
ACTUALLY DOING IT:

POLYHEDRAL COMPUTATION AND ITS

APPLICATIONS
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Chapter 1

PART I: WHAT THIS

BOOK IS ABOUT

Dear Reader:

Disclaimer: These notes are still work in progress. There are still plenty
of errors and typos. Please proceed with caution!

I am convinced that what I present to you in these notes is a charming
beautiful and useful subject. I am sure of its beauty because most people,
even non-mathematicians, recognize polyhedra as amazingly gorgeous objects.
People buy polyhedra to decorate homes and offices at IKEA because of their
symmetry and elegance. Sadly, the public does not know that these beauties are
also useful in applications and pop-up in various areas of advanced mathematics.
It is my mission to show evidence of their utility (not just pretty but useful too!).
If you are not convinced of these fact after reading this introductory chapter you
probably should not buy this book! I hope that even if you are not a geometry
lover you will find enough compelling examples to show you polyhedra are not
just beautiful from outside, but the inside too!

These lectures have the short title “Actually doing it”, for two important
reasons. First, the lectures leave many propositions and theorems unproved
with the idea that the reader will jump in and provide their own argument
of truth (don’t worry, we give you a hand and hint). We think that learning
mathematics is best done by doing mathematics and that, in the spirit of the
Moore method, a dedicated student who seeks to find a proof of her own finds
great joy and learning doing so. A second reason for the title is our focus on the
computation and hands-on manipulation of polyhedra. Computers are helping
us create new mathematics, and polyhedra are no exception! We are interested
in actually finding the explicit numbers or detecting properties that are asked
about using a computer. We need the answer now not tomorrow! For this
reason, most of the lectures focus on algorithms to compute various properties
of polyhedra at the level that an advance undergraduate can understand. We
do not assume advance computer science knowledge either.
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2 CHAPTER 1. PART I: WHAT THIS BOOK IS ABOUT

The book has several “laboratory” activities to exercise this hands-on phi-
losophy we hope to guide the reader through the basics of using software to play
with polyhedra. Even if you are a novice, you will find it very easy to compute.
In the laboratories, we will talk about software, of course. The main software
we are going to use is POLYMAKE. It was a project started in 1997 by Ewgenij
Gawrilow and Michael Joswig. It is done in Germany. This is a collection of all
possible software so that you can do millions of calculations. The best part is
that all of the software is absolutely free for you to download. You won’t have
to pay a single dime or Euro.

1.1 An exciting adventure with many hidden

treasures...

Let us begin our adventure with a very quick bird-view of the subject. The
inmediate goal is to introduce you to the heroes of this adventure. In this
chapter we do not worry to be very formal but we show the wealth of the
topic, to get you excited! Polyhedra have been around for thousands of years
(the Greeks? the Babylonians?), thus one may get the wrong impression there
is nothing unknown about them. In general, the public sadly thinks math is
a dead subject used to torture young people. I wish more people knew that
mathematics research is alive and exciting thus I use Polyhedra as cheerleaders
for this noble cause. I list five easy-to-state questions which no expert can
answer! Go for it, try to think about them!

This lectures are about convex polyhedra. We are sure you have seen
pictures such as those in Figure 1.1

Figure 1.1: All are polyhedra, except the one with hair

but convex polyhedra are not like those in Figure 1.2
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Figure 1.2: Polyhedra but not convex!

We will only talk about convex polyhedra in Euclidean space. A convex
set S is one for which between any pair of points, the entire line segment is
contained in S.

NOT   CONVEX   CONVEX

Figure 1.3: Thus a convex set does not look like a croissant!

A hyperplane is given by a linear equation breaks Euclidean space into two
pieces called halfspaces (see Figure 1.4). A convex polyhedron is a bounded
subset of Euclidean space that you obtain by intersecting a finite number of
half-spaces.

Figure 1.4: A halfspace

What about an infinite number of halfspaces? Can those give polytopes?
Well, yes, but in fact the same set would have been easily defined with finitely
many half-spaces, thus why waste so much? On the other hand, all other con-
vex figures such as a circle or an ellipse can also be written as intersection of
halfspaces, but one requires infinitely many of them for sure and thus they are



4 CHAPTER 1. PART I: WHAT THIS BOOK IS ABOUT

not polyhedra. One can be very explicit. A polyhedron has a representation as
the set of solutions of a system of linear inequalities.

a1,1x1 + a1,2x2 + · · · + a1,dxd ≤ b1

a2,1x1 + a2,2x2 + · · · + a2,dxd ≤ b2

...

ak,1x1 + ak,2x2 + · · · + ak,dxd ≤ bk

Each inequality represents one halfspace (chosen implicitly by the direction
of the inequality). Note that this allows the possibility of using some equations
too. We will use the standard matrix notation Ax ≤ b to denote the above
system. This is a natural extension of linear algebra. We teach our students how
to solve systems of equalities, so why not inequalities? Here’s a little exercise
that will make the transition from linear algebra to polyhedra geometry more
natural: Convince yourself that one can represent a polyhedron as a system of
linear inequalities with only non-negative variables {x : Ax ≤ b x ≥ 0}. Now,
not all polyhedra are bounded (why?), but we focus most of our attention on
bounded polyhedra, which will receive the name of polytopes. We will revisit
this with more detail later.

The most evident feature on the “anatomy” of a polytope are its faces. What
is a face? Essentially, the moment you approach with a hyperplane, at some
point the plane touches the polyhedron. That’s what you call a face. So, a
“corner” is a face. A triangle, of an icosahedron, is a face too. An edge is a
face. See Figure 1.5.

From the system of inequalities one can recover the list of all the faces of
different dimensions. Already this is so simple, but we are going to be asking
some good questions about them!

The great swiss mathematician Leonard Euler (Figure 1.6) was one of the
first to think about the possible numbers of faces of a polytope and the numeric
relations between them. Today we know this question is strongly related to other
areas of mathematics such as topology, algebraic geometry and combinatorics.
You may have heard of Euler’s surprising equation f0 − f1 + f2 = 2, where
f0 is the number of 0-dimensional faces (or vertices), f1 is the number of 1-
dimensional faces (known as edges), and f2 is the number of 2-dimensional
faces (or facets). You can ask the question, if you give me three numbers, and
assign them to the numbers f1, f2, f3, is this triple of numbers coming from a
polyhedron? It turns out we know the answer to this question. In 1906, Steinitz
(another Swiss mathematician) proved

Theorem 1.1.1 A vector of non-negative integers (f0, f1, f2) is the f -vector of
a 3-dimensional polytope if and only if

1. f0 − f1 + f2 = 2
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Figure 1.5: faces of a pyramid, described as it is supported on a plane

2. 2f1 ≥ 3f0

3. 2f1 ≥ 3f2

These inequalities make sense, right? The smallest 2-dimensional face must
look like a triangle. So, the third inequality indicates if each edge gets counted
twice we must have at least three times the number of facets. One can ac-
tually find a polytope for each possible triple of non-negative integers vector
that satisfies the inequalities. The proof is very long and elaborate. Steinitz
demonstrated that if you start chopping off edges and corners, you can get other
polytope starting with a tetrahedron. Nevertheless, here we are in the year 2010
and we don’t know a similar set of conditions in dimension four. Here is a first
concrete question where mathematicians don’t know the answer.

OPEN PROBLEM 1: Can one find similar complete set of conditions char-
acterizing f-vectors of 4-dimensional polytopes? In this case the vectors have
4 components (f0, f1, f2, f3).

