(6.2) ρβ =
1

Zβ
e−βHΛ , Zβ = Tre−βHΛ .

In the sections below we derive some basic properties and equivalent characterizations of ground
states and equilibrium states, which will be useful to formulate these concepts in the infinite system
setting.

6.1. Ground States. Let E0(Λ) denote the smallest eigenvalue of the Hamiltonian HΛ on a finite-
dimensional Hilbert space HΛ. In this context E0(Λ) is the ground-state energy, and any state ω
on AΛ such that ω(HΛ) = E0(Λ) is a ground state. In the following proposition it is shown that
the set of all ground states for the system with Hamiltonian HΛ is the set of all states satisfying
ω(A∗[HΛ, A]) ≥ 0, for all A ∈ AΛ, and that this property is inherited by limits of sequences of
ground states of finite-volume systems defined on a sequence Λn ∈ P0(Γ), defined by an interaction
Φ ∈ BF (Γ), for any F -function F .

It is clear that to any sequence of finite volumes {Λn} with Λn → Γ, there correspond one or
more sequences of ground-states ωΛn . Using the Banach-Alaoglu theorem, it is easy to see that
each of these sequences has an accumulation point (and a convergent subsequence).

Note that there is no simple definition of a limit of the Hilbert spaces HΛn , nor of the Hamil-
tonians HΛn , but it makes perfect sense to consider the limiting states on Aloc

Γ , and, by unique
continuous extension, also on AΓ. This provides a good option for defining ground states for the
infinite volume Γ.

Proposition 6.1.
(i) Let ω be a state of a system with Hamiltonian H on a finite-dimensional Hilbert space H,
i.e. , suppose that the range of the density matrix ρ of ω is a subspace of the eigenspace of H
corresponding to its smallest eigenvalue E0. Then we have

(6.3) ω(A∗[H,A]) ≥ 0, for all A ∈ B(H).

Conversely, every state on B(H) satisfying (6.3) is a ground state of the system.
(ii) Let {Λn} be an exhaustive sequence of finite volumes in Γ. For each n ≥ 1, let ωn be a ground
state of HΛn. If

(6.4) ωn(A)→ ω(A) for all A ∈ Aloc
Γ

and

(6.5) δΛn(A) := [HΛn , A]→ δ(A) for all A ∈ Aloc
Γ

in the strong sense (i.e. in norm), then ω is a state on Aloc
Γ satisfying

(6.6) ω(A∗δ(A)) ≥ 0, for all A ∈ Aloc
Γ .
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Proof. (i). Observe that

ω(A∗[H,A]) = TrρA∗[H,A]

= TrρA∗HA− TrHρA∗A = TrρA∗(H − E01l)A ≥ 0(6.7)

where we have used Hρ = E0ρ and HΛ ≥ E01l.
To prove the converse, assume that there exists 0 6= ψ ∈ ranρ such that Hψ 6= E0ψ and consider

A = |ψ0〉〈ψ| where ψ0 6= 0 and Hψ0 = E0ψ0. An easy calculation shows that ω(A∗[H,A]) < 0.
Therefore, ω does not satisfy (6.3).

(ii). To study the limit n→∞, we write

ω(A∗δ(A))− ωΛn(A∗δΛn(A))

= ω (A∗ (δ(A)− δΛn(A))) + (ω − ωΛn) (A∗ (δΛn(A)− δ(A))) + (ω − ωΛn)(A∗δ(A)).(6.8)

The limit of the first terms vanishes because of (6.5) and the fact that states are bounded linear
functionals of unit norm. For the last term, for each ε > 0, pick B ∈ Aloc

Γ such that ‖A∗δ(A)−B‖ ≤ ε
and use this to see that

(6.9) lim sup
n
|(ω − ωΛn)(A∗δ(A))| ≤ 2ε.

Since ε is arbitrary, we can conclude that also the third term of (6.8) vanishes in the limit n→∞,
and the claimed result follows. �

Note that there are in general many sequences HΛn such that (6.5) holds with the same generator
δ. The limits of ground states of each such sequence of finite-volume Hamiltonians will all satisfy
(6.3) and it will make sense to consider them all as ground states of the C∗-dynamical system
(AΓ, {τt = eitδ | t ∈ R}). Therefore, we adopt the following definition.

Definition 6.2. Let A be a C∗-algebra and {τt = eitδ | t ∈ R} be a strongly continuous one-
parameter group of automorphisms of A. Then, a state ω on A is a ground-state for τt if

(6.10) ω(A∗δ(A)) ≥ 0 for all A ∈ dom(δ).

Note that it suffices to require (6.10) for A in a core for δ. In the context of quantum spin systems
defined by an interaction Φ ∈ BF (Γ), a convenient core for δ is given by the local observables Aloc

Γ .
The next proposition shows that ground states are time-invariant, i.e. , ω ◦ τt = ω, for all t ∈ R.

Proposition 6.3. Let A be a C∗-algebra and {τt = eitδ | t ∈ R} be a strongly continuous one-
parameter group of automorphisms of A. Then, the following three conditions are equivalent:

i. ω ◦ τt = ω, for all t ∈ R;
ii. ω(δ(A)) = 0, for all A ∈ dom(δ);
iii. ω(A∗δ(A)) ∈ R, for all A ∈ dom(δ).

We leave the proof of this proposition as an exercise for the reader. (Hint: ω(δ(A∗A)) =
2iIm[ω(A∗δ(A))].)

6.2. Thermal Equilibrium, the Free Energy, and the Variational Principle for Gibbs
States. For a finite spin systems, the thermal equilibrium state at inverse temperature β ∈ [0,∞),
can be defined as the minimizer of the free energy functional. This provides a definition of equilib-
rium states analogous to the definition of ground states as those states that minimize the energy.
As we shall see, ground states correspond to zero temperature, i.e. , β = +∞.

In order to define the free energy functional, we start with von Neumann’s definition of the
entropy, S(ρ), of a state defined by a density matrix ρ:

(6.11) S(ρ) = −Trρ log ρ.
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Here ρ log ρ is defined through the functional calculus with the continuous function x log x : [0, 1]→
R. When H is finite-dimensional the entropy is finite for all ρ and satisfies the bound

(6.12) 0 ≤ S(ρ) ≤ log dimH,

the proof of which we leave as an exercise.
Let H = H∗ ∈ B(H) be the Hamiltonian of a finite quantum spin system. The Gibbs state at

inverse temperature β ∈ (0,∞) for the system with Hamiltonian H is defined by the density matrix

(6.13) ρβ =
1

Z(β)
e−βH , with Z(β) = Tre−βH .

The normalization factor Z(β) is called the partition function. We will denote the Gibbs state by
ωβ. The parameter β corresponds to the temperature T in the sense that β = (kBT )−1, where kB
is Boltzmann’s constant. Thus T = 0 corresponds to β →∞, and in turn to the ground state.

For β ∈ (0,∞), the free-energy functional Fβ is given by

(6.14) Fβ(ρ) = TrρH − β−1S(ρ).

Proposition 6.4. ρβ is the unique density matrix that minimizes Fβ, i.e. , for all density matrices
ρ we have

(6.15) Fβ(ρβ) ≤ Fβ(ρ), and Fβ(ρ) = Fβ(ρβ)⇒ ρ = ρβ.

Using this proposition, the minimum value of Fβ is easily seen to be given by f(β) = −β−1 logZ(β)
and is called the free energy of the system at inverse temperature β.

The proof of this proposition follows from a simple application of the following lemma.

Lemma 6.5 (Klein [58], Ohya-Petz [53]). Let A and B be two non-negative definite matrices
satisfying 0 ≤ A,B ≤ 1l and such that kerB ⊂ kerA. Then

(6.16) TrA(logA− logB) ≥ Tr(A−B) +
1

2
Tr(A−B)2

Proof. The function f(x) = −x log x, x > 0, continuously extended such that f(0) = 0, is easily
seen to be concave. In fact f ∈ C2 ((0,∞)) with

(6.17) f ′′(x) = −1

x

By the Taylor Remainder Theorem and the expression for f ′′, it follows that for all x and y such
that 0 ≤ x < y ≤ 1, there exists a ξ such that x ≤ ξ ≤ y and

(6.18) f(y)− f(x)− (y − x)f ′(y) = −1

2
(x− y)2f ′′(ξ) ≥ 1

2
(x− y)2

As A and B are non-negative definite, they are diagonalizable. Denote their eigenvalues by ai and bi,
and the corresponding orthonormal eigenvectors by ϕi and ψi, respectively. From the assumptions
it follows that 0 ≤ ai, bi ≤ 1. Using the spectral decompositions of A and B, i.e.,

A =
∑
i

ai|ϕi〉〈ϕi|(6.19)

B =
∑
i

bi|ψi〉〈ψi|(6.20) ∑
i

|ϕi〉〈ϕi| =
∑
i

|ψi〉〈ψi| = 1l(6.21)
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we see that

TrA(logA− logB)− Tr(A−B)− 1

2
Tr(A−B)2

=
∑
ij

Tr|ψi〉〈ψi||ϕj〉〈ϕj |
[
−f(A) + f(B) + (A−B)f ′(B)− 1

2
(A2 +B2 − 2AB)

]

=
∑
ij

Tr|ψi〉〈ψi||ϕj〉〈ϕj |
[
−f(aj) + f(bi) + (aj − bi)f ′(bi)−

1

2
(aj − bi)2

]
≥ 0

where the last inequality follows from applying (6.18) term by term. �

Now to prove Proposition 6.4, we can apply Lemma 6.5 with A = ρ, where ρ is an arbitrary
density matrix, and B = ρβ. Note than kerB = {0}. This gives

β(fβ − F (β)) = Trρ log ρ− Trρ log

(
e−βH

Z(β)

)
(6.22)

≥ 1

2
Tr(ρ− ρβ)2 ≥ 0(6.23)

If the RHS vanishes, we have ρ = ρβ. Hence the minimum of Fβ is uniquely attained for ρ = ρβ.

6.3. The Kubo-Martin-Schwinger condition. Again, we consider a finite-dimensional Hilbert
space H, and a Hamiltonian H = H∗ ∈ A = B(H). Denote the Heisenberg dynamics by τt. Since
H is bounded it is straightforward to define the analytic continuation of τt(A) for all t ∈ C. A state
ω on A is called a β-KMS state if, for all A,B ∈ A, it satisfies

(6.24) ω(Aτiβ(B)) = ω(BA).

Proposition 6.6. ω is a β-KMS state if and only if ω = ωβ, i.e. , the KMS state coincides with
the Gibbs state.

Proof. First, the KMS property of the Gibbs state follows from a simple computation using the
dynamics and the cyclicity of the trace:

(6.25) Tre−βHAeitHBe−itH |t=iβ = Tre−βHAe−βHBeβH = Tre−βHBA.

For the other direction, we use an orthonormal basis of eigenvectors of H, |1〉, . . . , |n〉, with eigenval-
ues λ1, . . . , λn. The β-KMS property of state with density matrix ρ with A = |i〉〈j| and B = |k〉〈l|
then reads

(6.26) Trρ|i〉〈j|eβ(λl−λk)|k〉〈l| = Trρ|k〉〈l||i〉〈j|,

which translates into

(6.27) δk,j〈l | ρ | i〉eβ(λl−λk) = δi,l〈j | ρ | k〉.

since ρ is a density matrix, at least on of its diagonal matrix elements is non-zero, say 〈i | ρ | i〉 > 0.
With l = i and k 6= j, the above relation implies that ρ is in fact diagonal in the eigenbasis of H.
Finally, with l = i and k = j, we obtain that there is a constant c such that

(6.28) 〈i | ρ | i〉eβλi = c.

It follows that ρ is the Gibbs state. �

Note that the arguments in the proof of this proposition rely on the finite-dimensionality of the
Hilbert space.
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6.4. The Energy-Entropy Balance inequalities. A third criterion for thermal equilibrium is
expressed by a family of inequalities called the Energy-Entropy- Balance (EEB) inequalities. Again,
for now we only consider finite systems and define δ(·) = [H, ·]. Then, we say that ω satisfies EEB
at inverse temperature β if, for all X ∈ A

(6.29) ω (X∗[H,X]) ≥ β−1ω(X∗X) log

(
ω(X∗X)

ω(XX∗)

)
for all X ∈ A.

Our next goal is to prove that, for a finite system, the EEB inequalities uniquely characterize
the Gibbs state. First we prepare some auxiliary material that is also useful more generally.

The formulation of the EEB inequalities uses the function f : [0,+∞) × [0,+∞) → (−∞,+∞]
defined by

(6.30) f(x, y) =


x log x

y if x, y > 0

0 if x = 0, y ≥ 0

+∞ if x > 0, y = 0

In the following, whenever we write something of the form x log(x/y), we mean f as defined
above. We will use the following elementary properties of f .

Proposition 6.7. The function f defined in (6.30) has the following properties:
(i) f is lower semicontinuous.
(ii) f is jointly convex in (x, y).
(iii) f is homogeneous of degree one. i.e., for all λ ≥ 0,

f(λx, λy) = λf(x, y)

(iv) For all finite sequences of non-negative numbers ti, xi, yi, i = 1, . . . , n, one has

f(
∑
i

tixi,
∑
i

tiyi) ≤
∑
i

tif(xi, yi).

We leave the proof of this proposition as an exercise for the reader.

Theorem 6.8 ( [25,26]). Let ω be a state on A. The following are equivalent conditions:
(i) ω is the Gibbs state corresponding to H and inverse temperature β.
(ii) For all X ∈ A one has

(6.31) βω(X∗[H,X]) ≥ ω(X∗X) log
ω(X∗X)

ω(XX∗)
= f(ω(X∗X), ω(XX∗))

It is worth noting that the equilibrium condition expressed by the EEB is equivalent to the KMS
condition in the general context of C∗-dynamical systems (see [11][Theorem 5.3.15]).

In the context of finite quantum spin systems, the theorem says that the Gibbs state satisfies
the inequalities (6.31) for all X ∈ A, and that it is the only state that does so. We will derive
this property from the variational principle following a common procedure: we will define suitable
curves in the space of all states that pass through the Gibbs state, or emanate from it, and compute
and estimate the derivative of the free energy functional along these curves. The EEB inequalities
will follow from expressing that the state ω minimizes the free energy functional. The converse
direction will be proved by explicit computation. In order to define curves in the space of all states
we use a class of semigroups on A described in the next section. Their definition and essential
properties are as follows.

Let X ∈ B(H). Define LX : B(H)→ B(H), by

LX(A) = X∗AX − 1

2
(X∗XA+AX∗X)
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Clearly, as ‖LX(A)‖ ≤ 2‖X‖2‖A‖, LX is a bounded linear transformation on the Banach space
B(H). Therefore, we can define

γt(A) = etLX (A)

(γt)t≥0 is a semigroup with the following properties: γt(1l) = 1l, and γt(A) is positive for all t ≥ 0
and A ≥ 0. For a prove of this and other important properties see, e.g., the lecture notes by Michael
Wolf [70]. A map γt with this property is called a positive map and LX generates a semigroup of
such maps. From these properties it immediately follows that, for all t, there is a unique density
matrix ρt such that

TrρtA = Trργt(A)

ρt is obtained from ρ by application of another semigroup of positive maps, γ∗t , which are the
adjoints of γt with respect to the Hilbert-Schmidt inner product on B(H). Its generator is given by

L∗X(ρ) = XρX∗ − 1

2
(X∗Xρ+ ρX∗X).

In the finite-dimensional context, γt is a well-defined bounded linear transformation on A for all
t ∈ R. The norm of it, however, diverges as t→ −∞. So although we have curves ρt, in the space
of density matrices defined for all t ∈ R, we will only use t ≥ 0. In infinite-dimensional situations
γt is in general not defined for t < 0.

Proof of Theorem 6.8. The proof of the EEB inequalities consists in deriving the following two
relations:

lim
t↓0

TrρtH − TrρβH

t
= ωβ(X∗[H,X])(6.32)

lim
t↓0

S(ρt)− S(ρβ)

t
≥ ωβ(X∗X) log

ωβ(X∗X)

ωβ(XX∗)
(6.33)

Here, ρβ = ρ0, and ωβ(A) = TrρβA. The EEB inequalities then follow from the Variational
Principle. Since

Fβ(ρt)− Fβ(ρβ) ≥ 0

and therefore, for all t > 0, we must have

TrρtH − TrρβH

t
≥ 1

β

S(ρt)− S(ρβ)

t

Below we take the limit t ↓ 0, compute the LHS and prove a lower bound for the RHS. The resulting
inequalities will turn out to be the EEB inequalities.

The derivative of the energy is easy to compute:

d

dt
ω(γt(H))

∣∣
t=0

= ω(LX(H)) = TrρβX
∗HX − 1

2
Trρβ(X∗XH +HX∗X)

We are interested in the derivative in ρ = ρβ. As [ρβ, H] = 0, the last two terms are equal and can
be combined. The result is (6.32).

For the entropy term we will need to differentiate operator valued functions of the type logAt.
This is non-trivial. Usually the log function is defined by its series expansion around 1l. To compute
the derivative we will use the identity

log x =

∫ ∞
0

[
1

1 + t
− 1

x+ t

]
dt
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for x > 0. So, for invertible At ≥ 0, we consider

d

dt
logAt =

d

dt

∫ ∞
0

[
1

1 + s
− 1

At + s

]
ds

=

∫ ∞
0

(At + s)−1

(
d

dt
At

)
(At + s)−1ds

Here, we used the operator identity A−1(B −A)B−1 = A−1 −B−1 to compute

d

dt
(At)

−1 = −A−1
t

(
d

dt
At

)
A−1
t

When we apply this to −S(ρt) we get

Trρ
d

dt
log ρt

∣∣
t=0

= Trρ

∫ ∞
0

1

ρ+ t
L∗X(ρ)

1

ρ+ t
dt

= Trρρ−1L∗X(ρ)

= TrL∗X(ρ)

Now we can compute the derivative of the entropy term:

d

dt
S(ρt)

∣∣
t=0

= −Tr
d

dt
ρt
∣∣
t=0
− Trρt

d

dt
log(ρt)

∣∣
t=0

= −TrL∗X(ρ) log ρ− TrL∗X(ρ)

= −TrL∗X(ρ) log ρ

where we used that TrL∗X(ρ) = TrρLX(1l) = 0.
Now we have to estimate (6.34). We will prove that

−TrρLX(log ρ) = −TrρX∗(log ρ)X +
1

2
TrρX∗X log ρ+

1

2
Trρ(log ρ)X∗X

≥ f(TrρX∗X,TrρXX∗)

where f is the function defined in (6.30). To this end we use the spectral decomposition of ρ:

ρ =
∑
i

ρi|φi〉〈φi|φi

Using this we can write the LHS of the inequality as follows:

−
∑
ij

ρi 〈φi, X∗φj〉 log ρj 〈φj , Xφi〉+
∑
ij

ρi log ρi 〈φi, X∗φj〉 〈φj , Xφi〉

If we let aij denote the matrix elements 〈φj , Xφi〉, this can be written as∑
ij

f(ρi, ρj)|aij |2

Property (iv) of Proposition 6.7 then yields

−TrρLX(log ρ) ≥ f(
∑
ij

ρi|aij |2,
∑
ij

ρj |aij |2)

= f(TrρX∗X,TrρXX∗)

This concludes the proof of (i) ⇒ (ii) in Theorem 6.8.
The opposite direction proceeds by solving the EEB inequalities. Suppose the Hamiltonian has

eigenvalues λi and an orthonormal basis of eigenvectors φi. We will use the basis Eij for the
matrices:

Eij = |φi〉〈φi|φj , E∗ij = Eji, EijEkl = δjkEil .
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The spectral decomposition of the Hamiltonian can then be written as

H =
∑
i

λiEii.

First, we note that if ω satisfies (6.31), then the corresponding density matrix commutes with the
Hamiltonian. This follows from the fact that the inequalities imply that, for all X,

TrρX∗HX − TrρX∗XH ∈ R
and, as

Im TrρX∗HX − TrρX∗XH = TrX∗X[ρ,H]

for arbitrary X ∈ A, this implies [ρ,H] = 0. Hence, ρ has a spectral decomposition of the form

ρ =
∑
i

ρiEii

Now, take X = Eij in the EEB inequalities. Then [H,X] = (λi − λj)Eij , and the EEB inequality
becomes:

β(λi − λj)TrρEjj ≥ f(TrρEjj ,TrρEii)

By calculating the expectations this is

(6.34) β(λi − λj)ρj ≥ f(ρj , ρi) = ρj log
ρj
ρi
.

