next up previous
Next: Practice Exercises Up: Problem 2 Previous: Problem 2

Solution to Problem 2

General form of an equation of a circle can be written as

ax2 + by2+ cx + dy + e =0.

STEP ONE : Substitute the general point (x,y) and the three given points in the equation to form the following homogenous linear system

$ \left\{ \begin{array}{rllll}
(x^2 + y^2) a &+ xb &+ yc &+ d &=0 \\
(1 +16)a &...
...-2)b &+ 3c &+ d &=0\\
(0+1)a &+ (0)b &+ (-1)c &+ d &=0\\
\end{array}\right.
$ The linear system in the matrix form can be written as AX = 0 with the coeeficient matrix A

$
A = \left[
\begin{array}{rrrr}
x^2 + y^2 & x & y & 1 \\
17 & 1 & 4 & 1 \\
13 & -2 & 3 & 1 \\
1 & 0 & -1 & 1
\end{array}\right]
$ , $ X=
\left[
\begin{array}{r}
a \\ b \\ c \\ d
\end{array}\right]
$ and $
\left[
\begin{array}{r}
0 \\ 0 \\ 0 \\ 0
\end{array}\right]
$

This linear system has a non-trivial solution if and only if $ \det(A) =0.$

So, let

$\left\vert
\begin{array}{rrrr}
x^2 + y^2 & x & y & 1 \\
17 & 1 & 4 & 1 \\
13 & -2 & 3 & 1 \\
1 & 0 & -1 & 1
\end{array}\right\vert
= 0
$

Use cofactor expansion along the first row, to obtain

$(x^2 + y^2)
\left\vert
\begin{array}{rrr}
1 & 4 & 1\\
-2 & 3 & 1\\
0 & -1 & 1
\end{array}\right\vert
$ $
- x
\left\vert
\begin{array}{rrr}
17 & 4 & 1 \\
13 & 3 & 1 \\
1 & -1 & ...
...y}{rrr}
17 & 1 & 4\\
13 & -2 & 3\\
1 & 0 & -1
\end{array}\right\vert
= 0
$

Simplify to get the equation of the circle


\begin{displaymath}\large 14(x^2+y^2) -4x -44y -58\end{displaymath}

The above method described in problem 1 and 2 cam be used to fine equation of a conic section (a parabola, hyperbola or ellipse), the general from of these section is given by $ \large ax^2 + by^2 + cx + dy + e =0$


next up previous
Next: Practice Exercises Up: Problem 2 Previous: Problem 2
Ali A. Daddel
1999-12-02