A way to visualize 4-dimensional polyhedra is through Schlegel diagrams.
This is similar to what you may know as stereographic projection. I take my
triangular prism and a light source. When I shine the light through the polytope,
then I have a projection to the floor (see Figure 1.7 we see this construction for
a prism). In Figure 1.8 we see the Schlegel diagrams of the five Platonic solids.

This is a methodology to go from d dimensions to d− 1 dimensions. This is
one way to see four dimensions. Let’s look at the Schlegel diagram of the 4-cube.
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Figure 1.6: Leonard Euler

Figure 1.7: Schlegel diagram of a prism

You see it in Figure 1.9, why is the outside bounding box is a 3-dimensional
cube?

Schlegel diagrams are not the only way to visualize polyhedra in high di-
mensions. Imagine that you have scissors. The natural thing is to take it and
start cutting it. Cut, cut, cut along the edges (of a 3-polytope). You open it,
and you might obtain a net. See Figure 1.10.

There are computer programs that you can use to print these unfoldings or
nets. The unfolding is not unique. See Figure 1.11 unfolding of cubes. Instead
of having scissors, imagine you have meta-scissors. If anybody is familiar with
the art of Salvador Daĺı, he used such unfoldings in surrealistic version of the
crucifixion of Jesus. See Figure 1.11.

Now, you don’t want to do a stupid unfolding. You cannot print out over-
lapping unfoldings because the overlaps will prevent you from reconstructing
. You want to avoid these self-intersections. Is it always possible to cut in a
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Figure 1.8: Schlegel diagrams of the Platonic solids

Figure 1.9: Schlegel diagram of a 4-dimensional cube
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Figure 1.10: A dodecahedron and two of its unfoldings

Figure 1.11: Net unfoldings of cubes
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nice organized way to get a non-self-intersecting unfolding? Well, my friends,
nobody knows the answer! This is a simple question for a elementary school
kid, and we’re all on the same knowledge for the answer.

OPEN PROBLEM 2: Can one always find an unfolding that has no self-
overlappings?

One natural question is the number of unfoldings. It is not known if there
is a bound in terms of the f -vector. The exact number of cuts needed is to
find a spanning tree on the (dual) graph. For every spanning tree, you have
an unfolding. The question is, is there a spanning tree corresponding to a non-
overlapping? I just happened to pick the wrong unfoldings in Figure ??.

Figure 1.12: When unfoldings go wrong and overlap

The questions we discussed so far lie within pure mathematics, but Polyhe-
dra are useful in practical calculations. I will touch briefly on some questions
arising from applied mathematics. Linear Programming is a part of Optimiza-
tion where you are given a polyhedron (a system of linear inequalities) in R

n

and you want to find a point inside it that maximizes a certain linear function
C = C1x1 + C2x2 + · · · + Cdxd. It turns out that a maximal solution is always
found at a “corner”, a vertex. Solving linear programs is a useful operation
performed thousands of times in various application domains (see []) In mathe-
matical terms, you are trying to find the best vertex, the vertex with the best
value on this function C. A linear program is written as

maximize C1x1 + C2x2 + · · · + Cdxd

among all x1, x2, . . . , xd, satisfying:
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a1,1x1 + a1,2x2 + · · · + a1,dxd ≤ b1

a2,1x1 + a2,2x2 + · · · + a2,dxd ≤ b2

...

ak,1x1 + ak,2x2 + · · · + ak,dxd ≤ bk

George Dantzig invented the simplex algorithm to solve linear programs. It
goes as follows: We already know the optimal solution is found at a vertex. So,
let’s start at a vertex. Then, let’s try to find an adjacent vertex that is better.
If that is not already optimal, then move again. Do this again and again. Then
you reach a vertex where all neighbors are worse. The union of the vertices
and edges of a polytope define its graph. The simplex method walks along the
graph of the polytope, each time moving to a better and better cost. following
beautiful question: How many steps do I need to arrive to an optimal solution?

Figure 1.13: George Dantzig

Performance of the simplex method depends on the diameter of the graph of
the polytope, i.e., the largest distance between any pair of nodes. The diameter
is the largest distance between any pair of nodes. The Hirsch conjecture says
that the diameter of a polytope is the number of facets1 minus its dimension.
This problem remains unsolved after more than 50 years.

1Facets are the faces of highest dimension
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OPEN PROBLEM 3: ((the Hirsch conjecture) The diameter of a polytope
P is at most # of facets(P ) − dim(P ).

One of the practical reasons people started to look at polytopes is their vol-
ume (or more general integration of functions over polyhedral regions). The
Egyptian pyramid is one of the most famous early polytopes. One of the com-
putations we will look at is how to efficiently compute the volume of polytopes.
We pretend that we teach this to calculus students. I’m going convince you that
there’s much more to it than you can imagine.

For instance, one of the interesting things about computing volumes of poly-
hedra is whether using limits is necessary. We tell students to use calculus (and
thus use a limit) in integration, but perhaps you can avoid using limits. Here’s
one case where we dont limits. Modify the pyramid to have its apex over one
of the base vertices (see Figure ??). If I take three copies of this “distorted”
Egyptian pyramid, then I would get a cube. So, three times the volume of the
bad Egyptian pyramid is the volume of the cube. That is a special case of the
formula we know for all pyramids: one third of the area of the base times the
height.

Figure 1.14: distorted Egyptian pyramid

In dimension two, one can show that no limits are necessary either. If you
give me two polygons of equal area, I can use scissors to cut and rearrange the
pieces to transform one into the other. In two dimensions, any two polytopes of
the same area are equidecomposable (See Figure 1.1). This theorem was proved
by Bolyai, the father of Janos Bolyai, co-inventor of non-Euclidean geometries.
A finite algorithm exists to find the transformation, and this implies you don’t
need limits to compute areas of polygons because we already know the area of a
rectangle. The famous 20th century mathematician David Hilbert asked if any
two convex 3-dimensional polytopes of the same volume are also equidecompos-
able. The answer was found less than a year later by Max Dehn.

He proved that there are two 3-polytopes that have the same volume but
yet are not equidecomposable! Dehn showed limits are already necessary in the
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Figure 1.15: David Hilbert

computation of In some sense, the bad news indicates that you need to study
calculus after all (darn!). Nevertheless, we will look at new ways to compute
that won’t look like we need to draw the symbol of integration. It’s a new
technology that’s not in textbooks yet.

Since we know a formula to compute the volumes of tetrahedra (and pyra-
mids) another way to compute volumes is to decompose polytopes into tetrahe-
dra and then add the volumes of each piece. But how to decompose or triangu-
late a polytope? We will look at ways to triangulate a tetrahedron. Consider
the example of the hexagonal bipyramid show in Figure ??. You can peel it
like an orange, or you can start by decomposing into two pyramids and trian-
gulate each. Is there a nice way to find all triangulations of a polyhedron? For
triangulation here, I am not allowed to add any new vertices.

Another open problem: You give me a 3-dimensional polytope. If you give
me triangulations of two different sizes, is there a triangulation of every inter-
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6 8

Figure 1.16: many ways to triangulate a bipyramid

mediate size? We don’t know!
OPEN PROBLEM 4: If for a 3-dimensional polyhedron P we know that there
is triangulation of size k1 and triangulations of size k2, with k2 > k1 is there a
triangulation of every size k, with k1 < k < k2?