We will first show that (6.34) implies that ρi > 0, for all i. Suppose that for some i, ρi = 0, and
that ρj > 0 for some j, which must be the case since ρ is a density matrix. Then, the RHS of (6.34)
equals +∞, while the LHS is finite. We conclude that ρi > 0 for all i. Therefore we can divide
both sides of (6.34) by ρj to obtain:

β(λi − λj) ≥ log
ρj
ρi

By interchanging the roles of i and j in this inequality we see that the following equalities must
hold for all i and j:

β(λi − λj) = log
ρj
ρi

or, equivalently
ρi = constant× e−βλi ,

where the constant is fixed by the normalization of ρ. This completes the proof that ρβ is the only
density matrix satisfying the EEB inequalities for a fixed H and β ≥ 0. �
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7. Infinite Systems and the GNS representation

There is a close connection between representations and states of a C∗-algebra. The key to this
connection is the so-called GNS construction, attributed to Israel Gelfand and Mark Naimark and,
independently, Irving Segal, whose initials provided the name. The GNS constructions associates
with each state ω on a C∗-algebra a canonical representation, which is unique up to unitary equiv-
alence. We will discuss the GNS representation in its general setting first, and then apply it to the
context of quantum spin systems. In particular,in the case of ground states of infinite quantum
spin systems we obtain a representation in which the dynamics is generated by a densely defined
self-adjoint operator (the GNS Hamiltonian) which is bounded below and of which the ground state
is given by an eigenvector of the smallest eigenvalue.

7.1. The GNS Construction. Let A be a unital C∗-algebra. A representation of A on a Hilbert
space H is a linear mapping π : A → B(H) for which:
i) π(1l) = 1l
ii) π(A∗) = π(A)∗

iii) π(AB) = π(A)π(B).
All C∗-algebras appearing in this book are assumed to have an identity, generically denoted by

1l, and all representations of a C∗-algebra on a Hilbert space will be assumed to map the identity
into the identity operator on the Hilbert space.

A vector Ω ∈ H is called cyclic for a representation π if

(7.1) DΩ = {π(A)Ω : A ∈ A} ⊂ H

is a dense subspace of H. A representation π is said to be cyclic if there is a cyclic vector for it.

Theorem 7.1 (GNS construction). Let ω be a state on a C∗-algebra A. Then there exists a Hilbert
space Hω, a representation πω of A on Hω, and a vector Ωω ∈ Hω, which is cyclic for πω and such
that

(7.2) ω(A) = 〈Ωω, πω(A)Ωω〉 for all A ∈ A.

Moreover, the triple (Hω, πω,Ωω) is uniquely determined by ω up to unitary equivalence. In other
words, if there are two such cyclic representations (H1, π1,Ω1) and (H2, π2,Ω2) for the same state
ω, then there exists a unitary mapping U : H1 → H2 for which

(7.3) Ω2 = UΩ1 and π2(A) = Uπ1(A)U∗ for all A ∈ A.

The unitary U with these properties is itself unique.

Proof. First, we construct the Hilbert space. This is done in two steps. Note that

(7.4) 〈A,B〉 = ω(A∗B)

defines a sesquilinear form on A. Thus, (A, 〈·, ·〉) is a pre-Hilbert space.
In general, this sesquilinear form may be degenerate; in which case it does not define an inner

product. To remedy this, set

(7.5) I = {A ∈ A : ω(A∗A) = 0}.

These correspond to the vectors with zero norm. One readily checks that I is a left ideal of A.
This means that I is a linear subspace of A for which given any A ∈ A and any B ∈ I, the product
AB ∈ I. In words, I is invariant under left multiplication by elements in A. To see this, we use
A∗A ≤ ‖A‖21l. Since, for B ∈ I, ω(B∗B) = 0, we then have

(7.6) 0 ≤ ω((AB)∗(AB)) = ω(B∗A∗AB) ≤ ω(B∗B)‖A‖2 = 0

and thus AB ∈ I.
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Let H0 be the quotient A/I, which is the set of equivalence classes in A defined by I:

(7.7) ψA = {Ã ∈ A : Ã = A+A′ for some A′ ∈ I} = A+ I

As a quotient of a complex vector space by a subspace, H0 is a complex vector space, and we define
a sesquilinear form in it by

(7.8) 〈ψA, ψB〉 = 〈A,B〉 = ω(A∗B)

for all equivalence classes ψA and ψB. It is clear that this form is well-defined: If Ã = A+A′ and
B̃ = B +B′ for some A′, B′ ∈ I, then

(7.9) ω((Ã)∗B̃) = ω(A∗B) + ω(A∗B′) + ω((A′)∗B) + ω((A′)∗B′) = ω(A∗B)

since the last three terms in the middle expression above vanish by Cauchy-Schwarz.
By construction, we now have a non-degenerate inner product space H0. We define Hω to be

the Hilbert space obtained by completion of H0.
The next task is to define the representation πω of A on B(Hω). Observe that, again by con-

struction, {ψA : A ∈ A} is dense in Hω. In this case, for any A ∈ A, πω(A) ∈ B(Hω) will be
uniquely defined if we define it on this dense subspace and show that

(7.10) ‖πω(A)‖ ≤ ‖A‖.
For any A ∈ A, define a mapping πω(A) on H0 by setting

(7.11) πω(A)ψB = ψAB

This is well-defined because I is a left-ideal:

(7.12) πω(A)ψB+B′ = ψAB+AB′ = ψAB since AB′ ∈ I.
Since

(7.13) αψC + βψD = ψαC+βD ,

linearity of πω(A) is also easy to check. Moreover,

(7.14) ‖πω(A)ψB‖2 = 〈ψAB, ψAB〉 = ω(B∗A∗AB) ≤ ‖A‖2ω(B∗B) = ‖A‖2‖ψB‖2

which proves that ‖πω(A)‖ ≤ ‖A‖ on H0. We will continue to denote by πω(A) the unique bounded
extension of this mapping to all of Hω. One easily checks that πω is a representation:

πω(1l)ψB = ψB

〈πω(A∗)ψB, ψC〉 = ω((A∗B)∗C) = ω(B∗AC) = 〈ψB, πω(A)ψC〉
πω(A1A2)ψB = ψA1A2B = πω(A1)ψA2B = πω(A1)πω(A2)ψB.

Finally, ψ1l is a cyclic vector with the desired properties. It is cyclic because

(7.15) {πω(A)Ωω : A ∈ A} = {ψA : A ∈ A}
is dense by construction of the Hilbert space. The desired relation with the state ω follows from
the definition of the inner product on Hω:

(7.16) 〈Ωω, πω(A)Ωω〉 = 〈ψ1l, ψA〉 = ω(A).

This completes the construction of a GNS triple (Hω, πω,Ω).
To prove the uniqueness statement, suppose there are two GNS triples, (H1, π1,Ω1) and (H2, π2,Ω2),

with

(7.17) 〈Ω1, π1(A)Ω1〉 = ω(A) = 〈Ω2, π2(A)Ω2〉 for all A ∈ A
In this case, define a mapping U : H1 → H2 by setting

(7.18) Uπ1(A)Ω1 = π2(A)Ω2 for all A ∈ A.
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Since Ω1 is cyclic, and due to (7.17), this defines an isometry U on a dense set of vectors in H1;
we will continue to denote by U the unique linear extension of this mapping to all of H1. Observe
that

〈Uπ1(A)Ω1, Uπ1(B)Ω1〉 = 〈π2(A)Ω2, π2(B)Ω2〉
= 〈Ω2, π2(A∗B)ω2〉
= ω(A∗B) = 〈π1(A)Ω1, π1(B)Ω1〉.(7.19)

This shows that U is an isometry. Since ranU is dense, it follows that U is unitary, i.e. U∗U =
UU∗ = 1l. It is straightforward to check the remaining properties of U . �

The uniqueness property of the GNS triple for a given state ω, which we henceforth denote by
(Hω, πω,Ωω), has an important consequence.

Corollary 7.2. Let A be a C∗-algebra, ω a state on A and α an automorphism of A that leaves
ω invariant, i.e. , such that ω ◦ α = ω. Then, α is implementable in the GNS representation of ω.
Explicitly, there exists a unique unitary U ∈ B(Hω) such that for all A ∈ A we have

(7.20) πω(α(A)) = Uπω(A)U∗, UΩ = Ω.

Proof. If (Hω, πω,Ωω) is a GNS triple for ω, one can immediately check that (Hω, πω ◦ α,Ωω) is a
GNS triple for ω ◦ α. By Theorem 7.1, the existence and uniqueness of a unitary operator U on
Hω with the desired properties is then guaranteed:

(7.21) UΩω = Ωω, πω(α(A)) = Uπω(A)U∗.

�

As a first application of this corollary, we explore its consequences for ground states, which are
invariant under the automorphisms τt describing the time evolution (see Proposition 6.3).

Let ω be a ground state. From Corollary 7.2 we then have, for each t ∈ R, a unique unitary Ut
on Hω implementing τt (for consistency with the standard conventions in the quantum mechanics
literature, we interchange the roles of Ut and U∗t . Concretely, we have

(7.22) UtΩω = Ωω and U∗t πω(A)Ut = πω(τt(A)) for all A ∈ AΓ.

Using the uniqueness, one sees that the group property of the τt carries over to the Ut. and the
continuity for the norm on A of t 7→ τt(A) implies that t 7→ Utψ is continuous for all ψ ∈ Hω. This
is the strong continuity property of the one-parameter group of unitaries. To verify this, consider,
for all A ∈ A,

‖U∗t πω(A)Ωω − πω(A)Ωω‖ = ‖U∗t πω(A)UtU
∗
t Ωω − πω(A)Ωω‖

= ‖πω(τt(A))Ωω − πω(A)Ωω‖
= ‖πω(τt(A)−A)Ωω‖.(7.23)

The last quantity vanishes as t→ 0 by the strong continuity of τt.
Using Stone’s Theorem 7.3, we now conclude that there is a densely defined self-adjoint operator

Hω acting on (a dense subset of) Hω for which

(7.24) Ut = e−itHω .

We are now back to quantum mechanics on a Hilbert space, i.e., the Schrödinger picture in which
one studies self- adjoint operators on a Hilbert space.

Note that using

(7.25) UtΩω = Ωω,
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and the ground state property of ω, we have that

0 ≤ ω(A∗δ(A)) =
1

i

d

dt
ω(A∗τt(A))|t=0

=
1

i

d

dt
〈Ωω, πω(A∗τt(A))Ωω〉|t=0

=
1

i

d

dt
〈πω(A)Ωω, U

∗
t πω(A)UtΩω〉|t=0

= 〈πω(A)Ωω, Hωπω(A)Ωω〉(7.26)

and hence Hω ≥ 0. This means that in its GNS representation a ground state is represented by an
eigenvector of the Hamiltonian Hω with eigenvalue 0, which corresponds to inf specHω.

For the readers’s convenience, we include a statement of Stone’s theorem here. See, e.g., [57]
or [65] for a proof.

Theorem 7.3 (Stone’s Theorem). For all t ∈ R, let Ut be a bounded linear operator on a Hilbert
space H. Then, {Ut | t ∈ R} is a strongly continuous one-parameter group of unitary operators if
and only if there exists a densely defined self-adjoint operator H with domain D(H) such that

(7.27) Ut = e−itH .

Moreover,

(7.28) D(H) = {ψ ∈ H | ∃φ ∈ H such that lim
t→0
‖t−1(e−itHψ − ψ)− φ‖ = 0}.

7.2. Ground States and Equilibrium States for Infinite Systems. Let us summarize the
basic mathematical elements describing an infinite (or finite) quantum spin system. Associated
with the points of a countable metric space (Γ, d), often referred to as the “lattice”, are finite-
dimensional complex Hilbert spaces Hx. We introduced the algebra of local observables Aloc

Γ and

the C∗-algebra of quasi-local observables, AΓ, which is the norm completion of Aloc
Γ . We defined

spaces, denoted by BF (Γ, of interactions Φ : P0(Γ) → Aloc
Γ , in terms of the so-called F -norms

‖ · ‖F . For each such Φ there is a strongly continuous one-parameter group of automorphisms of
AΓ, {τt | t ∈ R}, describing the dynamics of the system. There is a densely defined generator δ, for
which Aloc

Γ is a core, and such that τt = eitδ.
Equilibrium states at inverse temperature β ∈ [0,∞), and ground states (β = ∞), can be

characterized in terms of δ as follows. Let Sβ be the set of states on A that satisfy the following
conditions:

i. For β =∞, the set of ground states S∞ consists of those states ω such that

(7.29) ω(A∗δ(A)) ≥ 0, for all A ∈ Aloc;

ii. For β ∈ (0,∞), the set of equilibium states at inverse temperature β, Sβ consists of those
states ω such that

(7.30) ω(A∗δ(A)) ≥ 1

β
ω(A∗A) ln

[
ω(A∗A)

ω(AA∗)

]
, for all A ∈ Aloc;

iii. For β = 0, describing infinite temperature, we have a unique state ω0 such that

(7.31) ω0(A∗A) = ω0(AA∗), for all A ∈ Aloc.

Note that ω0 does not depend on δ. It is called the tracial state and, in fact, satisfies ω0(AB) =
ω(BA), for all A,B ∈ AΓ.

One can show that for all β ∈ [0,∞] the set Sβ is a convex subset of the set of all states on A,
meaning that if ω1, ω2 ∈ Sβ, then tω1 + (1− t)ω2 ∈ Sβ for all t ∈ [0, 1].

The following bit of terminology about convex sets will be useful.
Let C be a convex subset of a real vector space V . The point c ∈ C is said to be an extreme

point of C if it is not a non-trivial convex combination of points in C, i.e. if c1, c2 ∈ C and there
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is some t ∈ (0, 1) for which c = tc1 + (1− t)c2, then c1 = c2 = c. We will denote by E(C) the set of
all extreme points in C.

If c1, c2 ∈ C then the segment between c1 and c2 is the set

(7.32) {tc1 + (1− t)c2 : t ∈ [0, 1]} ⊂ C
C is said to be a simplex if for all c ∈ C, there exists a unique set of points ci ∈ E(C), i = 1, . . . , n,

and ti ∈ (0, 1) with
∑

i ti = 1, such that
∑n

i=1 tici = c. Strictly speaking, this only defines finite-
dimensional simplices. Working with infinite-dimensional simplices involves a choice of topology
and possibly measure theory to generalize to convex combinations of infinite sets of points.

A set F ⊂ C is said to be a face if it is convex and whenever f ∈ F and f = tc1 + (1− t)c2 for
some c1, c2 ∈ C and t ∈ (0, 1), then tc1 + (1− t)c2 ∈ F for all t ∈ [0, 1].

The set of all ground states of a given dynamics, S∞, is a face in the set of all states. The
extreme points of S∞ are pure states, i.e., they are also extreme points in the set of all states.

In contrast, the set of all equilibrium states for a system at β ∈ (0,∞), Sβ, is a simplex in the
set of all states. The extreme points are factor states, a notion we define in the next paragraph.
They are not pure states.

Let ω be a state on a C∗-algebraA. Consider the GNS triple associated to ω, namely (Hω, πω,Ωω).
Recall that

(7.33) ω(A) = 〈Ωω, πω(A)Ωω〉 for all A ∈ A
and πω(A) ⊂ B(Hω) is a sub-algebra.

The commutant of πω(A) is defined by

(7.34) πω(A)′ = {B ∈ B(Hω) : [B, πω(A)] = 0 for all A ∈ A}.
The bi-commutant is then

(7.35) πω(A)′′ =
(
πω(A)′

)′
.

A famous theorem of von Neumann’s states that

(7.36) πω(A)′′ = πω(A)
w
,

i.e. the bi-commutant of πω(A) is the closure of πω(A) in the weak operator topology on B(Hω).
The center of a representation π is:

(7.37) Zπ = π(A)′ ∩ π(A)′′

A state ω is said to be a factor state (also know as a primary state) if and only if

(7.38) Zπω = πω(A)′ ∩ πω(A)′′ = C1l

The GNS representation of a pure state ω is irreducible, meaning that πω(A)′ = C1l. It follows
that πω(A)′′ = B(Hω).



45

8. Symmetry, Excitation Spectrum, and Correlations

As before, let (Γ, d) be a discrete metric space with an F -function F . Let {τt | t ∈ R} be the
dynamics generated by an interaction Φ ∈ BF (Γ) for a quantum spin system on Γ. An automor-
phism α on AΓ is called a symmetry of the C∗-dynamical system (AΓ, τt) if it commutes with the
dynamics, i.e., τt ◦ α = α ◦ τt, for all t ∈ R. It is easy to see that the symmetries of (AΓ, τt) form a
subgroup of the automorphism group of AΓ.

Two important classes of symmetries are the so-called point symmetries, or lattice symmetries,
and gauge symmetries. As an example of the first class, consider quantum spin systems on Γ = Zν ,
with the lattice distance d, and with Hx = Cn, for all x ∈ Zν . In general, Aloc

Γ is generated
as an algebra by the collection of single-site algebras A{x}, x ∈ Γ. Automorphisms of AΓ are
therefore uniquely determined by their action on the one-site algebras. In the situation at hand,
A{x} ∼= Mn, for all x ∈ Zν . Then, given these identifications, there is a unique automorphism θx on
AZν that maps A{0} into A{x}. The automorphisms θx is called the translation by x, and x 7→ θx
is a representation of the additive group Zν into the automorphisms on AZν . In the same way,
any bijection of Γ can in principle be a symmetry of a quantum spin system defined on Γ. E.g.,
Zν , in addition to the lattice translations, also has rotation and reflection symmetries that can be
represented on AΓ as automorphisms.

Continuing with the important example of Γ = Zν , we will say that an interaction Φ : P0(Zν)→
Aloc

Γ , is translation invariant if for all x ∈ Zν , and X ∈ P0(Zν), θx(Φ(X)) = Φ(X + x). It is easy
to see that if τt is defined in terms of a translation invariant interaction, then the translations will
be symmetries of the dynamics, i.e., τt ◦ θx = θx ◦ τt, for t ∈ R, x ∈ Zν .

The second class, the gauge symmetries, are generated by unitaries acting on Hx. For any
quantum spin system with algebra of quasi-local observables AΓ, suppose we have a unitary ux ∈
A{x}, for all x ∈ Γ. It is then straightforward to show that there is a unique automorphism α on
AΓ such that α(A) = u∗xAux, for all A ∈ A{x}. Given a group G, if for all x we have a unitary
representation g 7→ ux(g) of a group G on Hx, the corresponding αg give a representation of G as
automorphisms of AΓ.

The Heisenberg model introduced in (2.55) has a gauge symmetry given by a representation of
SU(2). For the spin 1/2 model, n = 2, and SU(2) acts on C2 by its fundamental representation:
for every u ∈ SU(2), A ∈ M2, αu(A) = u∗Au. For the spin-S Heisenberg model, the unitaries
are given by the 2S + 1-dimensional irreducible representation of SU(2). For a summary of the
unitary representations of the Lie group SU(2), see Appendix 9. Symmetries that are given by a
representation of a Lie group (of dimension ≥ 1), are often referred to as continuous symmetries.

If α is a symmetry of (AΓ, τt), with the property that α(Aloc
Γ ) ⊂ Aloc

Γ , the generator δ of the

dynamics τt = eitδ will also commute with α. Since under the above assumption, we have α(A) ∈
dom(δ), for all A ∈ Aloc

Γ , we can differentiate the identity α(τt(A)) = τt(α(A)) and obtain

(8.1) α ◦ τt(iδ(A)) = τt(iδ(α(A))).

After applying τ−t to both sides of this equation and using the fact that α is a symmetry of the
dynamics, we get

(8.2) α(δ(A)) = δ(α(A)), for all A ∈ Aloc
Γ .

