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Abstract. We review some stochastic geometric models that arise from the study of certain quan-
tum spin systems. In these models the fundamental properties of the ground states or equilibrium
states of the quantum systems can be given a simple stochastic geometric interpretation. One thus
obtains a new class of challenging stochastic geometric problems.
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1. Introduction

Stochastic geometric methods have been very successful in the analysis of classical
lattice systems. Techniques from percolation theory, correlation inequalities etc.
have allowed for a tremendous progress in our understanding of these systems (see
e.g. the contributions of Grimmett and Newman in this volume [1, 2]). There
1s no direct analogue of this technology for quantum lattice systems and progress
of our understanding of the latter has been much slower. This is true at all levels:
numerical, theoretical, as well as mathematical. Restricting our attention to rigorous
work we find that a lot of it is based on indirect applications of “classical techniques”,
made possible by representing the system (typically ferromagnetic) in space-time
(3, 4]. Tlustrious exceptions are given by the work of Lieb, Schulz, and Mattis (5]
and e.g. [6]. One can hardly expect that for all quantum spin Hamiltonians H, e~##
would admit such a path-integral type representation with a non-negative measure.
What we found is that for a wide class of interactions, including some well-known
antiferromagnetic ones, one can in fact construct such a representation, on which
the powerful techniques available for classical systems (probability measures) can
then be brought to bear.

In this note I would like to show what kind of stochastic geometric models arise in
this way starting from quantum spin Hamiltonians, and I will discuss what the basic
issues are. In [7] we have obtained some interesting results for a particular family
of one-dimensional models. For an application of a similar stochastic geometric
representation to some random models see {8] and the contribution of Klein [9] in
this volume. For some other models that are frequently discussed in the physics
literature, the best problems remain open and we will briefly mention some of these.
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2. Poisson Integrals and the Stochastic Geometric Representation

For simplicity I will only treat one-dimensional quantum spin chains with near-
est neighbour interactions. For higher-dimensional models with possibly also non-
nearest neighbour interactions, a stochastic geometric representation is obtained by
a straigthforward generallzatlon T will also not describe the most general nearest
neighbour interactions that can be treated, but only discuss some simple and typical
examples. For a more general discussion the reader is referred to [7].

Let the Hamiltonian of a quantum spin chain of length 2L + 2 be of the form

L
= > Jelheps1— 1) (1)

r=-~L

where the J, are positve real constants and hz z4+1 is a hermitian operator acting
on the Hilbert space of the pair of sites {z,z + 1}. We assume that the state space
of one site is a fixed finite-dimensional Hilbert space and that the h, +1 are all
copies of one hermitian matrix h. Note that, because of the presence of the coupling
constants Jz, this does not imply that we only treat translation invariant models. We
now show that under some assumptions on h one can derive a stochastic geometric
representation for e"#HZ, One starts from the following Poisson integral formula:

e = [ ] p(d) Kw) @)

where:

- pi'ﬁ(dw) 1s the probability measure of a product of independent Poisson pro-
cesses, one for each bond {z,z + 1} in the chain, running over the time interval
[0, 8], and with rates J,. For the time being we draw the configurations w for
this process as in Figure 1.

— K(w) is a product of operators h; 41, one for each bond occurring in w and
ordered according to the times at which they occur.

An important quantity is the partition function Z; 5 = Tre=#H  which by (2)
and linearity of the trace is given by:

Zip = [ o () T K(w) 3)

We have found that for a quite large class of interactions k the following is true:
— TrK(w) > 0 for all w and this number can be computed in terms of relatively
simple geometric properties of w
—  the diagonal matrix elements of the operators K (w) are all non-negative in a
certain tensor product basis of the Hilbert space of the system.
Let us consider some elementary examples of this before we proceed. Recall that
h is a self-adjoint operator on the (finite-dimensional) Hilbert space V ® V of two
sites.

2.1. EXxaMPLE 1

Let h be the operator which interchanges the states of the two sites, i.e. h¢ @ ¥ =
Y ® ¢ for any two vectors ¢,v¥ € V. In any basis of V the matrix elements are 0 or 1
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Fig. 1. A typical configuration of the multiple Poisson process pi ﬁ(dw).

and a fortiori non-negative. K (w) represents a permutation m(w) of the sites of the
chain and its trace is easily seen to be p* <*'=i= "(¢) where p = dim V. The number
of cycles in w becomes a geometric property of the configuration if we replace the
Poisson- “beeps” by two horizontal lines that cross each other as in Figure 2. With
the convention of periodic boundary conditions in the vertical direction the number
of cycles in the permutation 7(w) is then equal to the number of loops in w, which
we will frequently denote by I(w).