Another practical problem is to count the number of lattice points inside
a polyhedron. A wide variety of topics in pure and applied mathematics in-
volve the practical problem of counting the number of lattice points inside a a
polytope. Applications range from the very pure (number theory, commutative
algebra, representation theory) to the most applied (cryptography, computer sci-
ence, optimization, and statistics). For example, An emerging new application of
lattice point counting is computer program verification and code optimization.
The systematic reasoning about a program’s runtime behavior, performance,
and exe cution requires specific knowledge of the number of operations and re-
source allocation within the program. This is importan t knowledge for the sake
of checking correctness as well as for automatically detecting run-time errors,
buffer overflows, null-pointer dereferen ces or memory leaks. For example, how
often is instruction I of the following computer code executed?

void proc(int N, int M)
{
int i,j;
for (i=2N-M; i<= 4N+M-min(N,M), i++)
for(j=0; j<N-2*i; j++)
I;

}

Clearly, the number of times we reach instruction I depends parametrically
on N,M. In terms of these parameters the set of all possible solutions is given by
the number of lattice points inside of a parametrized family of polygons. In our
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toy example these are described by the conditions {(i, j) ∈ Z2 : i ≥ 2N−M, i ≤
4N + M − min(N, M), j ≥ 0, j − 2i ≤ N − 1}.

When you count lattice points, you can approximate the volume. If you
dilate a polytope to be larger, it’s essentially the same as making a smaller
lattice. It’s the same as adding tiny little cubes around the lattice points. So,
it’s like a Riemann Integration. Integration is another reason to look at counting
lattice points.

Many objects can be counted as the lattice points in some polytope: Exam-
ples include, Sudoku configurations, routes on a network, and magic squares.
These are n×n squares whose entries are non-negative integers with sums over
rows columns and diagonals equal to a constant, the magic number (see Figure
1.17. Mathematically, the possible magic squares are non-negative integer solu-
tions of a system of equations and inequalities: 2n + 2 equations, one for each
row sum, column sum, and diagonal sum. For example for 4×4 magic squares of
magic sum 24 we have x11+x12+x13+x14 = 24, first rowx13+x23+x33+x43 =
24, third column, and of course xij ≥ 0

5

12 0 5 7

0 12 7 5

7 5 0 12

5 7 12 0

Figure 1.17: 4 × 4 magic squares with magic sum 24

One beautiful puzzle is to determine the number of magic squares of a given
size. This problem is really asking about the number of lattice points in a
particular polytope. We can ask

OPEN PROBLEM 5: Find a formula in terms of k for the number of 30×30
magic squares with magic sum k.

It is already non-trivial to figure out one concrete value, say k = 10. This
is a challenge of computation which is well beyond humanity’s reach today.

1.2 The Rest of this Book

• Basic polyhedral geometry. (week 2) Representation of polyhedra, dimen-
sion.
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• Rules of computation and measuring efficiency introduction to POLY-
MAKE. (week 1)

• Computer representation of polytopes: facets vs. vertices, chirotopes.
(week 3-4)

• Visualization of Polytopes: Schlegel Diagrams, Nets, Gale Transforms,
Slices and Projections. (week 5)

——————–

• Polytope graphs (project).

• Finding decompositions and triangulations. (project)

• Volumes, integrals, and discrete Sums over polytopes. (project)

• Containment, Distance, Width, and Approximation problems. (project)

• Symmetry of polytopes and polyhedra. (project)
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Chapter 2

PART II: Basics of

Polyhedral Geometry

We will get more technical during this session (Let’s make very precise the
meanings of our words). We assume the reader is comfortable with linear algebra
and the basics of analysis. We also assume the reader has studied the first
thirteen sections of the lecture notes Theory of Convex Sets by G.D. Chakerian
and J.R. Sangwine-Yager

2.1 Polyhedral Notions

Everything we do takes place inside Euclidean d-dimensional space R
d
. We

have the traditional Euclidean distance between two points x, y defined by
√

(x1 − y1)2 + . . . (x2 − y2)2. Given two points x, y. We will use the common

fact that R
d

is a real vector space and thus we know how to add or scale its
points.

Definition 2.1.1 A subset S of Rn is called convex if for any two distinct
points x1, x2 in S the line segment joining x1, x2, lies completely in S. This is
equivalent to saying x = λx1 +(1−λ)x2 belongs to S for all choices of λ between
0 and 1.

In general, given a finite set of points A = {x1, . . . , xn}, we say that a linear
combination

∑

γixi is

• an affine combination if
∑

γi = 1

• a convex combination if it is affine and γi ≥ 0 for all i.

17
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We will assume that the empty set is also convex. Observe that the intersec-

tion of convex sets is convex too. Let A ⊂ R
d
, the convex hull of A, denoted by

conv(A), is the intersection of all the convex sets containing A. In other words,
A is the smallest convex set containing A. The reader can check that the image
of a convex set under a linear transformation is again a convex set.

Recall from linear algebra that a linear function f : R
d
→ R is given by a

vector c ∈ R
d
, c (= 0. For a number α ∈ R we say that Hα = {x ∈ R

d
: f(x) =

α} is an affine hyperplane or hyperplane for short. Note that a hyperplane

divides R
d

into two halfspaces H+
α = {x ∈ R

d
: f(x) ≥ α} and H−

α = {x ∈ R
d

:
f(x) ≤ α}. Halfspaces are convex sets.

We begin with the key definition of this notes:

Definition 2.1.2 The set of solutions of a system of linear inequalities is called
a polyhedron. In its general form a polyhedron is then a set of the type

P = {x ∈ R
d

:< ci, x >≤ βi}

for some non-zero vectors ci in R
d

and some real numbers βi.

In other words A polyhedron in R
d

is the intersection of finitely many halfspaces.
By the way, the plural of the word polyhedron is polyhedra.

Lemma 2.1.1 Let Ax ≤ b, Cx ≥ d, be a system of inequalities. The set of
solutions is a convex set.

Write a proof!
Although everybody has seen pictures or models of two and three dimen-

sional polyhedra such as cubes and triangles and most people may have a mental
picture of what edges, ridges, or facets for these objects are, we will formally
introduce them later on. Now another important definition:

Definition 2.1.3 A polytope is the convex hull of a finite set of points in R
d
.

Lemma 2.1.2 For a set A ⊂ R
d

we have that conv(A) equals the set of all

possible convex combinations. In particular, for a finite set of points in R
d

A := {a1, a2, . . . , an} we have that conv(A) equals
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{
n

∑

i=1

γiai : γi ≥ 0 and γ1 + . . . γn = 1}

Exercise: Write a proof!
Related to minimal size representations of a vector as a convex combinations

we have

Theorem 2.1.3 (Carathéodory’s Theorem) If x ∈ conv(S) in Rd, then x
is the convex combination of d + 1 points in S.

Write a proof
You can actually find d + 1 points that actually suffice to write a point in

the set. If you have, for instance

x ∈
N

∑

i=1

γiyi

for some huge number N , the theorem here guarantees that you can do this using
a sum of not so many summands. This is not necessarily about polytopes. This
is a true fact about convexity in general. In polytopes, you have the advantage
that you know the set S is already finite to start with. As a corollary, all triangles
of a polygon (using the vertices of the polygon) must cover the polygon.

Now it is easier to speak about examples of polytopes. We invite you to find
more on your own! Here are some basic examples.

1. Standard Simplex Let e1, e2, . . . , ed+1 be the standard unit vectors in

R
d+1

. The standard d-dimensional simplex ∆d is conv({e1, . . . , ed+1}).
From the above lemma we see that the set is precisely

∆d = {x = (x1, . . . , xd+1) : xi ≥ 0 and x1 + x2 + · · · + xd+1 = 1}.