Note that both point symmetries and gauge symmetries leave Aloc
Γ invariant, hence (8.2) holds for

these types of symmetries. Using this property it is easy to verify that the sets Sβ, β ∈ [0,∞],
defined in Section 7.2 will be invariant under such symmetries of (AΓ, τt). That is, Sβ is invariant
as a set, meaning

(8.3) Sβ = {ω ◦ α | ω ∈ Sβ}.
If, moreover, we have ω ◦ α = ω, for all ω ∈ Sβ, we say that the symmetry α is unbroken. In
the opposite case, i.e., if there exists ω ∈ Sβ such that ω ◦ α 6= ω, we say that the symmetry α is
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spontaneously broken. Spontaneous symmetry breaking at some β <∞ signals a phase transition.
Spontaneous symmetry at any value of β has important physical consequences and it is a central
concept to many phenomena in condensed matter and particle physics.

In the next section we will consider systems on Zν with Hx = Cn, for all x ∈ Zν and a continuous
local symmetry that commutes with translations. Explicitly, this means that for all s ∈ R, we αs
is of the form

(8.4) αs(A) =

(⊗
x∈X

u(s)∗

)
A

(⊗
x∈X

u(s)

)
, for all A ∈ AX ,

where u(s) = eisJ , with J = J∗ ∈Mn. There may be more than one such continuous family of αs.
The SU(2) symmetry of the Heisenberg model is an example of this situation.

Both the notion of gapped excitation spectrum and the concept of spontaneous symmetry break-
ing are most conveniently formulated for infinite systems. The spectrum of a finite quantum spin
system is a finite set of eigenvalues. One usually associates the smallest eigenvalue with the ground
states, but in some cases it is appropriate to consider one or more additional eigenvalues as corre-
sponding to ‘the ground state’ as well. Also, there is no simple relationship between the degeneracy
of the ground state eigenvalue and the number of distinct ground states in the thermodynamic limit.
A illustrative example is the AKLT chain, which has a four-dimensional eigenspace belonging to the
ground state eigenvalue, yet, there is a unique thermodynamic limit of those states [4]. Numerical
calculations have shown that the spin-1 antiferromagnetic Heisenberg chain has a pair of eigenvalues
corresponding to a very similar four-dimensional space of states that converge to a unique ground
state in the thermodynamic limit [39]. For similar reasons, spontaneous symmetry breaking, which
leads to multiple ground states in the thermodynamic limit, may be ‘hidden’ in a unique ground
state in finite volume. This occurs in the antiferromagnetic Heisenberg models on finite volumes of
even size in two and more dimensions [42].

All these ambiguities disappear in the thermodynamic limit. E.g., the excitation spectrum above
a ground state ω is simply the spectrum of its GNS Hamiltonian Hω, which is non-negative and
the ground state is represented by an eigenvector with eigenvalue 0. The spectral gap γ can then
be defined as follows:

(8.5) γ = sup{δ > 0 | (0, δ) ∩ specHω = ∅},

with the convention that we put γ = 0 if the RHS is the empty set.

8.1. The Goldstone Theorem. The Goldstone’s theorem in quantum field theory shows that the
spontaneous breaking of a continuous symmetry breaking is always accompanied by the appearance
of a massless particle, i.e., a gapless excitation or Goldstone mode [28, 29, 38]. As we explained
before, spontaneous symmetry breaking is indicated by the existence of ω ∈ Sβ that are not invariant
under the symmetry. In statistical mechanics, spontaneous breaking of a continuous symmetry in
the ground state of a translation invariant system also implies a gapless excitation spectrum, while
at positive temperature the symmetry breaking precludes fast (integrable) decay of correlations [43].

The Goldstone Theorem requires translation invariance. In order to keep the presentation of
the basic argument here as simple as possible, we will limit the discussion to translation invariant
quantum spin systems AΓ with Γ = Zν for some ν ≥ 1. It is possible to generalize Theorem 8.1:
e.g. more general lattices can be considered, and it is also not crucial to assume full translation
invariance. See the remarks following the proof of Theorem 8.1 for pointers to several generaliza-
tions.

Let (AZν , τt) be a C∗-dynamical system with dynamics τt generated by Φ ∈ BF (Zν). Note: To
be precise, translation invariance will be assumed of the ground state, however, the interaction Φ
need not be translation invariant. Let αs be a continuous, locally-generated symmetry on AZν . In
particular, this means that there is J∗0 = J0 ∈ A{0} and for any x ∈ Zν , one defines Jx = θx(J0) ∈
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A{x} where θx denotes translation by x. In terms of these local operators, αs is the one-parameter
group of automorphisms of AZν defined by

(8.6) αs(A) = eis
∑
x JxAe−is

∑
x Jx for all A ∈ AZν and s ∈ R.

Let ω be a translation invariant ground state of (AZν , τt), i.e. ω satisfies the ground state
condition

(8.7) ω(A∗δ(A)) ≥ 0 for all A ∈ D(δ)

and also translation invariance

(8.8) ω(θx(A)) = ω(A) for every A ∈ AZν and x ∈ Zν

In one formulation of the Goldstone’s theorem one assumes that a translation-invariant ground
state satisfies the following inequalities for a constant γ > 0:

(8.9) γω(A∗A) ≤ ω(A∗δ(A)) for all A ∈ D(δ) with ω(A) = 0 ,

This property implies that (i) ω is a ground state; (ii) that kerHω = C1l; and (iii) there is a
gap in the spectrum of Hω above the ground state. If the ground state is unique, this property
is actually equivalent to the existence of a spectral of size ≥ γ. The theorem then states that
these assumptions imply that the continuous symmetry is unbroken, which is the contrapositive
of the more frequently encountered statement that continuous symmetry breaking implies gapless
excitations (massless particles).

Theorem 8.1 (Goldstone for ground-states [43]). Let (AZν , τt) be C∗-dynamical system over Zν
with τt generated by an interaction Φ ∈ BF (Zν). Let αs be a continuous gauge symmetry of the
dynamics, i.e., αs is of the form (??)

(8.10) αs ◦ τt = τt ◦ αs for all s, t ∈ R .

Let ω be a translation invariant ground state of (AZν , τt), for which there exists γ > 0 such that

(8.11) γ · ω(A∗A) ≤ ω(A∗δ(A)) for all A ∈ Aloc
Γ with ω(A) = 0 .

Then, ω is invariant with respect to αs, i.e.

(8.12) ω(αs(A)) = ω(A) for all A ∈ AZν and all s ∈ R.

Before we start the proof of this theorem, we derive a lemma that exploits the assumption that
the interaction Φ has a finite F -norm.

Lemma 8.2. Consider a C∗-dynamical system (AZν , τt) with dynamics τt = eitδ generated by
Φ ∈ BF (Zν). For any A ∈ Aloc

Zν ,

(8.13) sup
x∈Zν

∑
y∈Zν

‖[θx(A), δ(θy(A))]‖ ≤ 4‖A‖2‖F‖‖Φ‖F |X|(2diam(X) + 1)ν ,

and moreover, for d > diam(X), we have the esitmate

(8.14) sup
x∈Zν

∑
y∈Zν :

|y−x|≥d

‖[θx(A), δ(θy(A))]‖ ≤ 4‖A‖2‖Φ‖|X|2
∑
y′∈Zν :

|y′|≥d−diam(X)

F (|y′|),

which implies that the quantity vanishes as d→∞.

Proof. Let A ∈ Aloc
Zν and denote by X = supp(A) ∈ P0(Zν). To ease notation, for any y ∈ Zν we

will set

(8.15) Ay = θy(A) ∈ AXy where Xy = {x+ y : x ∈ X} ∈ P0(Zν) .
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Observe that for any fixed x ∈ Zν

(8.16)
∑
y∈Zν

‖[Ax, δ(Ay)]‖ ≤
∑
y∈Zν

∑
Z∈P0(Zν ):

Z∩Xy 6=∅

‖[Ax, [Φ(Z), Ay]]‖

For those y ∈ Zν such that Xy ∩Xx 6= ∅, we estimate the above as∑
y∈Zν :

Xy∩Xx 6=∅

∑
Z∈P0(Zν ):

Z∩Xy 6=∅

‖[Ax, [Φ(Z), Ay]]‖ ≤ 4‖A‖2
∑
y∈Zν :

Xy∩Xx 6=∅

∑
z∈Xy

∑
Z∈P0(Zν ):

z∈Z

‖Φ(Z)‖

≤ 4‖A‖2‖F‖‖Φ‖F |X|(2diam(X) + 1)ν ,(8.17)

where we estimated the number of y such that Xy ∩Xx 6= ∅ by the cardinality of the ball, centered
at the origin, having radius equal to the diameter of X.

For the remaining y, we have∑
y∈Zν :

Xy∩Xx=∅

∑
Z∈P0(Zν ):

Z∩Xy 6=∅

‖[Ax, [Φ(Z), Ay]]‖ ≤ 4‖A‖2
∑
y∈Zν :

Xy∩Xx=∅

∑
z1∈Xy

∑
z2∈Xx

∑
Z∈P0(Zν ):

z1,z2∈Z

‖Φ(Z)‖

≤ 4‖A‖2‖Φ‖F
∑
y∈Zν :

Xy∩Xx=∅

∑
z1∈Xy

∑
z2∈Xx

F (|z1 − z2|)

≤ 4‖A‖2‖Φ‖F
∑
x1∈X

∑
x2∈X

∑
y∈Zν

F (|x1 − x2 + y − x|)

≤ 4‖A‖2‖Φ‖F ‖F‖|X|2(8.18)

Both estimates in (8.17) and (8.18) are independent of x, and it is straightforward to show they
both are bounded above as in (8.13).

The proof of (8.14) is similar. In fact, let A be as above and take d > diam(X). In this case,
any y with |x− y| ≥ d satisfies Xx ∩Xy = ∅. Hence, estimating as in (8.18) we find that∑

y∈Zν :

|y−x|≥d

‖[Ax, δ(Ay)]‖ ≤ 4‖A‖2‖Φ‖F
∑
y∈Zν :

|y−x|≥d

∑
x1∈X

∑
x2∈X

F (|x1 − x2 + y − x|)

≤ 4‖A‖2‖Φ‖|X|2
∑
y′∈Zν :

|y′|≥d−diam(X)

F (|y′|)(8.19)

Since F is uniformly integrable, this proves (8.14). �

Proof of Theorem 8.1. We will prove that ω ◦αs = ω, for all s ∈ R by showing that, for all A ∈ AΓ

(8.20)
d

ds
ω(αs(A)) = 0, for all s ∈ R.

Since the strictly local observables are dense in AΓ, it suffices to show this for A ∈ Aloc
Γ . For local

A, say A ∈ AX , X ∈ P0(Γ), we have

(8.21)
d

ds
ω(αs(A)) = iω([Jx, (αs(A))]).

Since αs is an automorphism leaving AX invariant, it follows that it is sufficient to show

(8.22) ω([JX , A)]) = 0, for all X ∈ P0(Γ), and A ∈ AX .
We prove (8.22) in two steps. First, by averaging over translations, we establish an upper bound,

see (8.25) below. Next, we analyze the factors in our upper bound and see that this bound goes to
zero as we average over more and more translations.
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As a consequence of the translation invariance of ω and the commutation of the translations and
the symmetry, for any finite Λ ⊂ Zν , we have that

(8.23) ω([JX , A)]) =
1

|Λ|
∑
x∈Λ

ω([JXx , θx(A)]) =
1

|Λ|
∑
x∈Λ

ω([JΛ, θx(A)]) =
1

|Λ|
ω([JΛ, AΛ]),

where we have set

(8.24) AΛ =
∑
x∈Λ

θx(A), and JΛ =
∑

x∈supp(AΛ)

Jx .

We will now prove the upper bound

(8.25) |ω([JX , A)])|2 =
1

|Λ|2
|ω([JΛ, AΛ])|2 ≤ 4

γ2
· 1

|Λ|
ω([JΛ, δ(JΛ)]) · 1

|Λ|
ω([AΛ, δ(AΛ)])

valid for any Λ ∈ P0(Zν), and γ > 0 is the constant appearing the in the assumptions of the
theorem.

To prove (8.25), we start by noting that due to the commutator

(8.26) ω([JΛ, AΛ]) = ω([ĴΛ, ÂΛ])

where

(8.27) B̂ = B − ω(B)1l for any B ∈ AZν

Next, using Cauchy-Schwartz of both observables, we get

(8.28) |ω([JΛ, AΛ])|2 ≤ 4ω(Ĵ∗ΛĴΛ) · ω(Â∗ΛÂΛ)

For any local observable B, the time-invariance of the state implies

(8.29) ω(δ(B)B∗) + ω(Bδ(B∗)) = ω(δ(BB∗)) = 0.

For any local observable B, ω(B̂) = 0. Using the assumption (8.11), (8.29), and the ground state
property, we obtain

ω(B̂∗B̂) ≤ 1

γ
ω(B̂∗δ(B̂)) =

1

γ
ω([B̂∗, δ(B̂)]) + ω(δ(B̂)B̂∗)

=
1

γ
ω([B̂∗, δ(B̂)])− ω(B̂δ(B̂∗))

≤ 1

γ
ω([B̂∗, δ(B̂)]) =

1

γ
ω([B∗, δ(B)])(8.30)

Using this bound for B = JΛ and B = AΛ in (8.28) yields (8.25) as claimed.
For the second step in the proof, we use Lemma 8.2 to further estimate the right-hand-side of

(8.25). For the second factor in the right-hand-side of (8.25), note that

1

|Λ|
ω([AΛ, δ(AΛ)]) ≤ 1

|Λ|
∑
x∈Λ

∑
y∈Λ

|ω ([θx(A), δ(θy(A))]) |

≤ sup
x∈Zν

∑
y∈Zν

‖[θx(A), δ(θy(A))]‖(8.31)

which is finite by Lemma 8.2. This bound is independent of the set Λ and the support of the
observable A.

Finally, we argue that the first factor in the right-hand-side of (8.25) tends to zero for a suitable
choice of sets Λ which grow to Zν . To prove this we will need to use the assumption that the
dynamics and the symmetry commute, i.e. (8.10).
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Let us denote by JΛ = supp(JΛ). It is clear that

(8.32) ω([JΛ, δ(JΛ)]) =
∑

x,y∈JΛ

ω([Jx, δ(Jy)]) =
∑

x,y∈Zν
χJΛ

(x)χJΛ
(y)ω([Jx, δ(Jy)])

with χJΛ
being a characteristic function. Note that by using again the time-invariance of ω, we

have ω(Jxδ(Jy)) = −ω(δ(Jx)Jy). Therefore,

(8.33) ω([Jx, δ(Jy)]) = ω([Jy, δ(Jx)])

We now apply (8.2) to the observables Jy and once more the time-invariance of ω:

(8.34) ω(αs(δ(Jy)) = ω(δ(αs(Jy)) = 0.

By taking the derivative with respect to s, in s = 0, of this equation, we obtain

(8.35)
∑
x∈Zν

ω(Jx, δ(Jy)]) = 0, for all y ∈ Zν .

Note that Lemma 8.2 guarantees that the sum above is absolutely summable. Now, using (8.33)
and (8.35), we can re-write (8.32) as

(8.36) ω([JΛ, δ(JΛ)]) = −1

2

∑
x,y∈Zν

|χJΛ
(x)− χJΛ

(y)|2ω([Jx, δ(Jy)])

from which we derive the following bound

(8.37) |ω([JΛ, δ(JΛ)])| ≤
∑
x∈JΛ

∑
y∈J cΛ

|ω([Jx, δ(Jy)])|.

Up to this point, the support of the observables being considered has played a minor role. To
complete the argument, we now make this more explicit. Recall that the original self-adjoint
observable A was assumed local. Let us denote by X = supp(A). Without loss of generalty, we will
assume that X is a cube with side-length ` > 0, hence |X| = (` + 1)ν . It is convenient to choose
the finite set Λ, as in (8.25) above, to also be a cube, e.g. with side-length L > 0. In this case,

(8.38) JΛ = supp(JΛ) = supp(AΛ) satisfies |JΛ| = (L+ `+ 1)ν .

Consider L ≥ 1 large and fix an integer d, independent of L, satisfying ` < 2d < L. Set

(8.39) J int
Λ = {x ∈ JΛ : dist(x, ∂JΛ) ≥ d} and J bd

Λ = JΛ \ J int
Λ .

It is clear that

(8.40)
∑

x∈J int
Λ

∑
y∈J cΛ

|ω([Jx, δ(Jy)])| ≤ |J int
Λ | · f(d) where f(d) = sup

x∈Zν

∑
y∈Zν :

|x−y|≥d

‖[Jx, δ(Jy)]‖

For the remaining boundary terms, we have that

(8.41)
∑
x∈J bd

Λ

∑
y∈J cΛ

|ω([Jx, δ(Jy)])| ≤ |J bd
Λ | · C with C = sup

x∈Zν

∑
y∈Zν

‖[Jx, δ(Jy)]‖

C is guaranteed to be finite due Lemma 8.2. Combining these estimates, we have then that

(8.42) lim sup
L→∞

1

|Λ|
|ω([JΛ, δ(JΛ)])| ≤ f(d)

Taking now d→∞, we complete the proof. �
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The set of ground states of the spin-1/2 ferromagnetic Heisenberg model on Zν is spanned by the
translation invariant pure product states, i.e., states determined by a unit vector φ ∈ C2 through
the formula,

(8.43) ω(A) = 〈
⊗
x∈X

φ,A
⊗
x∈X

φ〉, for all , X ∈ P0(Zν), A ∈ AX .

Clearly, the SU(2) symmetry of the model is spontaneously broken in the ground state. To illustrate
the Goldstone Theorem, take for example φ = |+〉, the unit eigenvector of σ3 with eigenvalue 1.
The GNS representation is easy to construct with Hω the separable Hilbert space with orthonormal
basis {ξX | X ∈ P0(Zν)}. Ωω = ξ∅ and can be thought of as the formal tensor product

⊗
x∈Zν |+〉

and the representation πω can be constructed starting from

πω(σ−x )ξX =

{
ξX∪{x} if x 6∈ X
0 if x ∈ X

It is then straightforward to show that H1 = span{ξ{x} | x ∈ Znu} is an invariant subspace for Hω.
A simple calculation shows that spec(Hω �H1) = [0, c], with c > 0, and hence Hω is gappless.

8.2. The Exponential Clustering Theorem. let (AΓ, τt) be a C∗-dynamical system withAΓ the
quasi-local algebra corresponding to a quantum spin system over Γ and τt the dynamics generated
by an interaction Φ ∈ BFa(Γ), where Fa(r) = e−arF (r), and a > 0.

The Exponential Clustering Theorem concerns a situation complementary to the gapless states
associated with spontaneous breaking of a continuous symmetry considered, as implied by the Gold-
stone Theorem of the previous section. Briefly, The Exponential Clustering Theorem states that
if there is a spectral gap above a ground states, then correlations in this state decay exponentially
fast with the distance. The natural setting for this type of result is again systems on a infinite set
(Γ, d). Translation invariance plays no direct role, however, and is not a condition of the theorem.

More precisely, let (AΓ, τt) be a C∗-dynamical system withAΓ the quasi-local algebra correspond-
ing to a quantum spin system over Γ and τt the dynamics generated by an interaction Φ ∈ BFa(Γ).
Assume that this system can be represented by a Hamiltonian H on a Hilbert space H. This
means that we assume there is a representation π : AΓ → B(H) and a (densely defined) self-adjoint
operator H on H for which

(8.44) π(τt(A)) = eitHπ(A)e−itH for all A ∈ AΓ and t ∈ R.

We will further assume that H ≥ 0 and has a spectral gap γ > 0 above 0, as defined in (8.5). Let
P0 denote the orthogonal projection onto kerH. For the remainder of this section, we will always
work in this representation and we simplify the notation by writing A instead of π(A).