With p = 2 this interaction is equivalent to the usual spin 1/2 Heisenberg ferro-
magnet.

2.2. EXAMPLE 2

Also the spin 1/2 Heisenberg antiferromagnetic interaction has a simple stochastic
geometric interpretation. The appropriate choice for h is the operator:

h=3(-1)""la, ~a) (e, —of (4)

a,f

where {]a)} is a basis of V given by the eigenvectors of the third component S
of the spin with eigenvalues «. For the spin 1/2 case dimV = 2 but the same
expressions defines an interesting interaction for any finite dimension (any magnitude
of the spin) and was proposed by Affleck {10] (also see [11, 12]). The interaction is
proportional to the projection operator onto the singlet vector for a pair of spins

ol
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Fig. 2. A typical configuration of the multiple Poisson process p i ﬁ(dw) decorated for the ferro-
magnetic models of Example 1.

and hence antiferromagnetic. It can be shown that the diagonal matrix elements
of the corresponding K(w) are non-negative and there is again a simple formula
for the trace. Each Poisson-“beep” is now replaced by two parallel horizontal lines
as shown in Figure 3. Again this turns w into a configuration of loops (assuming
periodic boundary conditions in the vertical direction) and Tr K (w) = p'®).

The examples given above are not the most general ones that can be treated but
they are in some sense the two basic ones. Unlike the their classical analogues quan-
tum ferro- and antiferromagnets behave in a very different way and it is therefore
not a surprise that they lead to two very different stochastic geometric models (of
course one can turn the argument around and say that it is no surprise now that
they behave very differently because they have very different stochastic geometric
representations).

We complete the stochastic geometric picture by establishing the relation between
expectation values of observables for the quantum spin system on the one hand and
probabilities of events (or more generally expectations of random variables) in a
probability measure describing the stochastic geometric model on the other hand.
From (2) it follows that for for any local observable A for the quantum spin chain

) e~ PHL
(A2 = =5y = [ M) Eu() (%)
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Fig. 3. A typical configuration of the multiple Poisson process pi ﬁ(dw) decorated for the anti-
ferromagnetic models of Example 2.

where
pdw) = (24 5) 7" pi, p(dw)Tr K (w) (6)
and
E,(A) = %‘%ﬁ’)) (™

p(dw) is a probability measure on the configurations w and for A fixed E,(4) is
a random variable. We found that for many important observables A this random

variable can in fact be given a simple geometric interpretation. Take e.g. A = SgSg.
One then finds:

303y _ C(S)I[(z‘,O) and (y,0) are on the same loop] for Ex. 1
Ew(SrSy) - { (—1)|$_yIC(S)I[(1:,O) and (y,0) are on the same loop | for Ex. 2 (8)

with C(S) = (35 __sm?)/(2S + 1) = S(S + 1)/3 and where (z,t) € [-L, L + 1] x
[0, 8] denotes a space-time point and I - ] denotes the indicator function of the event
described between the brackets. Hence, the spin-spin correlation is proportional to
the probability, with respect to the effective probability measure p{dw) on the space
of loop configurations, that two sites are on the same loop of w:

<5,35,3) _ ] C(S)Prob,((=,0) and (y,0) are on the same loop) for Ex. 1 (9)
Tyl (—1)'x—y!C(S)PI‘Ob#((z,O) and (y,0) are on the same loop) for Ex. 2
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Fig. 4. The configurations w for the antiferromagnetic models of Example 2 can be viewed as a
partion of the plane into connected clusters. By labeling the vertical strips n < z, n+1 alternatingly
A and B, the relation with a random cluster model becomes evident.

Now, we give a brief account of the main questions one would like to answer
about the stochastic geometric models of Example 1 and 2 and some generalizations
of these.

3. Discussion of Results and Open Problems

Example 2, in the limit L, — oo, was treated in quite some detail in [7], mainly for
the case of translation invariant or staggered (period 2) coupling constants J,. In
that work an important réle was played by the FKG structure [13] of the measure
p(dw). The relevant order structure on the space of configurations w takes into
account the antiferromagnetic nature of the model in the following way. The space-
time of the quantum spin chain is embedded in IR? and can be partitioned into
vertical strips of width 1 which we label alternatingly A and B, with the strip
0 < z < 1 getting the label A, as in Figure 4. The Poisson “beeps” occurring
in a strip with label A (B) are called A-bonds (B-bonds). A partial order on the
configurations w is defined by: w’ < w if the set of A-bonds in w is contained in
the set of A-bonds in w’ and the set of B-bonds in w contains the set of B-bonds
in w’. We consider the loops in w as the boundaries of a collection of connected
subsets (connected clusters) of the plane. Each such connected set consists of the
vertical strips n < z < n + 1 connected by horizontal bridges. All strips in a given
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cluster are either of the A or of the B type. Let C4(w) denote the number of
connected clusters of type A and Cp(w) the number of clusters of type B. With
these definitions one then has the following obvious properties: Na(w) and C4(w)
are decreasing functions of w and Np(w) and Cp(w) are increasing, where Ne(w)
denotes the number of bonds in w which occur in the strips of type C, C = A or
B. The measure p(dw) thus becomes a random cluster model. It was shown in [7]
that this random cluster model is actually the FK representation [14, 15] of a certain
two-dimensional Potts model (with the number of states per site ¢ = p?). Crucial
in the derivation of this equivalence are the following two relations:

{w) = Ca(w) + Cg(w) + constant (10)
Ca(w) - Cp(w) — Ng(w) + Np(w) = constant (11)

The first equation follows from the fact that each loop is the “outer” boundary of
a connected cluster (of either type A or type B). The second relation is a version
of a well-known formula due to Euler. The work of Burton and Keane [16] and
Gandolfi, Keane, and Russo [17] on two-dimensional correlated percolation models
provides us with some important a priori information about the possible geometries
of the connected clusters, in particular that the A- and B-clusters cannot percolate
simultaneously. This immediately shows that all loops are finite g-almost surely. By
(9) this corresponds to absence of Néel order for the quantum spin chains. Further
analysis leads to a proof of the Affleck-Lieb dichotomy for the class of models under
consideration [18]. We refer the reader to [7] for more details and other results.

The two-dimensional version of Example 2 (loops in three dimensions) it is ex-
pected that in the lim,yme—o0 liMg_ 00, and for p = 2 (the spin 1/2 model), Néel
order does occur (for p > 3 this has been shown by a different method in [6, 19]. In-
voking a result from Kohma and Tasaki [20], a proof of this conjecture would follow
from

Iim Pl‘obl_‘((z,O) and (y,0) are on the same loop) >0 (12)
|lz—y|—o00

To find interesting phenomena in Example 1, we have to consider 8 large but
finite and the dimension of the lattice three or higher. The aim would then also
be to prove (12). This would imply long-range order in the Heisenberg ferromagnet
at low temperatures and in high enough dimensions and solve an outstanding open
problem that has challenged many of the best mathematical physicists in the past
decades.

Finally I would like to mention a random loop model that arises from the spin-
1 Heisenberg antiferromagnetic chain. More generally we would like to study the
spin-1 chain (p = 3) with Hamiltonian:

H=> aS: Sep1+ (a = 1)(Ss - Sp41)? (13)

The stochastic geometric representation discussed below covers the range o € [0, 1].
Note that o = 0 is a special case of Example 2. A different stochastic geometric
representation for the a = 1 case and related models was used in [21, 22].



8 BRUNO NACHTERGAELE

a) b) c)

Fig. 5. a-b) The diagrams representing the two terms in the interaction of the spin-1 antiferro-
magnetic chain with Hamiltonian (13). ¢) The two lines in each vertical segment of w are paralle}
or crossing with equal probabilities.
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Fig. 6. A decorated configuartion w* of random loops for the model (14). The dotted blobs are
Bernoulli variables that with probability % attain the value “parallel” and with probability ,1—, the
value “crossed”.

The probability measure p(dw) for this model is of the form

—a 1 w”*
p(dw) = pf prL 5 (o) gy D 4“7 (14)
w*~w
with ¢ = 2 and where w now contains two types of horizontal bonds generated

with rates @ and 1 — « respectively. Bonds of the first type are replaced by the
diagram shown in Figure 5a, the bonds of the second type by the diagram of Figure
5b. w* is a configuration of loops obtained from w by the following decoration
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procedure: each vertical segment between bonds in w is drawn as a double line,
which, independently for each segment, can either be parallel or crossing with equal
probabilities (see Figure 5¢). The result is illustrated in Figure 6. [(w*) denotes the
number of loops in w* and X(w) is the number of vertical segments in w (so, 2X(w)
is the number of distinct w*’s obtained from w).

The main conjecture about this model is that the loop connectivity decays ex-
ponentially fast except at the point o = % [23, 24], ie. for all  # % there exist
C > 0,€ < 0o such that

Prob,‘((z,t) and (y, s) are on the same loop) < Ce~l@O)-(w.9ll/¢ (15)

The best constant £ for which (15) holds should diverge as o — £, indicating the

point of transition between the Haldane-phase with a unique ground state (o > %)
and the dimerized phase in which the translation symmetry of the chain is sponta-
neously broken (a < 1).
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