Note that for a polytope P = conv({a1, . . . , am}) we can define a linear
map f : ∆m−1 → P by the formula f(λ1, . . . ,λm) = λ1a1 + · · · + λmam.
Lemma 2.1.2 implies that f(∆m−1) = P . Hence, every polytope is the
image of the standard simplex under a linear transformation. A lot of the
properties of the standard simplex are then shared by all polytopes.

2. Standard Cube Let {ui : i ∈ I} be the set of all 2d vectors in R
d

whose
coordinates are either 1 or -1. The polytope Id = conv({ui : i ∈ I} is
called the standard d-dimensional cube. The images of a cube under
linear transformations receive the name of zonotopes.

Clearly Id = {x = (x1, . . . , xd) : −1 ≤ xi ≤ 1}
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3. Standard Crosspolytope This is the convex hull of the 2d vectors
e1,−e1, e2,−e2, . . . , ed,−ed. The 3-dimensional crosspolytope is simply
an octahedron.

4. A d-pyramid is the convex hull of a (d − 1)-polytope Q and a point not
in the affine hull of Q.

5. A d-prism is the convex hull of two (d− 1)-polytopes P, P ′ where P ′ is a
translate of P that does not lie in the affine hull of P .

6. A d-bipyramid is the convex hul of a (d − 1)-polytope and a segment
that intersects the interior of P , with one point on one side of the affine
hull of P and the other end point on the other side.

Let P be a polytope in R
d
. A linear inequality f(x) ≤ α is said to be valid

on P if every point in P satisfies it. A set F ⊂ P is a face of P if and only
there exists a linear inequality f(x) ≤ α which is valid on P and such that
F = {x ∈ P : f(x) = α}. In this case f is called a supporting function of F and
the hyperplane defined by f is a supporting hyperplane of F .

For a face F consider the smallest affine subspace aff(F ) in R
d

generated by
F . Its dimension is called the dimension of F . Similarly we define the dimension
of the polytope P . We like to think of the polytope and the empty set as faces.
They are honorary faces of the polytope!

Another, equivalent definition of dimension is in terms of affine indepen-
dence. This generalizes the notion of linear independence. We say that a set of
points is affinely dependent if there is a linear combination of the xi equal to
0, where

∑

γi = 0 but not all γi are zero. One can prove that A set of d + 2
points in Rd is always affinely dependent. A set of points that is not affinely
dependent is affinely independent. The dimension of subset X of R

n
can be

defined as the size of any maximal affinely independent set of points in X .

Definition 2.1.4 A point x is a convex set S is an extreme point of S if it is
not an interior point of any line segment in S. This is equivalent to saying that
when x = λx1 + (1 − λ)x2, then either λ = 1 or λ = 0.

Lemma 2.1.4 Every vertex of a polyhedron is an extreme point.

Exercise: Write a proof!!

2.2 The characteristic features of Polyhedra

We want to be able to compute the essential features of a polyhedron or a poly-
tope. Among them we wish to find out what are their faces or extreme points,
we wish to know what is their dimension, whether the polyhedron in question is
empty or not. We want to answer such questions with concrete practical algo-
rithms. So far we have consider polyhedra as given by a system of inequalities
of the form Ax ≤ b. Now we disclose other equivalent representations:
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2.2.1 Equivalent representations of polyhedra, dimension
and extreme points

Lemma 2.2.1 Given a bounded polyhedron P = {x ∈ Rn | Ax ≤ b} then

• There is a translation of P that can be represented with in the form {x ∈
Rn : A′x ≤ b′ and x ≥ 0}.

• There is a polyhedron of the form Q = {x ∈ Rq : Bx = c, x ≥ 0} such that

– the coordinate-erasing linear projection

π : Rq −→ Rn : x = (x1, . . . , xn, . . . xq) )→ π(x) = (x1, . . . , xn)

provides a bijection between Q and P .

– The bijection implies that π(Q ∩ Zq) = P ∩ Zn.

– y ∈ Q is an extreme point if and only if π(x) is an extreme point of
P

– dim(Q) = dim(P ).

Write a proof

Lemma 2.2.2 The set of all n × n matrices whose sums along rows, columns,
or diagonals are equal to the same constant (magic squares) k is a bounded
polyhedron

Exercise: Write a proof
We will state a lemma that will allow us to compute the dimension from a

polyhedron. From Theorem ?? it is enough to explain it for polyhedra given
in the form {x : Ax = b}. A face of dimension 0 is called a vertex. A face of
dimension 1 is called an edge, and a face of dimension dim(P ) − 1 is called a
facet. The empty set is defined to be a face of P of dimension −1. Faces that
are not the empty set or P itself are called proper. Let us look at a simple
recipe for the dimension.

Lemma 2.2.3 Given P = {x ∈ Rn | Ax = b x ≥ 0}, the dimension of P is
n − rank(A).

Write a proof
Given the example we have for the 4× 4 magic squares, the matrix A is

























1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

























(2.1)
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This matrix is not full rank. The rank of A is 7. There are sixteen variables.
So, by the lemma above, the dimension is 16− 7. The formula has been verified
in this example.

Lemma 2.2.4 The dimension of the polyhedron Mn×n(k) of all n × n magic
squares with magic sum is equal to (n − 1)2.

Write a proof

Theorem 2.2.1 Consider the polyhedron given by Ax = b, x ≥ 0. Suppose the
m columns Ai1 , Ai2 , . . . , Aim

of the m × n matrix A are linearly independent
and there exist non-negative numbers xij

such that

xi1Ai1 + xi2Ai2 + · · · + xim
Aim

= b.

Then the points with entry xij
in position ij and zero elsewhere is an extreme

point of the polyhedron P = {x : Ax = b, x ≥ 0}.

Proof: Suppose x is not a extreme point. Then x lies in the interior of a line
segment in P = {y : Ay = b, y ≥ 0}. Thus x = λu + (1 − λ)v with λ between 0
and 1. But this implies, by looking at the entries of x that are zero, that u, v
also have that property. Now, consider y = x − u. A(x − u) = 0 but since the
columns Ai1 , Ai2 , . . . , Aim

are linearly independent, x = u, a contradiction.

Theorem 2.2.2 Suppose x = (x1, . . . , xn) is an extreme point of a polyhedron
P = {x : Ax = b, x ≥ 0} with A an m × n matrix. Then

1) the columns of A which correspond to positive entries of x form a linearly
independent set of vectors in Rm

2) At most m of the entries of x can be positive, the rest are zero.

Proof: Suppose the columns are linearly dependent. Thus there are coefficients,
not all zero, such that ci1Ai1 + ci2Ai2 + · · · + cim

Aim
= 0

Thus we can form points
(xi1 − dci1)Ai1 + (xi2 − dci2)Ai2 + · · · + (xim

− dcim
)Aim

= b
(xi1 + dci1)Ai1 + (xi2 + dci2)Ai2 + · · · + (xim

+ dcim
)Aim

= b
Since d is any scalar, we may choose d less than the minimum of xj/|cj | for

those cj (= 0.
We have reached a contradiction! Since x = 1/2(u) + 1/2(v) and both u, v

are inside the polyhedron. For part (2) simply observe that there cannot be
more than m linearly independent vectors inside Rm.

Exercise 2.2.5 Find all the extreme points of the polyhedron M3×3(1).