Theorem 8.3 (Exponential Clustering). Let a > 0 and take Φ ∈ BFa(Γ). Suppose that the
dynamics corresponding to Φ on Γ can be represented by a Hamiltonian H with a gap γ > 0 above
the ground state energy, as described above. Let Ω be a normalized ground state vector for H;
i.e. satisfy HΩ = 0 with ‖Ω‖ = 1. Then, there exists a constant µ > 0 such that for any local
observables A ∈ AX and B ∈ AY with X,Y ⊂ V and d(X,Y ) > 0 satisfying P0BΩ = P0B

∗Ω = 0,
the bound

(8.45) |〈Ω, Aτib(B)Ω〉| ≤ C(A,B, γ) e
−µd(X,Y )

(
1+ γ2b2

4µ2d(X,Y )2

)

is valid for all non-negative b satisfying 0 ≤ bγ ≤ 2µd(X,Y ). One may take

(8.46) µ =
a γ

4‖Φ‖aCa + γ
,
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as well as a constant

(8.47) C(A,B, γ) = ‖A‖ ‖B‖

[
1 +

√
1

µd(X,Y )
+

2‖F0‖
πCa

min (|∂ΦX|, |∂ΦY |)

]
.

Note that in the case of a non-degenerate ground state, the condition on B is equivalent to
〈Ω, BΩ〉 = 0. In this case, the theorem with b = 0 becomes

(8.48) |〈Ω, ABΩ〉 − 〈Ω, AΩ〉 〈Ω, BΩ〉| ≤ C(A,B, γ) e−µd(X,Y ),

which is the standard (equal-time) correlation function. For small b > 0, the estimate (8.45) can
be viewed as a perturbation of (8.48). Moreover, for b > 0 large, there is a trivial bound

(8.49) |〈Ω, Aτib(B)Ω〉| ≤ ‖A‖ ‖B‖ e−bγ .

Proof. The proof of this result has two main steps. First, using techniques from complex analysis,
we reduce an estimate on the quantity of interest to that of an integral over the real line. Next, we
carefully analyze the resulting integral.

Step 1: We begin by noting that for any z ∈ C with Im[z] ≥ 0, the function f with

(8.50) f(z) := 〈Ω, Aτz(B)Ω〉 =

∫ ∞
γ

eizE d 〈A∗Ω, PEBΩ〉

The final equality above uses the spectral theorem for the self-adjoint operator H and the fact
that that B projects off the ground state, i.e. P0BΩ = 0. This integral representation of f clearly
demonstrates that f is analytic in C+, i.e. those z ∈ C with Im[z] > 0, and moreover, f has a
continuous (and bounded) boundary value on the real axis. Our first goal is to now estimate |f(ib)|
for b > 0 as in the statement above. The case b = 0 will follow by a limiting argument.

Let b > 0. For any T > b, denote by ΓT the semi-circular contour in the upper-half plane
which passes through the points −T , T , and iT . A simple limiting argument, using that f has a
continuous boundary value, shows that

(8.51) f(ib) =
1

2πi

∫
ΓT

f(z)

z − ib
dz .

The first step in the proof is completed when we demonstrate that the piece of this contour
integral that extends into the upper half plane is vanishingly small, i.e. we claim that

(8.52) |〈Ω, Aτib(B)Ω〉| = |f(ib)| ≤ lim sup
T→∞

∣∣∣∣ 1

2πi

∫ T

−T

f(t)

t− ib
dt

∣∣∣∣ .
This follows from two observations. First, given (8.50), it is clear that

(8.53) |f(eiθT )| ≤ ‖A‖‖B‖e−Tγ sin(θ) for all θ ∈ [0, π] .

Lastly, the integral over the arc, e.g. when T > 2b, can be bounded by

(8.54)
‖A‖‖B‖

π

∫ π

0
e−Tγ sin(θ) dθ

which clearly goes to zero as T →∞ by dominated convergence. This proves (8.52). We note that
while (8.52) is true for any value of b > 0, we will have to choose b > 0 sufficiently small later in
the proof; see the comments following (8.70) below.

Step 2: We now estimate the integral over the real line. Let α > 0; this is a free parameter which
will be judiciously chosen later. It is convenient to write

(8.55) f(t) = e−αb
2
[
f(t)e−αt

2
+ f(t)

(
eαb

2 − e−αt2
)]
.
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With this in mind, the pre-limit integral on the right-hand-side of (8.52) can be estimated by

(8.56) e−αb
2

∣∣∣∣∣ 1

2πi

∫ T

−T

f(t)e−αt
2

t− ib
dt

∣∣∣∣∣ + e−αb
2

∣∣∣∣∣∣ 1

2πi

∫ T

−T

f(t)
(
eαb

2 − e−αt2
)

t− ib
dt

∣∣∣∣∣∣ .
We will bound the absolute value of each of the integrals appearing in (8.56) separately; the prefactor

e−αb
2

will be an additional damping made explicit by the choice of α.
To bound the first integral appearing in (8.56), we further divide the integrand into two terms.

Note that

(8.57) f(t) e−αt
2

= 〈Ω, τt(B)AΩ〉e−αt2 + 〈Ω, [A, τt(B)] Ω〉e−αt2 .

Appealing again to the spectral theorem, we have that

(8.58)
1

2πi

∫ T

−T

〈Ω, τt(B)AΩ〉 e−αt2

t− ib
dt =

∫ ∞
γ

1

2πi

∫ T

−T

e−itEe−αt
2

t− ib
dt d〈PEB∗Ω, AΩ〉,

using that P0B
∗Ω = 0 as well. An application of Lemma 8.4, stated below, now yields that

(8.59) lim
T→∞

1

2πi

∫ T

−T

e−itE e−αt
2

t− ib
dt =

1

2
√
πα

∫ ∞
0

e−bwe−
(w+E)2

4α dw ≤ 1

2
e−

γ2

4α ,

since each of E ≥ γ > 0, α > 0, and b > 0 hold. Altogether, this proves that

(8.60) lim sup
T→∞

∣∣∣∣∣ 1

2πi

∫ T

−T

〈Ω, τt(B)AΩ〉 e−αt2

t− ib
dt

∣∣∣∣∣ ≤ ‖A‖ ‖B‖2
e−

γ2

4α .

For the integral corresponding to the second term in (8.57), we use the bound

(8.61)

∣∣∣∣∣ 1

2πi

∫ T

−T

〈Ω, [A, τt(B)] Ω〉 e−αt2

t− ib
dt

∣∣∣∣∣ ≤ 1

2π

∫ ∞
−∞

‖[A, τt(B)]‖
|t|

e−αt
2
dt,

which takes advantage of the fact that b > 0. To complete the estimate of the integral on the right-
hand-side of (8.61), we introduce another free parameter s > 0. For values of |t| ≤ s, we estimate
with the Lieb-Robinson bound, i.e. Theorem ??, and for |t| > s the gaussian factor dominates the
integral. A short calculation shows that the right-hand-side of (8.61) is bounded from above by

(8.62)
2 ‖A‖ ‖B‖
π ‖Φ‖aCa

Da(X,Y )
(
e2‖Φ‖aCas − 1

)
+
‖A‖ ‖B‖
s
√
πα

e−αs
2
.

This completes the bound of the first integral appearing in (8.56) in terms of two free parameters
s > 0 and α > 0.

We now turn to the second integral in (8.56) and claim that if 2αb ≤ γ, then

(8.63) lim sup
T→∞

∣∣∣∣∣∣ 1

2πi

∫ T

−T

f(t)
(
eαb

2 − e−αt2
)

t− ib
dt

∣∣∣∣∣∣ ≤ ‖A‖ ‖B‖2
e−

γ2

4α .

To prove this, first insert (8.50) into the integrand above and see that

(8.64)
1

2πi

∫ T

−T

f(t)
(
eαb

2 − e−αt2
)

t− ib
dt =

∫ ∞
γ

1

2πi

∫ T

−T

eitE
(
eαb

2 − e−αt2
)

t− ib
dt d〈A∗Ω, PEBΩ〉
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The inner integral on the right-hand-side above can be re-written

1

2πi

∫ T

−T

eitE
(
eαb

2 − e−αt2
)

t− ib
dt = eαb2HT (E; ib)− 1

2πi

∫ T

−T

eitE e−αt
2

t− ib
dt

= eαb
2
e−Eb − 1

2
√
πα

∫ ∞
0

e−bwe−
(w−E)2

4α dw

+eαb
2
(
HT (E; ib)− e−Eb

)
−R1 −R2(8.65)

where we have introduced the notation of Lemma 8.4. For positive E, α, and b, the equality

(8.66)
1

2
√
πα

∫ ∞
−∞

e−wbe−
(w−E)2

4α dw = e−Ebeαb
2

holds; this can be seen e.g. by continuation and evaluation of (8.73) at t = ib. Moreover, since
E ≥ γ, the first two terms on the right-hand-side of (8.65) can be estimated by

(8.67)
1

2
√
πα

∫ 0

−∞
e−bwe−

(w−E)2

4α dw ≤ 1

2
e−

γ2

4α

if 2αb ≤ γ. Using the bounds established in Lemma 8.4, (8.63) now follows by an application of
dominated convergence.

All of our estimates above combine to demonstrate that the right hand side of (8.52) is bounded
by

(8.68) ‖A‖ ‖B‖
[
e−

γ2

4α +
2Da(X,Y )

π ‖Φ‖aCa

(
e2 ‖Φ‖a Ca s − 1

)
+

1

s
√
πα

e−αs
2

]
if α satisfies γ ≥ 2αb. The choice α = γ/2s yields:

(8.69) ‖A‖ ‖B‖ e−
γs
2

[
1 +

√
2

πγs
+

2Da(X,Y )

π ‖Φ‖aCa
e(2 ‖Φ‖a Ca + γ

2 ) s
]

As is demonstrated in (??), Da(X,Y ) decays exponentially as e−ad(X,Y ). In this case, if we choose
s to be the solution of the equation

(8.70) s ( 2 ‖Φ‖aCa + γ/2 ) = a d(X,Y ),

then we have proven the result. Notice that we have chosen α in terms of s, which is defined
independently of b, thus the condition γ ≥ 2αb will be satisfied for sufficiently small b > 0. �

In the proof above we used the following lemma. We use the following notation.

(8.71) C+ = {z ∈ C : Im[z] > 0} .

Lemma 8.4. Fix α > 0, E ∈ R, and z ∈ C+. One has that

(8.72) lim
T→∞

1

2πi

∫ T

−T

eiEt e−αt
2

t− z
dt =

1

2
√
πα

∫ ∞
0

eiwz e−
(w−E)2

4α dw.

Moreover, the convergence is uniform with respect to z in compact subsets of C+.

Proof. For any α > 0, it is easy to check that

(8.73)
1

2
√
πα

∫ ∞
−∞

eiwt e−
(w−E)2

4α dw = eiEt e−αt
2

for all t, E ∈ R .

Up to appropriate normalizations, this is just the observation that the Fourier transform of a
gaussian is a gaussian. Given z ∈ C+, it is now clear that for any T > 0,

(8.74)
1

2πi

∫ T

−T

eiEt e−αt
2

t− z
dt =

1

2
√
πα

∫ ∞
−∞

HT (w; z) e−
(w−E)2

4α dw
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where we have denoted by HT (w; z) the function

(8.75) HT (w; z) =
1

2πi

∫ T

−T

eiwt

t− z
dt for any T > 0 and z ∈ C+.

Rewriting the integral on the right-hand-side of (8.74), we find that

1

2
√
πα

∫ ∞
−∞

HT (w; z) e−
(w−E)2

4α dw =
1

2
√
πα

∫ ∞
0

eiwz e−
(w−E)2

4α dw + R1 + R2

where we have labeled by R1 and R2 the integrals

(8.76)
1

2
√
πα

∫ ∞
0

(
HT (w; z)− eiwz

)
e−

(w−E)2

4α dw and
1

2
√
πα

∫ 0

−∞
HT (w; z) e−

(w−E)2

4α dw

respectively.
We now show that: for fixed α > 0 and E ∈ R, the above integrals R1 and R2 go to zero as

T →∞. To see this, we inspect the function HT (w; z). There are two cases to consider.
Let w > 0, i.e. we estimate R1. With z ∈ C+ fixed, take T > 0 large enough so that 0 < 2|z| < T .

In this case, integration about the rectangular contour ΓT with corners:−T , T , T +iT , and −T +iT
produces:

(8.77)
1

2πi

∫
ΓT

eiwz
′

z′ − z
dz′ = eiwz

and consequently the bound

(8.78)
∣∣HT (w; z)− eiwz

∣∣ ≤ 2

π

[
1

wT

(
1− e−wT

)
+ e−wT

]
.

For w < 0, a similar rectangular contour, now in the lower half plane, can be integrated to yield

(8.79) |HT (w; z)| ≤ 2

π

[
1

|w|T

(
1− e−|w|T

)
+ e−|w|T

]
.

The claimed result, including the statement regarding uniformity, now follows from an application
of dominated convergence. �
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9. Appendix: Lie Groups and Lie Algebras

A Lie Group G is a group G with a compatible structure of a smooth (real or complex) manifold.
For compatibility, it is assumed that the product and inversion mappings are smooth.

Many interesting Lie Groups, and the focus for most of these notes, are matrix Lie Groups which
are subgroups of GL(n,R), resp. GL(n,C), here denoting the set of real, resp. complex, n × n
invertible matrices. Two key examples are

(9.1) SO(n) = {A ∈ GL(n,R) : AAt = 1l and det(A) = 1}
and

(9.2) SU(n) = {A ∈ GL(n,C) : AA∗ = 1l and det(A) = 1}
both defined for any integer n ≥ 2.

A Lie Group G is compact if G is compact as a manifold. A Lie Group G is connected if any two
points in G can be linked together by a continuous curve in G.

In general, a Lie Algebra g is a vector space g , over a field F ∈ {R,C}, equipped with a
mapping [·, ·] : g × g → g which satisfies:
i) [αx+ βy, z] = α[x, z] + β[y, z] for all x, y, z ∈ g and all α, β ∈ F.
ii) [x, y] = −[y, x] for all x, y ∈ g.
iii) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 for all x, y, z ∈ g.

If g is a Lie Algebra, then the mapping [·, ·] described above is called the Lie bracket associated
with g .

If G is a Lie Group, then the Lie Algebra g associated to G is, T1l(G), i.e. the tangent space of
G at the identity 1l ∈ G. The corresponding Lie bracket, i.e. [x, y] for x, y ∈ T1l(G), is the standard
vector field commutator of the vectors x and y pushed forward by left-multiplication, i.e.

(9.3) [x, y] = [Lx,Ly]1l for all x, y ∈ T1l(G) .

It will be important to keep the following examples in mind.

(9.4) SU(2) = {A ∈ GL(2,C) : AA∗ = 1l and det(A) = 1}
One readily checks that

(9.5) SU(2) =

{
A =

(
z −w
w z

)
: (z, w) ∈ C2 and |z|2 + |w|2 = 1

}
In fact, it is easy to see that any matrix A with form given by (9.5) is in SU(2). Conversely, if

A ∈ SU(2), then

(9.6) A =

(
a b
c d

)
⇒

(
d −b
−c a

)
= A−1 = A∗ =

(
a c

b d

)
and thus A has the form of (9.5). With (9.5), it is clear that SU(2) is equivalent to the unit sphere
in C2. Since the unit sphere in C2 is equivalent to the real 3-sphere, i.e. the unit sphere in R4, the
same is true for SU(2). In fact, let us define the Pauli matrices

(9.7) σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
.

Observe that any A ∈ SU(2) can be written as:

(9.8) A = x01l + i
3∑
j=1

xjσ
j for some real xj satisfying 1 =

3∑
j=0

x2
j ,

where we have taken A with the form of (9.5) and written z = x0 + ix3 and w = −x2 − ix1. This
smooth invertible map between SU(2) and the 3-sphere demonstrates that SU(2) is connected. It
is also clearly compact.
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Let us now consider SO(3). The group SO(3) is easily seen to be generated by the following
three matrices:
(9.9)

R1(θ) =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 , R2(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 , R3(θ) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


with θ ∈ [0, 2π). This can be argued as follows. As a matrix over the complex field, any A ∈ SO(3)
can be diagonalized, since every such A is normal. By orthogonality, any eigenvalue of A must have
unit modulus. If all eigenvalues are real, then there are only two choices: all are 1 or 2 are -1. As
the entries of A are real valued, any complex eigenvalues must come in conjugate pairs. Since the
product of all the eigenvalues is 1, we conclude that A must have an eigenvector corresponding to
eigenvalue one. Using the standard basis vectors to extend this normalized vector to an orthonormal
basis, we see that any A ∈ SO(3) is unitarily equivalent to a matrix as in (9.9) above.

Consider the mapping f : SU(2)→ SO(3) given by

(9.10) f(A)ij =
1

3
Tr[σiAσjA∗]

One can check that this mapping is indeed into SO(3). In fact, it is onto, f(−A) = f(A), and this
mapping is in fact 2 to 1. Moreover, f(AB) = f(A)f(B), i.e. f is a group homomorphism.

Note: we have parametrized the matrices in (9.9) above so that Rj(0) = 1l for all j = 1, 2, 3. It
is easy to see that

(9.11) R′1(0) =

0 0 0
0 0 −1
0 1 0

 , R′2(0) =

 0 0 1
0 0 0
−1 0 0

 , R′3(0) =

0 −1 0
1 0 0
0 0 0


The matrices form a basis for the corresponding Lie Algebra so(3) .

9.1. Representations of Lie Groups and Lie Algebras. In this section, we will consider some
of the general theory of finite dimensional representations of both Lie Groups and Lie Algebras.
Again, most of the focus will be on matrix Lie Groups and their associated Lie Algebras. Through-
out this section, we will denote by V a finite dimensional vector space over a field K ∈ {R,C}. By
L(V ), we will denote the set of all linear transformations from V to V . By GL(V ), we will denote
the set of all invertible linear transformations from V to V .

Definition 9.1. Let G be a Lie Group and V be a finite dimensional vector space over K. A
representation Π of G acting on V is a mapping Π : G→ GL(V ) which satisfies

(9.12) Π(g1g2) = Π(g1)Π(g2) for all g1, g2 ∈ G .

The dimension of the representation Π is defined by dim(Π) = dim(V ).

It follows immediately from this definition that:
i) Π(1l) = id, where id is the identity map on V .
ii) Π(g−1) = (Π(g))−1 for all g ∈ G.
iii) If Π : G → L(V ) satisfying Π(1l) = id and (9.12), then Π is a representation of G acting on

V .
The definition of representation for a Lie Algebra corresponding to a Lie Group is similar.

Definition 9.2. Let g be a Lie Algebra and V a finite dimensional vector space over K. A
representation π of g acting on V is a mapping π : g → L(V ) which satisfies

(9.13) π([x, y]) = [π(x), π(y)] for all x, y ∈ g .

The dimension of the representation π is defined by dim(π) = dim(V ).
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Examples:
1) For any Lie Group G and any vector space V , the trivial representation is the mapping

Π(g) = id for all g ∈ G. For g a Lie Algebra, the trivial representation of g is defined by
π(x) = 0 for all x ∈ g.

2) If G is a matrix Lie Group, i.e. a sub-group of GL(n,R), resp. GL(n,C), then with V = Rn,
resp. V = Cn, the mapping Π(g) = g for all g ∈ G is called the fundamental representation of G.
In this case, one can also define the fundamental representation of the corresponding Lie Algebra,
and it is π(x) = x for all x ∈ g.

3) Let G be a matrix Lie Group and g the corresponding Lie Algebra. The mapping Ad : G→
GL(g) defined by

(9.14) Ad(g)x = gxg−1 for all g ∈ G and x ∈ g
is a representation of G on g . This is called the adjoint representation of the Lie Group G. There is
an analogous representation of the Lie Algebra g acting on g which is the mapping ad : g → L(g)
given by

(9.15) (adx)(y) = [x, y] for all x, y ∈ g.

Proposition 9.3. Let G be a matrix Lie Group. If Π is a representation of G acting on V , then
there exists a representation π of the corresponding Lie Algebra g , also acting on V , defined via

(9.16) π(x) =
d

dt
(Π (exp(tx))) |t=0 for all x ∈ g .

π is said to be the representation of g induced by Π.

Example:
For any matrix Lie Group G, the adjoint representation Ad, see (9.14), induces the adjoint

representation ad, see (9.15). In fact,

(9.17)
d

dt

(
Ad(etx)

)
|t=0 = ad(x) for all x ∈ g .

There is a (partial) converse of Proposition 9.3.