Write a solution!

Definition 2.2.3 A basic solution is a a solution of the system Ax = b where
n − m variables are set to zero. If in addition the solutions happens to have
x ≥ 0 then we say is basic feasible solution.

In any basic solution, the n − m variables which are set equal to zero are
called nonbasic variables and the m variables we solved for are called the basic
variables.
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We can rephrase the above results by saying that the extreme points of the
polyhedron P = {x : Ax = b, x ≥ 0} are precisely the basic feasible solutions.
By Krein-Milman’s theorem we know now that if P is bounded then it is the
convex hull of its basic feasible points.

Lemma 2.2.6 Every basic feasible of a polyhedron {x : Ax = b, x ≥ 0} is a
vertex.

Corollary 2.2.7 For a polyhedron of the form P = {x : Ax = b, x ≥ 0}, the
sets of basic feasible solutions, vertices, and extreme points are identical.

Write a proof!

2.3 Weyl-Minkowski and Polarity

It makes sense to study the relation between polytopes and polyhedra. Clearly
standard cubes,simplices and crosspolytopes are also polyhedra, but is this the
case in general? What one expects is really true. Polytopes are special kind of
polyhedra, but not all polyhedra are polytopes.

Theorem 2.3.1 (Weyl-Minkowski theorem) Every polytope is a polyhedron.
Every bounded polyhedron is a polytope.

Figure 2.1: H. Weyl and H. Minkowski

This theorem is very important. Having this double way of representing
a polytope allows you to work, using either the vertex representation or the
inequality representation representation, what would be hard to prove using
a single representation becomes easy with the other. For example, every in-
tersection of a polytope with an affine subspace is a polytope. Similarly, the
intersection of finitely many polytopes is a polytope. Both statements are rather
easy to prove if one knows that polytopes are just given by systems of linear
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inequalities, since then the intersection of polytopes is just adding new equa-
tions. On the other hand, It is known that every linear projection of a bounded
polyhedron is a bounded polyhedron. To prove this from the inequality rep-
resentation is difficult, but it is easy when one observes that the projection of
convex hull is the convex hull of the projection of the vertices of the polytope.
In addition, the Weyl-Minkowski theorem is very useful in applications! its ex-
istence is key in the field of combinatorial and linear optimization. We can give
a non-constructive proof here and later an algorithmic proof.

Definition 2.3.1 A representation of a polytope by a set of inequalities, is an
H-representation. On the other hand, when a polytope is given a convex hull of
a set of points we have a V-representation.

Before we discuss a proof of Weyl-Minkowski theorem we need to introduce
a useful operation. To every subset of Euclidean space we wish to associate a

convex set. Given a subset A of R
d

the polar of A is the set Ao in R
d

defined
as the linear functionals whose value on A is not greater than 1, in other words:

Ao = {x ∈ R
d

:< x, a >≤ 1 for every a ∈ A}

Another way of thinking of the polar is as the intersection of the halfspaces,
one for each element a ∈ A, of the form

{x ∈ R
d

:< x, a >≤ 1}

Proposition 2.3.2 For any point in R
n
, xo is a closed halfspace whose bound-

ing hyperplane is perpendicular to the vector x and which intersects the segment
from the origin O to x at a point p such that d(O, p)d(O, x) = 1

write a proof!

Lemma 2.3.3 For any sets A, B ⊂ R
n
, we have

1. the polar Ao is closed, convex, and contains the origin O

2. If A ⊂ B then Bo ⊂ Ao.

3. If A = conv(S), then Ao = So.

4. If A is a convex body, then Ao is the intersection of the duals of the extreme
points of A.

Proof: For part (1) Ao is the intersection of closed convex sets, thus it is closed
and convex. It is immediate that the origin is always in the polar. Part (2)
is easy. Now for a proof of part (3), part (2) implies that Ao ⊂ So. Pick
x ∈ So. We need to show that < x, z >≤ 1 for all z ∈ A. We have that
z =

∑

λixi, with xi ∈ S and
∑

λi = 1, λi ≥ 0. By linearity of the inner
product < z, x >=

∑

λi < xi, x >≤ 1. Thus x ∈ Ao, then Ao = So. Part (4)



2.3. WEYL-MINKOWSKI AND POLARITY 25

is direct from part (3) because Krein-Milman says a convex body is the convex
hull of its extreme points.

Here are two more useful examples of polarity: Take L a line in R
2

passing
through the origin, what is L0? Well the answer is the perpendicular line that
passes through the origin. If the line does not pass through the origin the answer
is different. What is it? Answer: it is a clipped line orthogonal to the given line
that passes through the origin. To see without loss of generality rotate the line
until it is of the form x = c (because the calculation of the polar boils down to
checking angles and lengths between vectors we must get the same answer up
to rotation).

What happens with a circle of radius one with center at the origin? Its polar
set is the disk of radius one with center at the origin. Next take B(0, r). What
is B(0, r)o? The concept of polar is rather useful. We use the following lemma:

Lemma 2.3.4 1. If P is a polytope and 0 ∈ P , then (P o)o = P .

2. Let P ⊂ R
d

be a polytope. Then P o is a polyhedron.

Write a proof!
Now, using the above lemma, we are ready to prove the Weyl-Minkowski

theorem:
Proof: ( of Weyl-Minkowski) First we verify that a bounded polyhedron is a

polytope: Let P be {x ∈ R
d

:< x, ci >≤ bi}.
Consider the set of points E in P that are the unique intersection of d or

more of the defining hyperplanes. The cardinality of E is at most
(m

d

)

so it is
clearly a finite set and all its element are on the boundary of P . Denote by
Q the convex hull of all elements of E. Clearly Q is a polytope and Q ⊂ P .
We claim that Q = P . Suppose there is a y ∈ P − Q. Since Q is closed and
bounded (bounded) we can find a linear functional f with the property that
f(y) > f(x) for all x ∈ Q. Now P is compact too, hence f attains its maximum
on the boundary moreover we claim it must reach it in a point of E. The reason
is that a boundary point that is not in E is in the solution set

We verify next that a polytope is indeed a polyhedron: We can assume
that the polytope contains the origin in its interior (otherwise translate). So
for a sufficiently small ball centered at the origin we have B(0, r) ⊂ P . Hence
P o ⊂ B(0, r)o = B(0, 1/r). This implies that P o is a bounded polyhedron. But
we saw in the first part that bounded polyhedra are polytopes. Then P o is a
polytope. We are done because we know from the above lemma that (P o)o = P
and polar of polytopes are polyhedra.

From this fundamental theorem several nice consequences follow:

Corollary 2.3.5 Let P be a d-dimensional polytope in R
d
. Then
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1. The intersection of P with a hyperplane is a polytope. If the hyperplane
passes through a point in the relative interior of P then the intersection is
a (d − 1)-polytope.

2. Every projection of P is a polytope. More generally, the image of P under
a linear map is another polytope.

Write a proof!
Proof: Part (1) follows because a polytope is a bounded polyhedron but the
intersection of a polyhedron with a hyperplane gives a polyhedron of lower di-
mension which is still bounded, thus the result is a polytope. The points of P are
convex combinations of vertices v1, . . . , vm then applying a linear transforma-
tion π, we see linearity implies that any point of π(P ) is a convex combination
of π(v1), . . . ,π(vm).