Proposition 9.4. Let G be a matrix Lie Group, and let π be a representation of the corresponding
Lie Algebra g acting on V . The mapping

(9.18) Π(g) = eπ(x) defined for all g ∈ G with g = ex ,

defines a representation Π of G on V .

Since 1l ∈ G satisfies 1l = e0, it is clear that the above is well-defined for all x near 0. For this
reason, the mapping Π is said to be the representation locally induced by π.

The following is an important definition.

Definition 9.5. Let Π be a representation of a Lie Group G on a finite dimensional vector space
V over C. If Π(g)Π(g)∗ = id for all g ∈ G, then Π is said to be a unitary representation. Similarly,
let π be a representation of a Lie Algebra g on a finite dimensional vector space V over C. If
π(x)∗ = −π(x) for all x ∈ g, then π is said to be an anti-hermitian representation.

Proposition 9.6. Let G be a matrix Lie Group and g the corresponding Lie Algebra.
a) If Π is a unitary representation of G on V , then the induced representation π of g on V is
anti-hermitian.
b) If π is an anti-hermitian representation of g on V , then the (locally) induced representation Π
of G on V is unitary.

The following definition applies to representations of Lie Groups and Lie Algebras. In general,
we will denote such a representation by ρ.
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Definition 9.7. Let ρ be a representation of G, which may either be a Lie Group or a Lie Algebra,
acting on a finite dimensional vector space V . If W ⊂ V is a subspace and ρ(g)w ∈W for all g ∈ G
and w ∈W , then W is said to be a ρ-invariant subspace. A representation ρ is said to be reducible
if there exists a non-trivial ρ-invariant subspace, i.e. a ρ-invariant subspace W ⊂ V with W 6= {0}
and W 6= V . If the only ρ-invariant subspaces of V are {0} and V , then ρ is said to be irreducible.

Proposition 9.8. Let G be a matrix Lie Group and g the associated Lie Algebra.
a) If Π is a representation of G acting on V and W is a Π-invariant subspace, then W is also an
π-invariant subspace of V , where π is the induced representation of g acting on V .
b) If π is a representation of g acting on V and W is a π-invariant subspace, then W is also an
Π-invariant subspace of V , where Π is the (locally) induced representation of G acting on V .

Definition 9.9. Let ρ be a representation of G, which may either be a Lie Group or a Lie Algebra,
acting on a finite dimensional vector space V . ρ is said to be totally reducible if there exists a
direct sum decomposition of V into subspaces {Wj}kj=1, i.e.,

(9.19) V = W1 ⊕W2 ⊕ · · · ⊕Wk

with each Wj being a ρ-invariant subspace for which ρj = ρ|Wj is irreducible.

Note that if ρ is a totally reducible representation on a finite dimensional vectors space V , then
there is a basis of V for which

(9.20) ρ(g) =


ρ1(g) 0 0 0

0 ρ2(g) 0 0

0 0
. . . 0

0 0 · · · ρk(g)


i.e. ρ acts block-diagonally.

Proposition 9.10. Any finite dimensional unitary representation is totally reducible.

Proof. Let Π be a unitary representation of a Lie Group G acting on a finite dimensional vector
space V over C. If Π is irreducible, we are done. Otherwise, there exists a non-trivial Π-invariant
subspace W ⊂ V . We can write V = W ⊕W⊥ and note that if x ∈W⊥, y ∈W , and g ∈ G, then

(9.21) 〈Π(g)x, y〉 = 〈x,Π(g)∗y〉 = 〈x,Π(g)−1y〉 = 〈x,Π(g−1)y〉 = 0

where the last equality follows since W is Π-invariant. This proves that W⊥ is also a Π-invariant
subspace. Iterating this argument to the restrictions of Π to these (finite dimensional) subspaces
produces the desired result. �

On equivalent representations:

Definition 9.11. Let ρ1 be a representation of G, which may either be a Lie Group or a Lie
Algebra, acting on finite dimensional vector spaces V1. For any invertible linear transformation
T : V1 → V2, then the mapping

(9.22) ρ2(g) = Tρ1(g)T−1

defines a representation of G on V2. Representations of this type are said to be equivalent repre-
sentations.

It is easy to check that if Π1 and Π2 are equivalent representations, then the corresponding
induced representations π1 and π2 are equivalent as well. Similarly, if π1 and π2 are equivalent,
then the locally induced representations Π1 and Π2 are also equivalent.



60

Lemma 9.12. Let ρ1 and ρ2 be two irreducible representations of G acting on vector spaces V1 and
V2 respectively. If there exists a linear transformation T : V1 → V2 for which

(9.23) Tρ1(g) = ρ2(g)T for all g ∈ G,

then either ρ1 and ρ2 are equivalent representations or T = 0.

Proof. It is easy to check that ker(T ) ⊂ V1 is a ρ1-invariant subspace and similarly ran(T ) ⊂ V2 is
a ρ2-invariant subspace. The claimed result follows. �

Lemma 9.13. Let ρ be an irreducible representation of G on a finite dimensional vector space V
over C. If T : V → V is linear and

(9.24) Tρ(g) = ρ(g)T for all g ∈ G,

then T = λid for some λ ∈ C.

Proof. As a linear operator on a finite dimensional vector space over C, T has at least one eigenvalue
λ ∈ C. The non-empty eigenspace Uλ is clearly a ρ-invariant subspace. �

On tensor products. Fix a Lie Group G. For j = 1, 2, let Πj be a representation of G acting on
a vector space Vj . Consider the vector space

(9.25) V = V1 ⊗ V2

For any g ∈ G, we define a linear mapping Π(g) : V → V by setting

(9.26) Π(g)v1 ⊗ v2 = (Π1(g)v1)⊗ (Π2(g)v2) ,

e.g. on a collection of basis vectors, and extending by linearity. The mapping Π is a representation
G, it is called the tensor product representation, and it is often denoted by Π = Π1⊗Π2. Similarly,
if π1 and π2 are representations of g acting on vector spaces V1 and V2 respectively, then π defined
by setting

(9.27) π = π1 ⊗ id + id⊗ π2

is a representation of g acting on V = V1 ⊗ V2. In fact, if Π1 and Π2 are representations of a
matrix Lie Group acting on V1 and V2 respectively, then the induced representation of Π = Π1⊗Π2

acting on V = V1 ⊗ V2 is given by π = π1 ⊗ id + id⊗ π2.

9.2. Irreducible Representations of SU(2). The Lie Algebra corresponding to SU(2), which
we denote by SU(2) , has as basis vectors:

(9.28) T1 = − i
2
σ1 =

(
0 − i

2
− i

2 0

)
, T2 = − i

2
σ2 =

(
0 −1

2
1
2 0

)
, and T3 = − i

2
σ3 =

(
− i

2 0
0 i

2

)
.

Let π be an irreducible representation of SU(2) on a finite dimensional vector space V with
dim(V ) = n. Define linear mappings

(9.29) J3 = iπ(T3) and J± =
i√
2

(π(T1)± iπ(T2)) .

The commutation relations

(9.30) [J3, J±] = ±J± and [J+, J−] = J3

are easily checked.
Since V is a complex vector space, it is clear that J3 has at least one eigenvalue λ ∈ C. Let us

denote a corresponding (non-zero) eigenvector by φ. One readily calculates that

(9.31) J3(J±)kφ = (λ± k)(J±)kφ for any integer k ≥ 0.
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The mappings J± are called raising and lowering operators. The eigenvalues of J3 are called weights.
The above calculation shows that either (J±)kφ = 0 or it is an eigenvector of J3 with eigenvalue
λ± k.

Consider the sequence of vectors {(J+)kφ}∞k=0 ⊂ V . The non-zero vectors in this sequence are
eigenvectors of J3 corresponding to distinct eigenvalues, and therefore, linearly independent. Since
the vector space V is finite dimensional, there must exist a number j ≥ 0 for which (J+)jφ 6= 0 but
(J+)j+1φ = 0. The corresponding eigenvalue of J3, which we denote by λj , is called the highest
weight of the representation π. It is convenient to relabel ψ = (J+)jφ 6= 0.

Mimicking the above calculation, we find that

(9.32) J3(J−)kψ = (λj − k)(J−)kψ for all integers k ≥ 0.

Again, these are either 0 or linearly independent eigenvectors of J3. Using again that V is finite
dimensional, there is a number m ≥ 0 such that 0 6= (J−)mψ, but (J−)m+1ψ = 0. For k = 0, · · · ,m,
denote by ψk = (J−)kψ. Note that ψ0 = ψ, and for all 0 ≤ k ≤ m, ψk 6= 0 and J3ψk = (λj − k)ψk.

We will now prove that 2λj = m. Recall the integer m ≥ 0. Consider the case m = 0. In this
case, there is a non-zero vector ψ = ψ0 that satisfies J+ψ = 0 = J−ψ. As a result,

(9.33) λjψ = J3ψ = [J+, J−]ψ = 0 ⇒ 2λj = 0 = m.

Now, if m ≥ 1, then it is easy to see that for 1 ≤ k ≤ m

J+ψk = J+(J−)kψ0 = ([J+, J−] + J−J+) (J−)k−1ψ0

= J3(J−)k−1ψ0 + J− ([J+, J−] + J−J+) (J−)k−2ψ0

=
k−1∑
`=0

(J−)`J3(J−)k−1−`ψ0

= k

(
λj −

1

2
(k − 1)

)
ψk−1(9.34)

where we have used (9.32) and that, by construction, J+ψ0 = J+ψ = 0. Since we also have that
J−ψm = 0, we find that

0 = J+J−ψm = ([J+, J−] + J−J+)ψm = (λj −m)ψm + J−J+ψm

=

[
(λj −m) +m

(
λj −

1

2
(m− 1)

)]
ψm

=
1

2
(m+ 1)(2λj −m)ψm(9.35)

Since ψm 6= 0, we have then that 2λj = m as claimed.
We now claim that the vectors {ψk}mk=0 form a basis of V and that the highest weight vector

ψ0 = ψ is unique up to normalization. Consider the subspace V ′ ⊂ V spanned by these vectors.
This is easily checked to be a non-empty π-invariant subspace, and hence V ′ = V since π is
irreducible. As a consequence, we have also proven that J3 is diagonalizable on V and that each
eigenspace is one-dimensional. Moreover, n = dim(V ) = m+ 1 = 2λj + 1.

To see that the highest weight vector is unique, suppose that ϕ is an eigenvector of J3 with
J3ϕ = µϕ and J+ϕ = 0. As the vectors {ψk}mk=0 form a basis of V , it is clear that

(9.36) ϕ =
m∑
k=0

ckψk

We also showed above that the eigenspaces of J3 are one-dimensional. Thus there is some 0 ≤ k0 ≤
m for which ϕ = ck0ψk0 . If k0 = 0, we are done. Otherwise, we have that

(9.37) µϕ = J3ϕ = ck0(λj − k0)ψk0 = (λj − k0)ϕ ⇒ µ = λj − k0



62

We also know that

(9.38) 0 = J+ϕ = ck0J+ψk0 = ck0k0

(
λj −

1

2
(k0 − 1)

)
ψk0−1 ⇒ λj =

1

2
(k0 − 1)

But we know that k0 ≤ m = 2λj . Thus 2λj = k0 − 1 ≤ 2λj − 1 an obvious contradiction. We
conclude k0 = 0 and we are done.

9.3. Tensor products of representations. Let π1 and π2 be two irreducible representations of
SU(2) on vector spaces V (1) and V (2). We will consider the representation

(9.39) π = π1 ⊗ 1l + 1l⊗ π2

acting on V = V (1) ⊗ V (2). Our goal is to decompose V into irreducible representations of π,
i.e. write V as a direct sum of π-invariant subspaces with the property that on each π acts as an
irreducible representation.

We begin with some notation. As before, for k = 1, 2, set

(9.40) J
(k)
3 = iπk(T3) and J

(k)
±

i√
2

(πk(T1)± iπk(T2))

On V we define

(9.41) J3 = J
(1)
3 ⊗ 1l + 1l⊗ J (2)

3 and J± = J
(1)
± ⊗ 1l + 1l⊗ J (2)

±

The commutation relations

(9.42) [J3, J±] = ±J± and [J+, J−] = J3

are easily checked.

Let us now suppose that dim(V (k)) = 2jk + 1 for k = 1, 2. Denote by {ψ(k)
m } the sequences of

eigenvectors of J
(k)
3 constructed previously, i.e.

(9.43) J
(k)
3 ψ(k)

m = mψ(k)
m for all − jk ≤ m ≤ jk .

It is clear that vectors of the form

(9.44) Ψm,n = ψ(1)
m ⊗ ψ(2)

n

form a basis of V and moreover, one readily checks that

(9.45) J3Ψm,n = (m+ n)Ψm,n

Let us denote by Eλ the eigen-subspace of V corresponding to the operator J3 and the eigenvalue
λ. By construction, it is clear that dim(Ej1+j2) = 1. In fact, one also sees that

(9.46) dim(Ej1+j2−k) = k + 1 for all 0 ≤ k ≤ j1 + j2 − |j1 − j2|
This is because there are k+ 1 ways to write the vectors above in such a way that the sum of their
eigenvalues is this number . . . The collection of these eigenspaces does not exhaust the whole of
V , but they will be sufficient for our purposes.

We find this direct sum decomposition algorithmically. We start with the highest weight vector,
i.e. Ψj1,j2 . This vector is the unique vector, up to normalization, in the eigenspace of J3 corre-
sponding to j1 + j2. Iteratively applying J− to this vector, we produce 2(j1 + j2) + 1 vectors in
V that are eigenvectors of J3 with eigenvalues m with −(j1 + j2) ≤ m ≤ j1 + j2. The subspace
spanned by these orthogonal vectors, which we will denote by Vj1+j2 , is a π-invariant subspace of

V on which π acts an irreducible representation. Take V ′ = V ⊥j1+j2
.

Now consider λ1 = j1 + j2 − 1. If 1 ≤ j1 + j2 − |j1 − j2|, then the dimension of the eigenspace
of J3 corresponding to λ1 is 2, using (9.46). One of these vectors was constructed in the previous
argument and hence it lies in Vj1+j2 . Since the dimension of the eigenspace is 2, we are guaranteed
that there exists a linearly independent vector in V ′ which is also an eigenvector of J3 with eigenvalue
λ1. Using it and iteratively applying J−, we find 2(j1 + j2 − 1) + 1 orthogonal vectors in V ′ - each
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eigenvectors of J3 with prescribed eigenvalues. The subspace spanned by these vectors, which we
will denote by Vj1+j2−1 is π-invariant and π acts on this subspace as an irreducible representation.

Relabel V ′ = (Vj1+j2 ⊕ Vj1+j2−1)⊥.
Now, by way of induction, let λk = j1 + j2 − k and assume that we have continued as above k

times. If k ≤ j1 + j2 − |j1 − j2|, then the eigenspace associated to J3 and eigenvalue λk is k + 1
dimensional by (9.46). By way of induction, we have already selected k linearly independent vectors
in this subspace. In this step, we select the remaining vector. We apply J− iteratively and obtain
2λk + 1 orthogonal vectors which span the π-invariant subspace Vλk .

This procedure cannot be continued beyond k = j1 + j2 − |j1 − j2|. At that point, we have a
subspace of V with dimension

j1+j2∑
k=|j1−j2|

dim(Vk) =

j1+j2∑
k=|j1−j2|

2k + 1 =

j1+j2−|j1−j2|∑
`=0

(2(|j1 − j2|+ `) + 1)

= (2j1 + 1)(2j2 + 1) = dim(V )(9.47)

and therefore, we have decomposed all of V .
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10. Four Examples

The phenomena we studied in the general theorems and discussion in the previous chapters,
spontaneaous symmetry breaking and long-range order, gapped versus gapless excitation spectrum,
and the decay of correlations, are well-illustrated by the ground states of the isotropic ferromagnetic
Heisenberg model (Example 1), the ferromagnetic XXZ model (Example 2), and the AKLT chain
(Example 3). Later we will also discuss the Toric Code model to illustrate the concept of topological
order (Example 4). All these models are examples of so-called Frustration-Free models, a property
we will exploit in more detail in the next chapter on Matrix Product States and their Hamiltonians.

10.1. Example 1: the isotropic Heisenberg model. We start with the isotropic ferromagnetic
spin 1/2 Heisenberg model on Zν , introduced by Heisenberg [35], which presents a good illustration
of the gapless excitation spectrum implied by Goldstone’s Theorem in the presence of spontaneous
breaking of a continuous symmetry, in this case SU(2).

At each x ∈ Z2, we have a spin 1/2 system with Hilbert space H{x} ∼= C2. The interaction is
between nearest neighbors only and is given in terms of the Pauli matrices by

(10.1) h = −(σ1 ⊗ σ1 + σ2 ⊗ σ2 + σ3 ⊗ σ3) = (1l− 2T ) ∈M2 ⊗M2,

where T denotes the transposition operator determined by T (u⊗ v) = v ⊗ u, for all u, v ∈ C2. For
every finite Λ ⊂ Zν , the Hamiltonian is given by

(10.2) HΛ =
∑
x,y∈Λ
|x−y|=1

(1l− 2Tx,y).

For example, one can take Λ = [a1, b1] × · · · × [aν , bν ], with ai < bi ∈ Z, i = 1, . . . , ν. It is quite
obvious from the form Hamiltonian that all states symmetric under arbitrary permutations of the
sites in Λ, will be a ground state of HΛ. If Λ is connected (in the nearest neighbor sense), the set
of transpositions Tx,y for all nearest neighbor pairs x, y ∈ Λ, generate the full permutation group.
In this case the ground state space of HΛ is exactly the subspace of HΛ consisting of all symmetric
vectors. Let E0(H) denote the smalled eigenvalue of H. Then,

(10.3) E0(HΛ) = −#{{x, y} | x, y ∈ Λ, |x− y|}.

It will be slightly simpler to work with the non-negative definite Hamiltonian

(10.4) 0 ≤ H̃Λ =
1

2
(HΛ − E0(HΛ)1l) =

∑
x,y∈Λ
|x−y|=1

(1l− Tx,y),

which obviously has the same ground state space and has HΛ.
For all u ∈ SU(2), we have [T, u⊗ u] = 0, and hence HΛ (and H̃Λ) commute with

(10.5) UΛ =
⊗
x∈Λ

u.

As a consequence, the Hamiltonians also commute with the third component of the total magne-
tization or, equivalently, with the following operator NΛ which counts the number of down spins
(minus signs):

(10.6) NΛ =
∑
x∈Λ

(1l− σ3
x)/2.

specNΛ = {0, 1, . . . , |Λ|}, and there is one symmetric state in each eigenspace of NΛ. Hence,

dim ker(H̃Λ) = |Λ| + 1. For n = 0, . . . , |Λ|, let H(n) denote the eigenspace of NΛ belonging to the
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eigenvalue n. This is the space of states with n down spins. A basis for this spaces can therefore
be labeled by the possible sets of n sites (the positions of the down spins) in Λ. Hence,

(10.7) dim(H(n)
Λ ) =

(
|Λ|
n

)
.

H(0)
Λ is one-dimensional and spanned by the vector

⊗
x∈Λ |+〉. Let ω+ denote the corresponding

vector state. On each AΛ, ω+ is uniquely determined by the property ω(σ3
x) = 1, for all x ∈ Λ. It

follows that this also determines ω+ uniquely on AZν .
Since ω+ is a product state its GNS representation is easy to construct. As GNS Hilbert space we

can take `2(P0(Zν)). Let {ξX | x ∈ P0(Zν)} denote the standard orthonormal basis of `2(P0(Zν))
given by Kronecker delta functions. The finite subsets X ∈ P0(Zν) are the locations of a finite
number of down spins. In ω+, the are zero down spins and this state should therefore represented
by Ω = ξ∅. This can be verified with the following defintion of the representation π:

(10.8) πω(σ−x )ξX =

{
ξX∪{x} if x 6∈ X
0 if x ∈ X

.

The morphism property of π implies that it is uniquely determined by its action on σ−x , x ∈ Zν ,
and one can easily derive its action on arbitrary local observables. For instance, π(σ+

x ) = π(σ−x )∗,
π(σ3

x) = π(σ+
x )π(σ−x ) − π(σ−x )π(σ+

x ), etc.. Since we have π(
∏
x∈X σ

−
x )Ω = ξX , it is clear that

π(Aloc
Zν )Ω is dense in H. Therefore (H, π,Ω) is the GNS triple for ω+.

In the GNS representation of ω+, the number of down spins of the infinite system is represented
by the densely defined self-adjoint operator N , for which π(Aloc

Zν )Ω is a core, and for which the
standard basis vectors ξX are eigenvectors with eigenvalue n = |X|. The corresponding eigenspaces

H(n) are invariant subspaces of the GNS Hamiltonian Hω+ . The latter is easily see from the explicit

definition of Hω+ on π(Aloc
Zν )Ω as follows. For each X ∈ Z, define X = {y ∈ Zν | d(y,X) ≤ 1}.

Then, for all finite X, X is finite, and for all A ∈ AX , we have

(10.9) Hω+π(A)Ω = lim
Λ→Zν

[π(HΛ), π(A)]Ω = [π(HX), π(A)]Ω =
∑
x,y∈X
|x−y|=1

2(1l− Tx,y)π(A)Ω,

where, by slight abuse of notation, Tx,y = π(Tx,y) is the transposition of the states at x and y
acting as a unitary operator on H, and we have used Tx,yΩ = Ω, for all x, y ∈ Zν . Clearly, the

spaces H(n) are invariant under the Tx,y, and therefore also invariant subspaces of Hω+ . So, we have

spec(Hω+ �H(1)) ⊂ spec(Hω+). Now, H(1) = span{ξ{x} | x ∈ Zν} ∼= `2(Zν), and it turns out that

Hω+ �H(1) can be represented as a familiar operator on `2(Zν). To see this, calculate the matrix
elements in the orthonormal basis {ξ{x}}:

(10.10) 〈ξ{x}, Hω+ξ{y}〉 =


−2 if |x− y| = 1

4ν if x = y

0 else

.

Up to trivial constants, these are the matrix elements of the discrete Laplacian on Zν . Its spectrum
is the interval [0, 8ν], and is absolutely continuous. Therefore, Hω+ has no gap above the ground
state, as implied by the Goldstone Theorem. The generalized eigenfunction corresponding this
part of the spectrum are called spin waves. Considering the positions of the single down spin in
the subspace H(1) as the coordinate of a particle, the corresponding generalized eigenfunctions
are plane waves on Zν . Dyson pointed out that the generalized eigenstates of the Heisenberg
ferromagnet in the subspaceH(n) can be regarded as describing n such particles with boson statistics
which satisfy a hard-core condition (at most one particle can occupy any give site) and a nearest
neighbor interaction. He also showed that the spin-S Heisenberg ferromagnet in the ground state
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representation can be described in a similar way as bosons and that the interaction would become
weaker with increasing S [18,19]. Recently, Correggi, Giuliani, and Seiringer gave a rigorous proof
that the approximation by free bosons is at least sufficiently good to predict correct low-temperature
asymptotics of the free energy density of the Heisenberg model for any S [16].

10.2. Example 2: the XXZ model. The spin 1/2 ferromagnetic XXZ model depends on a real
parameter, ∆, which is often called the anisotropy. It is defined in terms of a nearest neighbor
interaction and coincides with the isotropic Heisenberg model for ∆ = 1. The XXZ nearest
neighbor interaction is given by

(10.11) h(∆) = −(σ1 ⊗ σ1 + σ2 ⊗ σ2 + ∆σ3 ⊗ σ3) = h(1) − (∆− 1)σ3 ⊗ σ3.

We already studied the ground states of the isotropic model with interaction h(1) in the previous
section. It is quite immediate that, for all ∆ > 1, there are exactly two of the ground states of the
isotropic model that are simultaneous eigenstates belonging to the smallest each of the additional
terms of the form −(∆ − 1)σ3 ⊗ σ3, namely the states with all spins up and all spins down. Let
ω+ and ω− denote the corresponding states on AZν . The XXZ model has a continuous symmetry,
given by the rotations about the third axis, described by the group U(1) (or SO(2)). This symmetry
is, however not broken in the ground states of the model. The model has a discrete symmetry that
is spontaneously broken: a Z2 symmetry represented by the automorphism α defined by

(10.12) α(A) = (
⊗
x∈X

σ1)A(
⊗
x∈X

σ1), for all A ∈ AX , X ∈ P0(Zν).

One can show that the GNS Hamiltonian of ω± have a spectral gap above their ground state equal
to 2(∆− 1). As the Goldstone Theorem predicts, the continuous U(1) is unbroken.

10.3. Example 3: the AKLT model. The AKLT model was introduced by Affleck, Kennedy,
Lieb, and Tasaki [3, 4]. It is a spin-1 chain, so Hx = C3, for all x ∈ Z, with an SU(2)-invariant
nearest neighbor interaction. Its Hamiltonian for a finite chain of length L ≥ 2 is given by

(10.13) H[1,L] =

L−1∑
x=1

(
1

3
1l +

1

2
Sx · Sx+1 +

1

6
(Sx · Sx+1)2

)
=

L−1∑
x=1

P
(2)
x,x+1.

Here, S = (S1, S2, S3) is the vector of standard spin-1 matrices, and P
(2)
x,x+1 ∈ A{x,x+1} is the

orthogonal projection onto the 5-dimensional subspace of C3 ⊗ C3 corresponding to the spin-2
irreducible representation of SU(2) contained in the tensor product of the two spin-1 representations
acting on the sites x and x+ 1.

In the limit of the infinite chain, the AKLT chain has a unique frustration-free ground state
and there is a non-vanishing gap in the spectrum above the ground state. The correlation length,
which is guaranteed to be finite by the Exponential Clustering Theorem, can be compute explicitly:
ξ = 1/ log 3. Affleck, Kennedy, Lieb, and Tasaki proved these properties are proved in [4] model and
thus demonstrated the existence of the so-called Haldane phase in quantum spin chains, predicted
by Haldane based on his analysis of the large spin limit [31].

The exact ground state of the AKLT model has a special structure in which the correlations are
generated by entangled nearest neighbor pairs and were called Valence Bond Solid states (VBS)
in [3]. The construction of the ground state of the AKLT chain shows a close similarity with the
Quantum Markov Chains constructed by Accardi [1]. Inspired by this similarity Fannes, Nachter-
gaele, and Werner introduced Finitely Correlated States (FCS) [21] and proved that FCS provide
the exact ground state of a large family of spin chains, including the AKLT model, with similar
properties. Matrix Product States (MPS) are a special case of FCS, and have proved to be a very
useful tool in the study of quantum spin chains. Because of the matrix product structure of the
formulas for the AKLT ground state given in [23], the name Matrix Product States was proposed
in [41].
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a b

cd

tr

v u

Figure 1. The distinction between stars and plaquettes becomes obvious by con-
sidering the spins to reside on the edges than rather than the vertices of a square
lattice.

The ground state of the AKLT chain has only short-range correlations and no long-range order.
Nevertheless, this state has a long-range structure that can be regarded as the one-dimensional
analogue of Topological Order (see Example 4). This structure was discovered by den Nijs and
Rommelse, who called it String Order [17].

There are several interesting generalizations of the AKLT model and its MPS ground state,
including to higher dimensions, some of which we will discuss later on.

10.4. Example 4: the Toric Code model. The following example of a two-dimensional model
which exhibits Topological Order was introduced by Kitaev [40]. One can associate the variables
with the sites of the standard square lattice, but it turns out to be more convenient for the discussion
of this model to associate the variables with the edges of a (different) square lattice. See Figure
10.4. The Hamiltonian contains two different types of four-body terms:

(10.14) HΛ =
∑
s⊂Λ

(1l−As) +
∑
p⊂Λ

(1l−Bp),

where s stands for ‘star’, meaning the four edges, labeled r, t, u, v, meeting a vertex, and p stands
for ‘plaquette’, meaning four edges, labeled a, b, c, d, forming an square (see Figure ). The corre-
sponding terms in the Hamiltonian are defined as follows:

As = σ1
rσ

1
t σ

1
uσ

1
v

Bp = σ3
aσ

3
bσ

3
cσ

3
d.

This model has the remarkable property that when defined on a finite lattice embedded in a
closed two-dimensional manifold (e.g., a 2-torus) the ground state space has dimension 4g, where
g is the genus of the manifold (g = 1 for the 2-torus).
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11. Frustration free models

In the past decade, much of the progress in our understanding of the ground state problem of
quantum spin models was achieved by studying so-called frustration free interactions. An interac-
tion Φ : P0(Γ)→ Aloc, is frustration free if for all Λ ∈ P0(Γ) we have

(11.1) inf spec

(∑
X⊂Λ

Φ(X)

)
=
∑
X⊂Λ

inf spec(Φ(X)).

Equivalently, the frustration free property can be expressed by stating that the finite-volume Hamil-
tonians HΛ =

∑
X⊂Λ Φ(X) and each of the terms Φ(X) appearing in it, have a common eigenvector

belonging to their respective smallest eigenvalues. While this requirement is generically not ful-
filled, there is a remarkable range of quantum spin models, which model interesting physics, that
do satisfy it. The frustration free property has turned out to be very helpful in the study of a
range of problems. General results about the existence of a non-vanishing spectral gap in the
thermodynamic limit and proving that a spectral gap above the ground state is stable under arbi-
trary perturbations of the interaction Φ, have so far only been proved for frustration free models.
Understanding these questions first in the frustration free context, we expect, will prove to be an
important step toward obtaining more general results.

Although the ferromagnetic Heisenberg model, introduced by Heisenberg in 1928 [35], is frustration-
free, and other frustration-free models have been introduced a long time ago (e.g., the Majumdar-
Ghosh model in 1969 [46–48]), frustration-free models as a class have been considered only more
recently. The starting point for a wave of new developments was the introduction of the AKLT
model by Affleck, Kennedy, Lieb, and Tasaki [3, 4], which is frustration free. The AKLT model
played a pivotal role in more than one way. Not only was it a breakthrough by itself in establishing
rigorously the existence of the so-called Haldane phase of quantum spin chains, it allso set in mo-
tion a series of fruitful new directions in the mathematics and physics research on quantum lattice
models.

The AKLT model is a translation-invariant spin-1 chain with an SU(2)-invariant nearest neighbor
interaction. For a finite chain of L spins the Hamiltonian of the AKLT model is given by

(11.2) H[1,L] =
L∑
x=1

(
1

3
1l +

1

2
Sx · Sx+1 +

1

6
(Sx · Sx+1)2

)
,

where Sx denotes the vector of the 3× 3 spin-1 matrices acting at the xth site of the chain, which
generate the three-dimensional unitary irreducible representation of SU(2). See Appendix 9 for the
definitions and elementary properties of representations of SU(2). In [4] the authors prove that, the
limit of the infinite chain, the ground state is unique, has a finite correlation length, and that there is
a non-vanishing gap in the spectrum above the ground state, thereby demonstrating the existence of
the Haldane phase of the isotropic spin-1 chain predicted by Haldane [30,31]. This was a milestone
result but the impact if this work and the AKLT model in particular, turned out to reach much
further. Soon, it was realized that the exact ground state of the AKLT chain could be viewed as an
example of a suitable generalization of the Quantum Markov Chains introduced by Accardi [1, 2].
This led to the introduction of Finitely Correlated States (FCS) [21,23,24], and the definition of a
large class of frustration-free quantum spin models in one and more dimensions. Matrix Product
States (MPS) is the name given to the subclass of Finitely Correlated States most relevant for
the ground state problem in one dimension. An alternative representation goes under the name
Valence Bond States (VBS), which is the term used in [4] for the particular SU(2) invariant states
constructed in that work. Examples of higher-dimensional VBS states already in the same paper
and a general construction was given in [21]. Later, the construction was applied with considerable
success to the study of concrete problems in two dimensions and renamed Products of Entangled
Pairs (PEPS) in [63] which are, in turn, a special case of Tensor Networks [54].
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Around the same time with the development of Matrix Product Sates, Steven White introduced
his Density Matrix Renormalization Group method for the numerical computation of the ground
state and low-lying excitations of quantum spin chains [68, 69]. The method immediately yielded
very accurate results, e.g., for the spectral gap of the spin-1 antiferromagnetic Heisenberg chain
and the AKLT chain [67]. The latter is easily understood since the exact ground state of the
AKLT chain is a fixed point of the DMRG iteration [55]. By now we also understand why the
DMRG method works well for one-dimensional problems more generally, especially for models with
a non-vanishing gap, as is in the case for any Hamiltonian in the Haldane phase [5, 20,32,55].

The AKLT chain is frequently used as a testing ground for new concepts in many-body physics
and quantum information theory. Well-known examples are string order [17], localizable entangle-
ment [56], and symmetry-protected topological order [14,27,59,62]. The model has been generalized
in different directions: from spin 1 to higher spin [6], from one to two and more dimensions, from
SU(2) and O(3) to SU(n) and O(2n+ 1) [61], etc. As already mentioned, the construction of the
exact ground state of the AKLT chain led to the study of a large class of frustration-free models,
which in turn provided a fruitful starting point for understanding gapped ground states, entan-
glement in many-body states (including the so-called Area Law), the development of numerical
algorithms for calculating correlations, the spectrum of excitations, the dynamics, form factors
etc., and the study of the complexity of the computational problem of finding the ground state of
a quantum spin system and of estimating the spectral gap above it.

In the next section, we present the ground state of the AKLT chain in some detail. This will
serve as a solid foundation for the general discussion of frustration free modes in the rest of this
chapter.

11.1. The AKLT chain. The most general translation invariant spin-1 chain with an SU(2)-
invariant nearest neighbor interaction is of the following form

(11.3) H[1,L] =
L∑
x=1

(
J01l + J1Sx · Sx+1 + J2(Sx · Sx+1)2

)
.

By a shift and a scaling of the energy, which has no consequences for the ground states, the
three coupling constants can be taken to be J0 = 0, J1 = cos θ, J2 = sin θ, with θ ∈ [0, 2π). The
conjectures ground state phase diagram is depicted in Figure 11.1. The angle θ corresponding to
the AKLT chain is given by tan θ = 1/3.

It is simple exercise using the irreducible representations of SU(2) to show that the AKLT
interaction is the orthogonal projections onto the spin-2 subspace of a pair of spins:

1

3
1l +

1

2
Sx · Sx+1 +

1

6
(Sx · Sx+1)2 = P

(2)
x,x+1.

It follows that kerH[1,2] = D(0)⊕D(1) ⊂ C3⊗C3. Therefore the space of ground state of the AKLT
chain of length 2 is 4-dimensional and is given by the spin 0 and spin 1 vectors in the tensor product
of two spins. It will turn out that kerH[1,2] is 4-dimensional for all L ≥ 2. In particular the ground
state energy vanishes for all finite chains and the model is frustration free. To construct the ground
states of the AKLT chain, one has the choice between the VBS, FCS, and MPS constructions
mentioned above. As we will demonstrate below, these are three equivalent approaches that each
highlight particular features of theses states.

From the decomposition D(1) ⊗ D(1/2) ∼= D(1/2) ⊕ D(3/2), it follows that there is an isometry
V : C2 → C3 ⊗ C2, unique up to a phase, such that

(11.4) V D(1/2)(g) = (D(1)(g)⊗D(1/2)(g))V, for all g ∈ SU(2).

One says that V intertwines the SU(2) representations D(1/2) and D(1)⊗D(1/2). With respect to the
standard orthonormal basis of C2 and C3 ⊗ C2 consisting of eigenvectors of the third component
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J2

J1ferro Haldane

dimer

AKLT

Sutherland SU(3)

Potts SU(3)

Bethe Ansatz

H =
∑

x J1Sx · Sx+1 + J2(Sx · Sx+1)2

Figure 2. The conjectured phase diagram of the translation invariant spin 1 chains
with SU(2)-invariant nearest neighbor interactions.

of the spin: |1/2;m〉, and |1, 1/2;m1,m2〉, the matrix elements of V are given by the familiar
Clebsch-Gordan coefficients:

V |m〉 =
∑
m1,m2

m1+m2=m

〈1, 1/2;m1,m2 | 1/2;m〉|1, 1/2;m1,m2〉.

With the standard normalizations, V ∗V = 1l, i.e., V is an isometry.

For α, β ∈ C2, and n ≥ 2, define ψ
(n)
αβ ∈ H[1,n] by

(11.5) ψ
(n)
αβ = (1l⊗n3 ⊗ 〈β |)(1l3 ⊗ · · · 1l3︸ ︷︷ ︸

n−1

⊗V ) · · · (1l3 ⊗ V )V |α〉.

By using the interwining property of V n times, we find

(D(1))⊗nψ
(n)
αβ(11.6)

= (1l⊗n3 ⊗ 〈D(1/2)β |)(D(1) ⊗ · · ·D(1)︸ ︷︷ ︸
n

⊗D(1/2)V ) · · ·V |α〉

= (1l⊗n3 ⊗ 〈D(1/2)β |)(1l3 ⊗ · · · 1l3︸ ︷︷ ︸
n−1

⊗V ) · · · (1l3 ⊗ V )V |D(1/2)α〉.

This means that SU(2) acts on the space {ψ(n)
αβ | α, β ∈ C2} by the representation (D(1/2))∗ ⊗

D(1/2) ∼= D(0) ⊕D(1). In particular this proves that

(11.7) P (2)ψ
(2)
αβ = 0,

for all α, β ∈ C2. Next, we will derive the MPS representation of the states ψ
(n)
αβ and use it to show,

in Proposition 11.1 below, that

(11.8) span{ψ(n)
αβ | α, β ∈ C2} = kerH[1,n],

thus determining the ground state space of finite chains.
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Given the standard basis |1〉, |0〉, | − 1〉 of C3, we can define 2× 2 matrices vi, i = 1, 0,−1, by

V |α〉 =
∑
i

|i〉 ⊗ vi|α〉.

Explicitly:

(11.9) V =

 v1

v0

v−1

 =



0 0√
2
3 0

−
√

1
3 0

0
√

1
3

0 −
√

2
3

0 0


.

One easily checks:

(11.10) 〈i1, . . . , in | ψ(n)
αβ 〉 = 〈β | vin · · · vi1 |α〉 = Tr|α〉〈β| vin · · · vi1 .

In other words

(11.11) ψ
(n)
αβ =

∑
i1,...,in

Tr[|α〉〈β|vin · · · vi1 ]|i1, . . . , in〉.

It therefore makes sense to extend the vectors ψ(n) linearly to a map ψ(n) : M2 → H[1,n]:

(11.12) ψ(n)(B) =
∑
i1,...,in

Tr[Bvin · · · vi1 ]|i1, . . . , in〉, B ∈M2.

The following is then obvious:

span{ψ(n)
αβ | α, β ∈ C2} = {ψ(n)(B) | B ∈M2},

and we define Gn = {ψ(n)(B) | B ∈M2}. We can now prove the inclusion

(11.13) Gn ⊂ kerH[1,n],

by a direct computation. Let x = 1, . . . , n − 1, and compute the expectation of P
(2)
x,x+1 ∈ A[1,n] in

a state ψ(n)(B):

〈ψ(n)(B), P
(2)
x,x+1ψ

(n)(B)〉

=
∑

i1,...,jn
j1,...,jn

Tr[Bvin · · · vi1 ]Tr[Bvjn · · · vj1 ]

×〈i1, . . . , in|1l[1,x−1] ⊗ P (2) ⊗ 1lx+2,n]|j1, . . . , jn〉

=
∑

i1,...,ix−1
ix+2,...,in

〈ψ(2)(vix−1 · · · vi1Bvin · · · vix+2), P (2)ψ(2)(vix−1 · · · vi1Bvin · · · vix+2)〉

By linear extension we see from (11.7) that P (2)ψ(2)(C) = 0, for all C ∈ M2. Hence, each term in
the sum above vanishes. This proves (11.13). The other inclusion is proved as part of the following
proposition.

Proposition 11.1. For all n ≥ 2 we have

kerH[1,n] = {ψ(n)(B) | B ∈M2}
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Proof. We start by showing that

dim{ψ(2)(B) | B ∈M2} = 4.

To see this, recall the action of SU(2) on the MPS vectors (11.7):

(D(1) ⊗D(1))ψ(2)(B) = ψ(2)((D(1/2))∗BD(1/2)).