Chapter 3

PART III: Fourier-Motzkin

Elimination and its

Applications

3.1 Feasibility of Polyhedra and Facet-Vertex rep-

resentability

In this section we take care of various important issues. Our very first algorithm
will be about deciding when a polyhedron (system of inequalities) is empty or
not. We are also interested in practical ways of going from H-representation
to V-representation or vice versa. Our new proof of Weyl-Minkowski was non-
constructive.

3.1.1 Solving Systems of Linear Inequalities in Practice

When is a polytope empty? Can this be decided algorithmically? How can one
solve a system of linear inequalities Ax ≤ b? We start this topic looking back
on the already familiar problem of how to solve systems of linear equations. It
is a crucial algorithmic step in many areas of mathematics and also would help
us better understand the new problem of solving systems of linear inequalities.
Recall the fundamental problem of linear algebra is
Problem: Given an m × n matrix A with rational coefficients, and a rational
vector b ∈ Qm, is there a solution of Ax = b? If there is solution we want to
find one, else, can one produce a proof that no solution exist?

I am sure you are well-aware of the Gaussian elimination algorithm to solve
such systems. Thanks to this and other algorithms we can answer the first
question. Something that is usually not stressed in linear algebra courses is that
when the system is infeasible (this is a fancy word to mean no solution exists)
Gaussian elimination can provide a proof that the system is indeed infeasible!

27
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This is summarized in the following theorem:

Theorem 3.1.1 (Fredholm’s theorem of the Alternative) The system of
linear equations Ax=b has a solution if and only for each y with the property
that yA = 0, then yb = 0 as well.

In other words, one and only one of the following things can occur: Either
Ax = b has solution or there exist a vector y with the property that yA = 0 but
yb (= 0. Similarly {x | Ax = b} is non-empty if and only if {y | yT A = 0, yT b =
−1} is empty.

So think of this as a mathematical proof that some system has no solution!
The vector y above is a mathematical proof that Ax = b has no solution. To
solve Ax = b? We teach them Gaussian elimination. We teach row operations
that put the matrix in a certain reduced form. We know then that the entries
of b change. What we teach undergraduates is there is no solution when there
is a row zeroes in the reduced A but a non-zero entry in the corresponding b. If
the string of matrices

Mk · · ·M2M1

are the elementary matrices that reduce A, then

y = edMk · · ·M2M1

This shows that yT A = 0 and yT b = −1.

Thus when Ax = b has no solution we get a certificate, a proof that the
system is infeasible. But, how does one compute this special certificate vector
y? With care, it can be carefully extracted from the Gaussian elimination. Here
is how: The system Ax = b can be written as an extended matrix.

















a11 a12 . . . a1n b1

a21 a22 . . . a2n b2

...
...

...
...

...

am1 am2 . . . amn bm

















We perform row operations to eliminate the first variable from the second,
third rows. Say a11 is non-zero (otherwise reorder the equations). Substract
multiples of the first row from the second row, third row, etc. Note that this is
the same as multiplying the extended matrix, on the left, by elementary lower
triangular matrices. After no more than m steps the new extended matrix looks
like.
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a11 a12 . . . a1n b1

0 a′
22 . . . a′

2n b′2

...
...

...
...

...

0 a′
m2 . . . a′

mn b′m

















Now the last m− 1 rows have one less column. Recursively solve the system
of m − 1 equations. What happens is the variables have to be eliminated in all
but one of the equations creating eventually a row-echelon shaped matrix B.
Again all these row operations are the same as multiplying A on the left by a
certain matrix U . If there is a solution of this smaller system, then to obtain
the solution value for the variable x1 can be done by substituing the values in
the first equation. When there is no solution we detect this because one of the
rows, say the i-th row, in the row-echelon shaped matrix B has zeros until the
last column where it is non-zero. The certificate vector y is given then by the
i-th row of the matrix U which is the one producing a contradition 0 = c (= 0.

If you are familiar with the concerns of numerical analysis, you may be
concerned about believing the vector y is an exact proof of infeasibility. “What
if there are round of errors? Can one trust the existence of y?” you will say.
Well, you are right! It is good time to stress a fundamental difference in this
lecture from what you learned in a numerical analysis course: Operations are
performed using exact arithmetic not floating point arithmetic. We can trust
the identities discovered as exact.

Unfortunately, in many situations finding just any solution might not be
enough. Consider the following situations:

Suppose a friend of yours claims to have a 3× 3 × 3 array of numbers, with
the property that when adding 3 of the numbers along vertical lines or any
horizontal row or column you get the numbers shown in Figure 3.1:

The challenge is to figure out whether your friend is telling the truth or not?
Clearly because the numbers in the figure are in fact integer numbers one can
hope for an integral solution, or even for a nonnegative integral solution because
the numbers are non-negative integers. This suggests three interesting variations
of linear algebra. We present them more or less in order of difficulty here below.
We begin now studying an algorithm to solve problem A. We will encounter
problems B and C later on. Can you guess which of the three problems is
harder in practice?
Problem A: Given a rational matrix A ∈ Qm×n and a rational vector b ∈ Qm.
Is there a solution for the system Ax = b, x ≥ 0, i.e. a solution with all
non-negative entries? If yes, find one, otherwise give a proof of infeasibility.
Problem B: Given an integral matrix A ∈ Zm×n and an integral vector b ∈ Zm.
Is there a solution for the system Ax = b, with x an integral vector? If yes, find
a solution, otherwise, find a proof of infeasibility.
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Figure 3.1: A cubical array of 27 seven numbers and the 27 line sums

Problem C: Given an integral matrix A ∈ Zm×n and an integral vector b ∈ Zm.
Is there a solution for the system Ax = b, x ≥ 0? i.e. a solution x using only
non-negative integer numbers? If yes, find a solution, otherwise, find a proof of
infeasibility.

I want this similar result for polyhedra. It’s called Farkas lemma:

Theorem 3.1.1 (Farkas Lemma) A polyhedron {x | Ax ≤ b} is non-empty
if and only if there is no solution to {y | yT A = 0, yT b < 0, y ≥ 0}.

To prove this theorem, I’m actually going to give you an algorithmic proof.
If the polyhedron is non-empty, it will give you an explicit solution. Otherwise,
it will tell you how to develop a certificate y. The algorithm is an inefficient
(non-polynomial time algorithm) algorithm to decide this. The algorithm is
called the Fourier-Motzkin algorithm. It was reinvented by Motzkin. Fourier
discovered this centuries ago, and it was completely forgotten. Moreover, later
we will derive the transformation from H-representation to V-representation and
back.

3.1.2 Fourier-Motzkin Elimination and Farkas Lemma

The input of this algorithm is a polyhedron {x | Ax ≤ b}. The output is a yes
or a no.

Let’s deal with the case of just one variable. For example,
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Example 3.1.2

7x1 ≤ 3

3x1 ≤ 2

2x1 ≤ 0

−4x1 ≤ 4

We know this one is possible, because we write this as

x1 ≤
3

7

x1 ≤
2

3

x1 ≤ 0

x1 ≥ −1

If P is described by a single variable x, P is feasible if

max(bi/ai | bi/ai < 0 ≤ min(bj/aj | bj/aj > 0.