Therefore, unless these vectors turn out to vanish, ψ(2)(1l) is a singlet and ψ(2)(σi), i = 1, 2, 3, is
a triplet representation of SU(2). These are mutually orthogonal and the claim can be proved by
showing they are non-zero. This follows by a straightforward computation using the definitions.
E.g.,

ψ(2)(1l) = Tr(v−1v1)|1,−1〉+ Tr(v0)2|0, 0〉+ Tr(v1v−1)| − 1, 1〉

= −2

3
(|1,−1〉 − |0, 0〉+ | − 1, 1〉.

Therefore the singlet vector is non-zero. A similar computation shows that the triplet vectors are
non-vanishing too. This also shows that the map B 7→ ψ(2)(B) is injective. Furthermore, we can

now show, by induction on n, that the maps ψ(n) : M2 → H[1,n] are injective for all n ≥ 2. To do

this, note that if ψ(n) is in injective, there exists a constant cn > 0 such that ‖ψ(n)(B)‖2 ≥ cnTrB∗B.

Using the definition (11.12) we can then estimate ‖ψ(n+1)(B)‖ as follows:

‖ψ(n+1)(B)‖2 =
∑
in+1

∑
i1,...,in

|TrBvin+1vin · · · vi1 |2

=
∑
in+1

‖ψ(n)(Bvin+1)‖2

≥ cn
∑
in+1

Tr(Bvin+1)∗Bvin+1

= cnTr

∑
in+1

vin+1v
∗
in+1

B∗B.
Using the explicit form of the matrices vi, (11.9), one easily checks that the sum in the square

brackets equals 1l. Since cn > 0 by the induction hypothesis, this proves that ψ(n+1) is injective.
As the next step in the proof we show that

(11.14) kerH[1,3] = (G2 ⊗ C3) ∩ (C3 ⊗ G2) = G3.

The first identity follows directly from what we have proved so far and we already proved the
inclusion of G3 ⊂ kerH[1,3] in (11.13). We have shown above that ψ(3) is injective and, hence,
dimG3 = 4. Therefore, we will have proved our claim if we show that dim kerH[1,3] ≤ 4. We do this

by considering the decomposition of G2⊗C3 into irreducible representations of SU(2), and the fact

that for any φ ∈ kerH[1,3], we have φ ∈ G2 ⊗ C3 and 1l⊗ P (2)φ = 0. G2 = W0 ⊕W1, where W0 is a

singlet and W1 is a triplet for SU(2). Therefore, in the decompostion of G2 ⊗ C3 into irreducibles,
we will have two triplets, one singlet, and one copy of the spin 2 representation. Using the methods
explained in Appendix 9, one easily finds that the highest weight vector in that spin 2 representation
is given by ξ22 = |1, 0, 1〉 − |0, 1, 1〉. One easily checks that (1l ⊗ P (2))ξ22 6= 0. Since there is only
one spin 2 representation in the subspace G2 ⊗ C3, it must therefore be orthogonal to kerH[1,3].
Similarly, one shows that the spin 1 highest weight vector ξ11 = |1,−1, 1〉 − |0, 0, 1〉 + | − 1, 1, 1〉
satisfies (1l ⊗ P (2))ξ11 6= 0. Therefore, since there are only two copies of the spin 1 representation
on G2 ⊗ C3, at most one can belong to kerH[1,3]. Taking this together, we see that kerH[1,3] can
contain at most one singlet and one triplet representation and no representations of higher spin. It
follows that dim kerH[1,3] ≤ 4, thus completing the proof of (11.14).
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For the final step in the proof of the proposition, we will show the following intersection property
of the spaces Gn: for `, r ≥ 0,m ≥ 2,

(11.15) (G`+m ⊗H[1,r]) ∩ (H[1,`] ⊗ Gm+r) = G`+m+r.

It will be convenient to use multi-indices i = (i1, . . . , i`), j = (j1, . . . , jm), k = (k1, . . . , jr), and to
let vi denote the product vi` · · · vi1 etc. Then, for φ ∈ (G`+m ⊗ H[1,r]) ∩ (H[1,`] ⊗ Gm+r), we have
Ci, Dk ∈M2, such that

(11.16) φ =
∑
i

|i〉 ⊗ ψ(m+r)(Ci) =
∑
k

ψ(`+m)(Dk)⊗ |k〉.

By expanding both expressions using (11.12) and equating coefficients, one finds

0 = TrCivjvk − TrDkvivj = Tr [vkCi −Dkvi] vj.

This means that for all i,k ψ(m)(vkCi − Dkvi) = 0. By the assumption m ≥ 2, hence ψ(m) is
injective and hence

(11.17) vkCi −Dkvi = 0, for all i,k.

Multiplying this relation from the left by v∗k and summing over k, we find∑
k

(v∗kvk)Ci = (
∑
k

v∗kDk)vi.

By the isometry property of V , we have
∑

k(v∗kvk) = 1l, and therefore

Ci = Bvi, with B =
∑
k

v∗kDk.

Inserting this expression for Ci into (11.16) gives

φ = ψ(`+m+r)(B),

which completes the proof of (11.15).
We can now finish the proof of the proposition by combining the properties proved above:

kerH[1,n] =
n−1⋂
x=1

H[1,x−1] ⊗ G2 ⊗H[x+2,n]

=
n−2⋂
x=1

H[1,x−1] ⊗ (G2 ⊗ C3 ∩ C3 ⊗ G2)⊗H[x+3,n]

=
n−2⋂
x=1

H[1,x−1] ⊗ G3 ⊗H[x+3,n]

=
n−3⋂
x=1

H[1,x−1] ⊗ G4 ⊗H[x+4,n]

...

= Gn
where we have used (11.14), (11.15), and the conventions that H∅ = C and [a, b] = ∅ if a > b. �

The intersection property (11.15) is ‘visualized’ in the Valence Bond Solid representation of the
ground states of the AKLT chain. This representation can be derived from the expression (11.5)
by noting that, up to a normalization constant C, the intertwining isometry V can be expressed as
follows: for all u ∈ C2

V u = (P+ ⊗ 1l)(u⊗ φ),
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where φ ∈ C2 ⊗ C2 is the antisymmetric vector (i.e., the singlet state) and P+ : C2 ⊗ C2 → C3 is
the projection onto the symmetric states, which represent the triplet of spin-1 states.

ψ
(n)
αβ =

P+ ⊗ · · · ⊗ P+︸ ︷︷ ︸
n

⊗〈β|

|α〉 ⊗ φ⊗ φ · · · ⊗ φ︸ ︷︷ ︸
n


= ±

P+ ⊗ · · · ⊗ P+︸ ︷︷ ︸
n

|α〉 ⊗ φ⊗ φ · · · ⊗ φ︸ ︷︷ ︸
n−1

⊗| − β〉


= V BS

Remark by bxn: VBS should be replaced by a visual representation of the VBS state as it routinely
appears in the literature End of Remark.

To study correlation functions and the thermodynamic limit, the representation of the ground
states as Finitely Correlated States is very convenient.

Since

ψ
(n)
αβ =

∑
i1,...,in

〈β | vin · · · vi1 |α〉|i1, . . . , in〉,

we have for A1, . . . , An ∈M3:

〈ψ(n)
αβ |A1 ⊗ · · · ⊗Anψ(n)

αβ 〉

=
∑

i1,...,in
j1,...,jn

(A1)i1j1 · · · (An)injn〈β | vin · · · vi1 |α〉〈β | vjn · · · vj1 |α〉

=
∑

i1,...,in
j1,...,jn

(A1)i1j1 · · · (An)injn〈α | v∗i1 · · · v
∗
in |β〉〈β | vjn · · · vj1 |α〉

=
∑

i1,...,in−1
j1,...,jn−1

(A1)i1j1 · · · (An)in−1jn−1

×〈α | v∗i1 · · · v
∗
in−1

∑
in,jn

(An)injnv
∗
in |β〉〈β|vjn

 vjn−1 · · · vj1 |α〉.

It is now convenient to define for all A ∈M3, a map EA : M2 →M2 by

EA(B) =
∑
ij

Aijv
∗
iBvj = V ∗(A⊗B)V.

In terms of these maps we can write the expectations of general tensor product observables in a
compact form:

〈ψ(n)
αβ |A1 ⊗ · · · ⊗Anψ(n)

αβ 〉

=
∑

i1,...,in−1
j1,...,jn−1

(A1)i1j1 · · · (An)in−1jn−1〈α | v∗i1 · · · v
∗
in−1

[EAn(|β〉〈β|)]vjn−1 · · · vj1 |α〉

= 〈α | EA1 ◦ · · · ◦ EAn(|β〉〈β|)|α〉.

This expression makes the calculation of the thermodynamic limit very transparent. Adding `+ 1
sites to the left and r to the right of the interval [1, n] gives the following expression for the
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expectation of A = 1l⊗` ⊗A1 ⊗ · · · ⊗An ⊗ 1l⊗r ∈ A[−`+1,n+r] in the vector state ψ
(`+n+r)
αβ :

〈ψ(`+n+r)
αβ |Aψ(`+n+r)

αβ 〉

= 〈α | E`1l ◦ EA1 ◦ · · · ◦ EAn ◦ Er1l(|β〉〈β|)|α〉
= Tr|α〉〈α|E`1l ◦ EA1 ◦ · · · ◦ EAn ◦ Er1l(|β〉〈β|)
= Tr(ET1l )`(|α〉〈α|)EA1 ◦ · · · ◦ EAn ◦ Er1l(|β〉〈β|)

Here, (ET1l ) denotes the transpose of ET1l with respect to the Hilbert-Schmidt inner product on M2.
The map E1l is called the transfer operator and its spectral properties control the limits lim`→∞

and limr→∞. Using (11.9) or (11.4) it is straightforward to verify the following diagonalization of
E1l:

E(1l) = 1l, E1l(σ
i) = −1

3
σi, i = 1, 2, 3.

Since, for B ∈M2

B =
1

2
(TrB)1l +

1

2

3∑
i=1

(TrBσi)σi,

we have

E1l(B) =
1

2
(TrB)1l− 1

3
[B − 1

2
(TrB)1l],

and therefore

(11.18) Ep1l(|β〉〈β|) =
1

2
‖β‖21l +

(
−1

3

)p
[|β〉〈β| − 1

2
‖β‖21l].

This implies

lim
`→∞,r→∞

〈α | E`1l ◦ EA1 ◦ · · · ◦ EAn ◦ Er1l(|β〉〈β|)|α〉

=
‖α‖2‖β‖2

2
Tr(

1

2
1l)EA1 ◦ · · · ◦ EAn(1l)

= ω(A1 ⊗ · · · ⊗An),(11.19)

where ω is a translation invariant pure state on AZ uniquely determined by the above expression
for simple tensor observables.

Define Q : M2 →M2 by

Q(B) =
1

2
(TrB)1l.

(11.18) then implies

‖Ep1l −Q‖ ≤
2

3p
.

By taking A2 = · · ·An−1 = 1l in (11.19), we obtain the following estimate for the two-point
correlation function of ω:

|ω(A1 ⊗ 1l⊗ · · · ⊗ 1l⊗An)− ω(A1)ω(An)| =

∣∣∣∣12TrEA1 ◦ (En−2
1l −Q) ◦ EAn

∣∣∣∣
≤ ‖A1‖‖An‖

C

3n
.

Thus we have shown exponential decay of correlations in the state ω. Next, we show that ω is the
unique zero-energy ground state of the AKLT chain.

Proposition 11.2. ω defined by (11.19) is the unique state on AZ such that ω(P
(2)
x,x+1) = 0, for all

x ∈ Z.
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Proof. Any state η on AZ is uniquely determined by its restrictions to the subalgebras A[a,b], a < b.

Let ρ[a,b] denote the density matrices of η restricted to A[a,b]. η(P
(2)
x,x+1) = 0, for x = a, . . . , b − 1,

implies that ranρ[a,b] ⊂ Gb−a+1. From (11.19) and Proposition 11.1 it then follows that, for all
a1 < b1 ∈ Z, Aa1 , . . . , Ab1 ∈M3, we have

η(Aa1 ⊗ · · · ⊗Ab1)

= lim
a→−∞
b→∞

Trρ[a,b]1l[a,a1−1] ⊗Aa1 ⊗ · · · ⊗Ab1 ⊗ 1l[b1+1,b]

= ω(Aa1 ⊗ · · · ⊗Ab1),

proving the claim. �

So far, we have proved that the AKLT model has two of the three characterizing properties of the
Haldane phase: it has a unique ground state and a finite correlation length. The third property,
the non-vanishing spectral gap above the ground state, can be proved by further exploiting the
structure of the ground states of the model. In order to avoid too much repetition, we will do this
in the more general context of arbitrary quantum spin chains with a finite number of ground states
that are of the MPS form (11.11).



77

11.2. Frustration free spin chains with a unique Matrix Product ground state. We
begin our discussion of general frustration free models in one dimension by stating a result about
the structure of the ground states of frustration free spin chains. This will serve as motivation to
analyzing in some detail the spin chains with unique MPS ground states and also set the stage for
studying some interesting generalizations, such as models with multiple ground states, examples of
frustration free chains for which the product structure is not expressed in terms of matrices but
in terms of operators on an infinite-dimensional Hilbert space, and frustration free models in more
than one dimension.

We start by considering spin systems on Z+ = {1, 2, · · · }, i.e., a half-infinite chain, with a d-
dimensional Hilbert space Hx = Cd, at each site x ∈ Z+. We assume that 0 ≤ h ∈ B(Cd ⊗Cd) is a
frustration free nearest neighbor interaction. By this we mean that the finite-volume Hamiltonians

H[1,L] =

L−1∑
x=1

hx,x+1,

where hx,x+1 = h ∈ A[x,x+1], have a non-trivial kernel for all L ≥ 2. Let G = kerh ⊂ Cd ⊗ Cd.
Then the frustration free property is equivalent to

(11.20)

L−1⋂
x=1

Cd ⊗ · · · ⊗ Cd︸ ︷︷ ︸
x−1

⊗G ⊗ Cd ⊗ · · · ⊗ Cd︸ ︷︷ ︸
L−1−x

6= {0}, for all L ≥ 2.

The set of states η on AZ+ such that η(hx,x+1) = 0, for x = 1, . . . , L−1, has weak-∗ limit points.
Any such limiting state ω satisfies ω(hx,x+1) = 0 for all x ∈ Z+. We will call such states zero-energy
states and, since they are defined as limits of finite-volume ground states, they are ground states in
the sense of Definition 6.2. The set of zero-energy states is a face in the set of all states, meaning
that any pure states appearing in the decomposition of a zero-energy state are also zero-energy
states. This shows that the set of pure zero-energy states on AZ+ for a nearest neighbor interaction
h ≥ 0 such that G = kerh satisfies (11.20), is non-empty. We have the following theorem about the
structure of such states.

Theorem 11.3 ( [22]). Let 0 ≤ h ∈ B(Cd ⊗Cd) such that G = kerh satisfies (11.20), and suppose
ω is a pure state on AZ+ such that ω(hx,x+1) = 0, for all x ≥ 1. Then, given an orthonormal basis

{|i〉 | i = 1, . . . , d} of Cd, there exists a Hilbert space K, a unit vector Ω ∈ K, and a set of operators
V1, · · · , Vd ∈ B(K) for which:
i) K is the closed linear span of

{Vi1 · · ·VinΩ | i1, · · · in ∈ {1, · · · , d} and n ≥ 0}

ii)
∑d

α=1 V
∗
αVα = 1l.

iii) For all n ≥ 1, i1, . . . , in, j1, . . . , jn ∈ {1, . . . , d}, we have

(11.21) ω (|i1, · · · , in〉〈j1, · · · , jn|) = 〈Vin · · ·Vı1Ω, Vjn · · ·Vj1Ω〉

iv) For every ψ =
∑d

i,j=1 ψi,j |i, j〉 ∈ G⊥, we have

(11.22)

d∑
i,j=1

ψi,jVjVi = 0.

v) Define the operator Ê : B(K)→ B(K) by

(11.23) Ê(X) =
d∑
i=1

V ∗i XVi, for all X ∈ B(K).



78

Then, for any X ∈ B(K), Ê(X) = X if and only if X = λ1l for some λ ∈ C.

In order to make the connection with the structure of the ground states we found for the AKLT
model in the previous section, consider K = C2, and define the maps EA : B(K) → B(K), for
A ∈Md, by

EA(X) =

d∑
i,j=1

〈i|A|j〉V ∗i XVi = V ∗(A⊗X)V, for all X ∈ B(K),

where V : K → Cd ⊗K is the isometry defined by

V ϕ =
d∑
i=1

|i〉 ⊗ Viϕ.

Then,

(11.24) ω(A1 ⊗ · · · ⊗An) = Tr|Ω〉〈Ω|EA1 ◦ · · · ◦ EAn(1l).

Since the space K for the AKLT model is finite-dimensional, the operators Vi and and the
transfer operator Ê are represented by matrices. Properties very similar to the ones we proved for
the AKLT model in Section 11.1, follow from the product structure whenever dimK <∞ without
further assumptions. This will be shown in the next section. We will also prove a general result
about the spectral gap of models with matrix product ground state.

11.3. Some properties of translation invariant matrix product states. In this section we
derive some general properties of states of a form very similar to (11.24) under the additional
assumption that k = dimK <∞. This is the case of Matrix Product States (MPS). The operators

Vi are now k × k matrices. Under the assumptions of Theorem 11.3 the transfer matrix Ê has a
simple eigenvalue 1. Its transpose, ÊT then also has a simple eigenvalue 1 and the Perron-Frobenius
theory for completely positive maps (see Appendix ??) then implies that there is a unique density

matrix ρ ∈ Mk such that ÊT (ρ) = ρ. Regarding ρ as a positive linear functional on Mk, we can
express this by the relation

(11.25) ρ(Ê(B)) = ρ(B), B ∈Mk.

By replacing |Ω〉〈Ω| by ρ in (11.24), we get expectations ω(A1⊗· · ·An) that are translation invariant.

Indeed, using Ê(1l) = 1l and (11.25) it is straighforward to verify that

(11.26) ω(A1 ⊗ · · · ⊗An) = ω(1l⊗A1 ⊗ · · · ⊗An) = ω(A1 ⊗ · · · ⊗An ⊗ 1l).

The positivity and normalization also follow directly from the definition. Therefore, the finite chain
expressions

(11.27) ω(A1 ⊗ · · · ⊗An) = TrρEA1 ◦ · · · ◦ EAn(1l).

define a unique translation invariant state on AZ.
In addition to the assumption that 1 is a simple eigenvalue of Ê, we will also assume in this section

that all other eigenvalues of Ê have modulus strictly less than one. This situation is referred as
a transfer matrix with trivial peripheral spectrum or, equivalently, that Ê is primitive. (see [70]).
Eigenvalues of absolute value 1 other than a simple eigenvalue 1, in general correspond to states
that are not pure but have a non-trivial decomposition into pure states.

If ρ is not faithful and has support projection P , then one can construct the same translation-
invariant pure state by replacing Vi with PviP , i = 1, . . . , d (see [21]). In the sequel we will assume
that P = 1l, i.e., that ρ > 0, or work with the modified vi if, originally, P 6= 1l. In particular, the
smallest eigenvalue of ρ is then strictly positive.
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For any faithful state ρ, i.e., a density matrix with trivial kernel, we can define a non-degenerate
inner product on Mk by

(11.28) 〈A,B〉ρ = TrρA∗B for all A,B ∈Mk ,

and let ‖ · ‖ρ denote the corresponding norm. Let ρmin = min spec(ρ). Since ρ is finite-dimensional,
we have ρmin > 0. It follows that the norm ‖ · ‖ρ is equivalent to the Hilbert-Schmidt norm on Mk,

‖A‖2 =
√

TrA∗A, i.e.

(11.29) ‖A‖22 = Tr[A∗A] ≤ Tr

[
ρ

ρmin
A∗A

]
=

1

ρmin
‖A‖2ρ for any A ∈Mk .

As in the case of the AKLT model, the trivial peripheral spectrum of Ê implies that there exists
C > 0 and λ ∈ (0, 1) such that

(11.30) a(n) :=
∥∥∥Ên − |1l〉〈ρ|∥∥∥ ≤ Cλn.