So, we know what to do in one variable. We should do an induction. If
there is more than one variable, then we eliminate the leading variable x1. We
rewrite the inequalities to be regrouped into three kinds:

x1 + (a′
i)

T x′ ≤ b′i, (if coefficient of ai1 is positive) (TYPE I)

−x1 + (a′
j)

T x′ ≤ b′j , (if coefficient of aj1 is negative) (TYPE II)

(a′
k)T x′ ≤ b′k, (if coefficient of ak1 is zero) (TYPE III)

Here x′ = (x2, x3, . . . , xn).
For the type IIs, these are obtained by dividing by |aj1| on both sides. Here

comes the hocus pocus. The +1 and −1 coefficients on x1 on the types I and
types II cancel out. Now, the computational trouble is that if you have 1 million
of type I and 1 million of type II, there’s 1 million squared of these. We just
keep the equations of type III. Original system of inequalities has a solution if
and only if the system (∗) is feasible

(∗) is equivalent to (a′
j)

T x − bj ≤ bi − (a′
i)

T x′, and (a′
k)T x′ ≤ b′k

If we find x2, x3, . . . , xn satisfying (∗), find

max((a′
j)

T x − bj) ≤ x1 ≤ min(bi − (a′
i)

T x′).
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The process ends when we have a single variable.
An equation of the first type

x1 + (a′
i)

T x′ ≤ b′i

is now
x1 ≤ b′i − (a′

i)
T x′

and the second type
−x1 + (a′

j)
T x′ ≤ b′j

is now
−x1 ≥ (a′

j)
T x′ − b′j

Then we can look at the solution for x1.
This is essentially the algorithm. It’s a beautiful method, but I wouldn’t

suggest it for my family to do. There is a polynomial time method, called the
ellipsoid method. But it’s not a strongly polynomial time method. Now, I
wouldn’t recommend my family to do this method either! It is a polynomial
time feasibility/decision problem. However, it’s not really practical quite yet.
The state of the art is really the simplex method. It can be used (and is used
by engineers) to see if a polyhedron is empty or not.

Now, is the simplex method polynomial time? Actually the method depends
on your choice of pivot, given by a pivot rule. There are actually, then, many
simplex methods! My academic grandfather Victor Klee1 crafted an example
with Minty that takes an exponential number of pivots. In some sense, here’s the
irony of life: in practice, people use the simplex method, though theoretically
exponential.

So, let’s try to prove the Farkas lemma. We kill one variable at each iteration
until we are in a single variable system. The new system will have no variables:











0
0
...
0











≤











b′1
b′2
...

b′n











The polyhedron {x | Ax ≤ b} is infeasible if and only if b′i < 0 for some i.
So the rewriting and addition steps correspond to row operations on the

original matrix A.
r = MAx ≥ Mb = b′

with matrix M with non-negative entries. We set yT = (ei)T M , with ei standard
i-th unit vector then

0 = yT A, yT b < 0, and y ≥ 0.

Here is another form of Farkas lemma:
1A great supporter of the MAA, he passed away recently
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Corollary 3.1.3 (Farkas Lemma I) {x : Ax = b, x ≥ 0} = ∅ if and only if
{y : yT A ≥ 0, yT b < 0} (= ∅.

This is perhaps the most famous version quoted as the Farkas lemma. I’ll
explain it in a picture. Many people call this the separation theorem. I will think
of the columns of the matrix A as “fingers” coming out of the origin. When
I consider Ax (if x has to be non-negative), I’m talking about the polyhedral
cone. Then, this question is: is the vector b in the cone? If the vector b is not
in the cone, it’s because you can find a hyperplane (with normal vector y) that
puts the cone on one side of the hyperplane and the vector y on the other side.
This is unbelievably important in mathematics, because separation theorems
tell you when you are done in optimization.

Now, we can prove this version as a corollary of the previous version:
Proof: We first to a rewriting of each equality as two inequalities: {x : Ax =
b, x ≥ 0} (= ∅ ⇐⇒ {x : Ax ≤ b, −Ax ≤ −b, −Ix ≤ 0} (= ∅. Why did I do this
change of representation from equality to inequality? It’s so that I could use
the previous version of the Farkas lemma. By previous version of Farkas, this
happens if and only if no solution of the form yT = [y1 y2 y3]T exists2 of with

[y1 y2 y3]
T









A

−A

−I









= 0, [y1 y2 y3]
T









b

−b

0









< 0, yT ≥ 0

The vector y1 − y2 has the desired property.
There is something really profound in Farkas’lemma and we will look at

another nice new proof of it.

Theorem 3.1.2 For a system of equations Ax = b, where A is a matrix and b
is a vector. One and only one of the following choices holds:

• There is a non-negative vector x with Ax = b.

• There exists a non-trivial vector c such that cA ≥ 0 but c · b < 0.

Proof: Clearly if the second option holds there cannot be positive solution for
Ax = b because it gives 0 ≤ (cA)x = c(Ax) = cb < 0.

Now suppose that yb ≥ 0 for all y such that yA ≥ 0. We want to prove
that then b is an element of the cone K generated by the non-negative linear
combinations of columns of A. For every b in R

n
there exist in the cone K =

{Ax|x ≥ 0} a point a that is closes to b and Ax = a for x ≥ 0. This observation is
quite easy to prove and we leave it as an exercise (there are very easy arguments
when the cone K is pointed). Now using this observation we have that

(Aj , b − a) ≤ 0, j = 1 . . . k (3.1)

2It’s a bigger vector now, because of how we changed the matrix A, right?
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and

(−a, b − a) ≤ 0. (3.2)

Why? the reason is a simple inequality on dot products. If we do not have
the inequalities above we get for sufficiently small t ∈ (0, 1):

|b − (a + tAj)|
2 = |(b − a) − tAj |

2 =

|b − a|2 − 2t(Aj , b − a) + t2|Aj |
2 < |b − a|2

or similarly we would get

|b − (a − ta)|2 = |(b − a) + ta|2 = |b − a|2 − 2t(−a, b − a) + t2|a|2| < |b − a|2

Both inequalities contradict the choice of b because a + tAj is in K and
the same is true for a − ta = (1 − t)a ∈ K. We have then that from the
hypothesis and the equations in (ONE) that (b,−(b−a)) ≥ 0, which is the same
as (b, b − a) ≤ 0 and this together with equation (TWO) (−a, b − a) ≤ 0 gives
(b − a, b − a) = 0, and in consequence b = a. !

The theorem above is equivalent to

Theorem 3.1.3 For a system of inequalities Ax ≤ b, where A is a matrix and
b is a vector. One and only one of the following choices holds:

• There is a vector x with Ax ≤ b.

• There exists a vector c such that c · b < 0, c ≥ 0,
∑

ci > 0, and cA = 0.

The reason is simple, The system of inequalities Ax ≤ b has a solution if
and only if for the matrix A′ = [I, A,−A] there is a non-negative solution to
A′x = b. The rest is only a translation of the previous theorem in the second
alternative. If you tried to solve the strict inequalities in the system Bx < 0,
like the one we got for deciding convexity of pictures, you would run into troubles
for most computer programs (e.g. MAPLE, MATHEMATICA,etc). One needs
to observe that a system of strict inequalities Bx < 0 has a solution precisely
when Bx ≤ −1 has a solution. If the solution x gives Bx < −1/q for instance
px is a solution for the strict inequality and vice versa. Thus the above theorem
implies the Farkas’ lemma version we saw earlier.

There are millions of version of Farkas lemmas. Here is another one:

Corollary 3.1.4 (Farkas Lemma II) {x : Ax ≤ b, x ≥ 0} (= ∅ ⇐⇒ When yT A ≥
0, then yT b ≥ 0

Pretty much you can prove that Farkas implies everything you do in life!
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3.1.3 The Face Poset of a Polytope

Now is time to look carefully at the partially ordered set of faces of a polytope.

Proposition 3.1.4 Let P = conv(a1, . . . , an). and F ⊂ P a face. Then F =
conv(ai, ai ∈ F ). Hence, every face of a polytope is a polytope.

Proof: Let f(x) = α be the suporting hyperplane. That Q = conv(ai, ai ∈ F )
is contained in F is clear. For the converse take x ∈ F − Q. We can still write
x as λ1a1 + · · · + λnan with the lambdas as usual. Applying f we get that if
λj > 0 for an index not in Q, then we get f(x) < α because f(aj) < α thus
λ1f(a1)+ · · ·+λnf(an) < λ1α+ . . .λnα = α. Thus we arrive to a contradiction

Corollary 3.1.5 A Polytope has a finite number of faces, in particular a finite
number of vertices and facets.

We also have the following properties:

Theorem 3.1.5 Let P be a d-polytope in R
n
.

1. Every point on the boundary of P lies in a facet of P . Thus the boundary
of P is the union of its facets.

2. Each (d − 1)-dimensional face of P , a ridge, lies in exactly two facets of
P .

3. Each vertex of P lies in at least d-facets of P and at least d edges of P .

For a polytope with vertex set V = {v1, v2, . . . , vn} the graph of P is
the abstract graph with vertex set V and the set of edges E = {(vi, vj) :
[vi, vj ]is an edge of P}. You can have a very entertaining day by drawing
the graphs of polytopes. Later on we will prove a lot of cute properties about
the graph of a polytope. Now there is a serious problem. We still don’t have
a formal verification that the graph of a polytope under our definition is non-
empty! we must verify that there is always at least a vertex in a polytope. Such
a seemingly obvious fact requires a proof. From looking at models of polyhedra
one is certain that there is a containment relation among faces: a vertex of an
edge that lies on the boundary of several facets, etc. Here is a first step to
understand the

Lemma 3.1.6 Let P be a d-polytope and F ⊂ P be a face. Let G ⊂ F be a
face of F . Then G is a face of P as well.

Write a proof!
Proof: Suppose P = conv(a1, . . . , an) and f(x) = α is a supporting linear
functional to the face F . We saw F = conv(ai : i ∈ IF ), and by definition of
being a face f(ai) = α if i ∈ IF and f(ai) < α otherwise. At the same time we
have g(x) = β such that for G = conv(aj : j ∈ IG ⊂ IF ). We have again that
g(ai) = β if i ∈ IG ⊂ IF and g(x) < β otherwise.
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Construct the hyperplane h = f + εg. Note that for aj with j ∈ IG we have
h(ai) = α+ εβ. Now for aj with j ∈ IF − IG we have h(ai) < α+ εβ. For all the
other indices we have, by choosing ε small enough, we have that h(ai) < α+ εβ
too.

That is, there is a transitivity of face containments! You can also see it from
the earlier lemma. Then you can actually do a partial order of faces by inclusion.
If you have a poset, you know you can represent it by its Hasse diagram. The
Hasse diagram for the face lattice of the 3-dimensional simplex is the Boolean
lattice B4. The face poset is actually a graded lattice. This is related to Euler’s
formula. Let fi represent the number of i-dimensional faces. So, Euler’s formula
is related to the number of elements in the poset. You have Möbius theory and
so on.

What do the faces of polyhedra look like?

Theorem 3.1.7 Let Q = {x : Ax ≤ b} a polyhedron. A non-empty subset F is
a face of P if and only if F is the set of solutions of a system of inequalities and
equalities obtained from the list Ax ≤ b by changing some of the inequalities to
equalities.

You just need to change some inequalities into equalities! Thus, similar to
the story for polytopes, we have the same story for polyhedra:

Corollary 3.1.8 The set of faces of a polyhedron forms also a poset by con-
tainment and it is finite.

Corollary 3.1.6 Every non-empty polytope has at least one vertex.

Write a proof!

Theorem 3.1.7 Every polytope is the convex hull of the set of its vertices.

Write a proof!

3.1.4 Polar Polytopes and Duality of Face Posets

Now we know that a polytope has a canonical representation as the convex
hull of its vertices. The results above establishes that the set of all faces of
a polytope form a partially ordered set by the order given by containment.
This poset receives the name of the face poset of a polytope. We say that two
polytopes are combinatorially equivalent or combinatorially isomorphic if their
face posets are the same. In particular, two polytopes P, Q are isomorphic if
they have the same number of vertices and there is a one-to-one correspondence
pi to qi between the vertices such that conv(pi : i ∈ I) is a face of P if and only
if conv(qi : i ∈ I) is a face of Q. The bijection is called an isomorphism.

A property that can guess from looking at the Platonic solids is that there
is a duality relation where two polytopes are matched to each other by paring
the vertices of one with the facets of the other and vice versa. We want now to
make this intuition precise. We will establish a bijection between the faces of P
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and the faces of P o. Let P ⊂ R
d

be a d-dimensional polytope containing the
origin as its interior point. For a non-empty face F of P define

F̂ = {x ∈ P o :< x, y >= 1for all y ∈ F}

and for the empty face defineˆ= Q.

Theorem 3.1.8 The hat operation applied to faces of a d-polytope P satisfies

1. The set F̂ is a face of P o

2. dim(F ) + dim(F̂ ) = d − 1.

3. The hat operation is involutory: ˆ( ˆ )F = F .

4. If F, G ⊂ P are faces and F ⊂ G ⊂ P , then Ĝ, F̂ are faces of P o and
Ĝ ⊂ F̂ .

Proof: To set up notation we take P = conv(a1, a2, . . . , am) and F = conv(ai :
i ∈ I).
(1) Define v := 1/|I|

∑

i∈I ai. We claim that in fact, F̂ = {x ∈ P o :< x, v >=

1}. It is clear that F̂ ⊂ {x ∈ P o :< x, v >= 1} The reasons for the other
containment are: we already know that < x, ai >≤ 1 and < x, v >= 1 implies
then that < x, ai >= 1 for all i ∈ I. Since all other elements of F are convex
linear combinations of ai’s we are done.

Now that the set F̂ is a face of P o is clear because the supporting hyperplane
to the face is the linear functional < x, v >= 1. Warning! the F̂ could be still
empty face!!
(2) Now we convince ourselves that if F is a non-empty face, then F̂ is non-
empty and moreover the sum of their dimensions is equal to d − 1.

By definition of face F = {x :< x, c >= α} and for other points in P we
have < y, c >< α. Because the origin is in P we have that α > 0, which means
that b = c/α ∈ F̂ because 1) < b, ai >= 1 for i ∈ I and 2) < b, ai >≤ 1 (this
second observation is a reality check: b is in P o). Hence F̂ is not empty.

Suppose dim(F ) = k and let h1, . . . , hd−k−1 ∈ R
d

be linear independent
vectors orthogonal to the linear span of F . The orthogonality means that <
hi, aj >= 0 for j ∈ I and all hi. We complete to a basis!

For all sufficiently small values ε1, . . . , εd−k−1 we have that r := b + ε1h1 +
ε2h2 + · · · + εd−k−1hd−k−1 satisfies < r, ai >= 1 for i ∈ I and < r, aj >< 1 for

other indices. Hence r is in F̂ proving that dim(F̂ ) ≥ d − 1 − dim(F ).

On the other hand F̂ is in the intersection of the hyperplanes {x ∈ R
d

:<
x, ai >= 1} therefore dim(F̂ ) ≤ d − 1 − dim(F ). We are done.