Since Ê(1l) = 1l, we have

(11.31)
∥∥∥Ên+1 − |1l〉〈ρ|

∥∥∥ =
∥∥∥Ê ◦ (Ên − |1l〉〈ρ|)

∥∥∥ ≤ ∥∥∥Ên − |1l〉〈ρ|∥∥∥
and therefore a(n) is monotone decreasing in n.

The following maps Γn : Mk → H[1,n] generalize the maps ψ(n)(·) of the AKLT model:

(11.32) Γn(B) =
∑
i1,...,in

Tr[Bvin · · · vi1 ]|i1, . . . , in〉, B ∈Mk.

These are the Matrix Product Ground states for finite chains of length n. We will now study the
vectors Γn(B) and the linear subspace spanned by them in some detail. We begin with a lemma
that estmates the inner product of two such vectors.

Lemma 11.4. For any B,C ∈Mk,

(11.33) |〈Γn(B),Γn(C)〉 − 〈B,C〉ρ| ≤ ka(n)‖B∗‖2‖C∗‖2 ≤
k

ρmin
a(n)‖B‖ρ‖C‖ρ

Proof. Recall (11.32).

〈Γn(B),Γn(C)〉 =
∑

i1,··· ,in

Tr[Bvin · · · vi1 ] · Tr[Cvin · · · vi1 ]

=
∑

i1,··· ,in

Tr[v∗i1 · · · v
∗
inB

∗]Tr[Cvin · · · vi1 ]

=
∑
α,β

∑
i1,··· ,in

〈α|v∗i1 · · · v
∗
inB

∗|α〉 · 〈β|Cvin · · · vi1 |jβ〉

=
∑
α,β

〈α| Ên (B∗|α〉〈β|C) |β〉

=
∑
α,β

〈α| |1l〉〈ρ| (B∗|α〉〈β|C) |β〉+
∑
α,β

〈α|
(
Ên − |1l〉〈ρ|

)
(B∗|α〉〈β|C) |β〉,(11.34)

where we have used the indices α and β to denote summation over the orthonormal basis of Ck.
Now the first term above is clearly

(11.35)
∑
α,β

〈α|1l|β〉Tr[ρ(B∗|α〉〈β|C)] = Tr[ρB∗C] = 〈B,C〉ρ
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and the remainder can then be estimated by

(11.36)
∑
α,β

∥∥∥Ên − |1l〉〈ρ|∥∥∥ ‖B∗|α〉‖ ‖C∗|β〉‖ ≤ a(n)k‖B‖2‖C‖2 ≤
a(n)k

ρmin
‖B‖ρ‖C‖ρ

where we have used both (11.29) and (11.42). �

It is clear that in the special case of C = B, the above lemma yields:

(11.37)
∣∣‖Γn(B)‖2 − ‖B‖2ρ

∣∣ ≤ k

ρmin
a(n)‖B‖2ρ

and if ‖B‖ρ 6= 0, then

(11.38)

∣∣∣∣‖Γn(B)‖2

‖B‖2ρ
− 1

∣∣∣∣ ≤ k

ρmin
a(n)

Thus, if kρ−1
mina(n) < 1, Γn is injective. Let us set b(n) = kρ−1

mina(n).
Let n0 be the smallest integer such that Γn is injective for all n ≥ n0. We will refer to n0 as the

injectivity length.
As the ρ inner product is non-degenerate, a simple consequence of this bound is that Γn is

eventually injective. In fact, the following corollary is immediate.

Corollary 11.5. For any B ∈Mk, the bound

(11.39) ‖B‖ρ
√

1− b(n) ≤ ‖Γn(B)‖ ≤ ‖B‖ρ
√

1 + b(n)

holds for n sufficiently large. Here ρminb(n) = ka(n) and n large means b(n) < 1.

Proof of Corollary 11.5. The bound

(11.40)
∣∣‖Γn(B)‖2 − ‖B‖2ρ

∣∣ ≤ b(n)‖B‖2ρ
follows immediately from (11.38). If B = 0, there is nothing to prove. Otherwise, this bound can
be re-written as

(11.41) − b(n) ≤ ‖Γn(B)‖2

‖B‖2ρ
− 1 ≤ b(n)

from which the above claim readily follows. �

This result shows that Γn is injective for sufficiently large n, i.e. that there exists n0 such that
for all n ≥ n0, we have dim ranΓn = k2. One can also show that, if Ê is primitive, regardless of the
values of λ and ρmin, Γn is injective for n ≥ k4 [70].

Let α1, . . . , αk be an orthonormal basis of Ck. Using Cauchy-Schwarz, we then have the following
pair of inequalities, which we will use to prove the next lemma:

(11.42)
k∑
j=1

‖B∗αj‖ ≤
√
k

√∑
j

‖B∗αj‖2 =
√
k‖B∗‖2 =

√
k‖B‖2 ≤

√
k

ρmin
‖B‖ρ

for any B ∈Mk.
Now consider three consecutive intervals (organized left-middle-right) with lengths `, m, and

r respectively. We wish to estimate the inner product of vectors ϕ ∈ G`+m ⊗ (Cd)⊗r and ψ ∈
(Cd)⊗` ⊗ Gm+r. If m ≥ n0, the maps Γm+r and Γ`+m are injective. Therefore there exist unique
matrices Bϕ(k1, . . . , kr), Bψ(i1, . . . , i`) ∈Mk, such that

(11.43) ϕ =
∑

k1,...,kr

Γ`+m(Bϕ(k1, . . . , kr))⊗ |k1, . . . , kr〉
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and similarly,

(11.44) ψ =
∑
i1,...,i`

|i1, . . . , i`〉 ⊗ Γm+r(Bψ(i1, . . . , i`)).

It will be convenient to define

(11.45) Cϕ =
∑

k1,...,kr

Bϕ(k1, . . . , kr)ρv
∗
k1
· · · v∗krρ

−1

and

(11.46) Dψ =
∑
i1,...,i`

v∗i1 · · · v
∗
i`
Bψ(i1, . . . , v`)

It will be useful to use the following notations: i = (i1, . . . , i`), j = (j1, . . . , jm),k = (k1, . . . , kr),
where each individual index takes value in {1, . . . , k}. We also define vi = vi` · · · vi1 , v∗i = v∗i1 · · · v

∗
i`

,
etc.

Lemma 11.6. Suppose that m is large enough so that b(m) < 1. (Thus m ≥ n0.) Let ` ≥ 0 and

r ≥ 0. For every ϕ ∈ G`+m ⊗ (Cd)⊗r and ψ ∈ (Cd)⊗` ⊗ Gm+r, we have the estimate

(11.47) |〈ϕ,ψ〉 − 〈Cϕ, Dψ〉ρ| ≤
b(m)

1− b(m)
‖ϕ‖‖ψ‖.

Proof.

〈ϕ,ψ〉 =
∑
i,j,k

Tr[v∗i v
∗
jBϕ(k)∗]Tr[Bψ(i)vkvj]

=
∑
i,k

〈Γm(viBϕ(k)),Γm(Bψ(i)vk)〉(11.48)

Now we apply Lemma 11.4. See that∣∣∣∣∣∣〈ϕ,ψ〉 −
∑
i,k

〈v∗iBϕ(k), Bψ(i)vk〉ρ

∣∣∣∣∣∣ ≤ b(m)
∑
i,k

‖viBϕ(k)‖ρ‖Bψ(i)vk‖ρ

≤ b(m)

√∑
i,k

‖viBϕ(k)‖2ρ
√∑

i,k

‖Bψ(i)vk‖2ρ(11.49)

by an application of Cauchy-Schwarz.
One now sees that∑

i,k

‖viBϕ(k)‖2ρ =
∑
i,k

Tr [ρBϕ(k)∗v∗i viBϕ(k)]

=
∑
k

Tr [ρBϕ(k)∗Bϕ(k)] =
∑
k

‖Bϕ(k)‖2ρ(11.50)

where we have used that

(11.51)
∑
i

v∗i vi = 1l

By (11.38), it is clear that

(11.52)
∑
k

‖Bϕ(k)‖2ρ ≤
1

1− b(`+m)

∑
k

‖Γm+`(Bϕ(k))‖2
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and by the orthonormality of the basis |k〉, we have

(11.53)
∑
k

‖Γm+`(Bϕ(k))‖2 = ‖ϕ‖2

The other factor is seen to be:∑
i,k

‖Bψ(i)vk‖2ρ =
∑
i,k

Tr [ρv∗kBψ(i)∗Bψ(i)vk]

=
∑
i

Tr
[(

Êt
)r

(ρ)Bψ(i)∗Bψ(i)
]

=
∑
i

‖Bψ(i)‖2ρ

≤ 1

1− b(m+ r)

∑
i

‖Γm+r(Bψ(i))‖2 =
‖ψ‖2

1− b(m+ r)
(11.54)

where we used that Êt(ρ) = ρ.
Thus the right-hand-side of (11.49) is bounded by

(11.55) b(m)
1√

1− b(`+m)

1√
1− b(m+ r)

‖ϕ‖‖ψ‖ ≤ b(m)

1− b(m)
‖ϕ‖‖ψ‖

where we have used the monotonicity property that follows from (11.31).
Note also that∑

i,k

〈viBϕ(k), Bψ(i)vk〉ρ =
∑
i,k

Tr
[
ρBϕ(k)∗v∗iBψ(i)ρρ−1vk

]
= Tr

[
ρ

(∑
k

ρ−1vkρBϕ(k)∗

)(∑
i

v∗iBψ(i)

)]
= 〈Cϕ, Dψ〉ρ(11.56)

as claimed. �

11.4. The commutation property. Consider a frustration free quantum spin chain with MPS
ground states such as, e.g., the AKLT chain. To start, we assume that Ê is primitive with a unique
density matrix ρ that is an eigenvector with eigenvalue 1 of ÊT , and WLOG we can assume that
ker ρ = {0}, the smallest eigenvalue of ρ, ρmin, is non-zero. Let Gn ∈ M⊗nd denote the orthogonal
projections onto Gn.

Proposition 11.7 (Commutation Property). For all m ≥ 1, ` ≥ 0, r ≥ 0, we have

(11.57)
∥∥∥(G`+m ⊗ 1l⊗r)(1l⊗` ⊗Gm+r)−G`+m+r

∥∥∥ ≤ εm,
where

(11.58) εm =
b(m)

(1− b(m))2
.

Proof. Since G`+m+r projects onto a subspace of the ranges of both G`+m ⊗ 1l⊗r and 1l⊗` ⊗Gm+r,
we have the identity

(G`+m ⊗ 1l⊗r)(1l⊗` ⊗Gm+r)−G`+m+r = (G`+m ⊗ 1l⊗r −G`+m+r)(1l
⊗` ⊗Gm+r −G`+m+r).

From this it is easy to see that to prove (11.57) is equivalent to showing that for all ϕ ∈ G`+m ⊗
(C)⊗r, ψ ∈ C⊗` ⊗ Gm+r, such that G`+m+rϕ = G`+m+rψ = 0, the have the following bound

(11.59) |〈ϕ,ψ〉| ≤ εm‖ϕ‖ ‖ψ‖.
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The inner product can be estimated by applying Lemma 11.6 and using the extra information
we have about the vectors ϕ and ψ. Since ϕ ∈ G`+m ⊗ (C)⊗r, there exists A ∈ Mk such that
Bϕ(k) = Avk, which allows us to determine Cϕ:

(11.60) Cϕ =
∑
k

Avkρv
∗
kρ
−1 = A(ÊT )r(ρ)ρ−1 = A.

Now, G`+m+rψ = 0 implies

(11.61) 〈Γ`+m+r(A), ψ〉 = 0, for all A ∈Mk.

In combination with Lemma 11.6 this gives

(11.62) |〈A,Dψ〉ρ| ≤
b(m)

1− b(m)
‖ψ‖ ‖A‖ρ,

and hence

(11.63) ‖Dψ‖ρ ≤
b(m)

1− b(m)
‖ψ‖.

By a similar reasoning, we find

(11.64) ‖Cϕ‖ρ ≤
b(m)

1− b(m)
‖ϕ‖.

Combining this information with Lemma 11.6 proves the proposition. �

Proposition 11.7 is referred to as the Commutation Property of the the ground states projections
because it directly implies a bound on the commutator:∥∥∥[G`+m ⊗ 1l⊗r, 1l⊗` ⊗Gm+r]

∥∥∥ ≤
∥∥∥(G`+m ⊗ 1l⊗r)(1l⊗` ⊗Gm+r)−G`+m+r

∥∥∥
+
∥∥∥G`+m+r − (1l⊗` ⊗Gm+r)(G`+m ⊗ 1l⊗r)

∥∥∥
≤ 2εm.

This property is closely related to the Factorization Property proved in [36] which, in turn, can be
seen to underly the Area Law for the entanglement entropy [33].

11.5. The martingale method and proof of non-vanishing spectral gap for quantum
chains with MPS ground states. The Commutation Property of Proposition 11.7 in combina-
tion with the frustration freeness of the spin chains with MPS ground states we are considering
in this chapter, can be seen to imply a uniform lower bound for the spectral gap of these models.
See, e.g., [21] or [64]. The martingale method is a simple argument that relates the quantity εm
to a lower bound for the spectral gap in an efficient way [49] and is based on an idea that has
been very useful in the context of classical interacting particle models [45] and other many-body
systems [12,13].

To present the martingale method in a transparant way, it is useful to identify the crucial
properties that make it work in the context of quantum spin systems.

The ground state space of a finite chain is the intersection of the ground state spaces of shorter
chains. We will describe this as a sequence of decreasing subspaces HN ⊃ G1 ⊃ G2 · · · ⊃ GN ,
which are the null spaces of a corresponding increasing sequence of non-negative Hamiltonians. For
n = 1, . . . , N , Hn ∈ B(HN ),Gn = kerHn, H1 ≤ H2 · · · ≤ HN . Note however, that although the
sequence Hn, n = 1, . . . , N , will typically be associated with the system on an increasing sequence
of finite volumes, the Hn do not have to coincide with the finite-volume Hamiltonians in terms of
which the model is defined. In general, we will have constants c, C > 0 such that

(11.65) cHN ≤ HΛN ≤ CHN ,

where HΛN is the finite-volume Hamiltonian of which we want the estimate the spectral gap.
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Define

(11.66) hn =

{
H1 if n = 1

Hn −Hn−1 if n = 2, . . . , N

and let Gn and gn ∈ B(H)N be the orthogonal projection onto kerHn and kerhn, respectively.
Of course, (11.66) is equivalent to assuming that Hn =

∑n
k=1 hk, and Hn will be increasing if we

require hk ≥ 0. Furthermore, define

(11.67) En =


1l−G1 if n = 0

Gn −Gn+1 if 1 ≤ n ≤ N − 1

GN if n = N

.

It is easily verified that the En are mutually orthogonal orthogonal projections forming a resolution
of the identity:

∑N
n=0En = 1l and EnEm = δn,mEn.

Assumptions for the Martingale Method:
(i) There is a constant γ > 0 such that hn ≥ γ(1l− gn), n = 1 . . . N .
(ii) There are integers ` ≥ 0, r ≥ 1, such that Ekgn = gnEk, if k 6∈ [n− `, n+ r].
(iii) There exists ε ∈ [0,

√
`+ r], such that Engn+1En ≤ ε2En, n = 1, . . . , N − 1.

Theorem 11.8. In the setup described immediately here above, assume the Assumption (i)–(iii)
hold. Let ψ ∈ HN such that GNψ = 0. Then

〈ψ,HNψ〉 ≥
γ

2
(1− ε

√
1 + `+ r)2‖ψ‖2.

Proof. By assumption ENψ = GNψ = 0. Hence

(11.68) ‖ψ‖2 =

N−1∑
n=0

‖Enψ‖2.

Using this, for all n = 0, . . . , N − 1, we have

‖Enψ‖2 = 〈ψ, (1l− gn+1)Enψ〉+ 〈ψ, gn+1Enψ〉

= 〈ψ, (1l− gn+1)Enψ〉+ 〈ψ,

(
N−1∑
m=0

Em

)
gn+1Enψ〉.(11.69)

By Assumption (ii) and the mutual orthogonality of the projections Em, the summation in the last
term can be reduced and we obtain

(11.70) ‖Enψ‖2 ≤ 〈ψ, (1l− gn+1)Enψ〉+ 〈ψ,

(
n+r∑
k=n−`

Ek

)
gn+1Enψ〉.

After applying the inequality

(11.71) |〈ϕ1, ϕ2〉| ≤
1

2c
‖ϕ1‖2 +

c

2
‖ϕ2‖2, ϕ1, ϕ2 ∈ H, c > 0,

two each of the two terms in (11.70), we find

‖Enψ‖2 ≤ 1

2c1
〈ψ, (1l− gn+1)ψ〉+

c1

2
〈ψ,Enψ〉

+
1

2c2
〈ψ,Engn+1Enψ〉+

c2

2
〈ψ,

(
n+r∑
k=n−`

Ek

)2

ψ〉.
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To estimate the first term of the RHS, we use Assumption (i). The second term can be combined
with the LHS. For the third term we use Assumption (iii). In the fourth term we can use the
mutual orthogonality of the Em. This gives

(11.72) (1− c1

2
− ε2

2c2
)‖Enψ‖2 −

c2

2

n+r∑
k=n−`

‖Ekψ‖2 ≤
1

2c1γ
〈ψ, hn+1ψ〉.

We now sum over n = 0, . . . , N − 1, use the fact the {En | n = 0, . . . , N} is a resolution of the
identity, and recall that ENψ = GNψ = 0. The result is

(11.73) 〈ψ,HNψ〉 ≥ 2c1γ

[
1− c1

2
− ε2

2c2
− c2(1 + `+ r)

2

]
‖ψ‖2.

We can maximize the constant in the RHS by choosing c1 = 1−ε
√

1 + `+ r and c2 = ε/
√

1 + `+ r.
This yields the inequality stated in the theorem. �

Let us now apply this theorem to the spin chains with a unique pure MPS ground state, such
as the AKLT chain. For simplicity of the notation, assume that the model is defined in terms of a
frustration-free nearest neighbor interaction 0 ≤ h ∈Md ⊗Md. Then, let m ≥ 1 and define

(11.74) hn =

(n+1)m−1∑
x=(n−1)m+1

hx,x+1.

Then, we have

Hn =
n∑
k=1

hk

H[1,(n+1)m] ≤ Hn ≤ 2H[1,(n+1)m]

En = G(n+1)m ⊗ 1l⊗(N−n)m −G(n+2)m ⊗ 1l⊗(N−n−1)m

gn = 1l⊗(n−1)m ⊗G2m ⊗ 1l⊗(N−n)m.

Assumption (i) is satisfied with γ given by the spectral gap of H[(n−1)m+1,(n+1)m]. Since m is fixed,
and the model is translation invariant this gap is positive and independent of n. Assumption (ii) is
satisfied with ` = 0, r = 1. For the spin chains with a unique pure MPS ground states (iii) follows
from the Commutation Property (Proposition 11.7). To see this, it suffices to express the quantities
En and gn+1 in terms of the ground state projection operators:

(11.75) ‖gn+1En‖ = ‖(1l⊗(n−1)m ⊗G2m)(G(n+1)m ⊗ 1l⊗m −G(n+2)m)‖ ≤ εm
where εm is the quantity estimate in Proposition 11.7. It then suffices to note that, for two
orthogonal projections G and E, one has

(11.76) ‖GE‖ ≤ ε⇔ EGE ≤ ε2E.
Other choices for the sequence Hn are possible and may provide more precise information in

some cases. E.g., if one is interested in estimating the spectral gap for finite systems with periodic
boundary conditions, it is useful to let HN−1 be comparable to the Hamiltonian of the chain with
open boundary conditions and HN the Hamiltonian for the system with the same Hilbert space but
with the additional term(s) that corresponds to considering periodic boundary conditions. Further
refinements of the method exist. See, e.g., [60].

The method can also be applied to some quantum spin models in higher dimensions as long as
one can find sequences of finite volumes and associate Hamiltonians such that the Assumptions
(i)-(iii) are satisfied. See, e.g., [7, 9] for a few examples in two and more dimensions.
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