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Abstract
Two-frequency Wigner distribution is introduced to capture the asymptotic
behaviour of the space–frequency correlation of paraxial waves in the radiative
transfer limits. The scaling limits give rises to deterministic transport-like
equations. Depending on the ratio of the wavelength to the correlation
length the limiting equation is either a Boltzmann-like integral equation or
a Fokker–Planck-like differential equation in the phase space. The solutions
to these equations have a probabilistic representation which can be simulated
by Monte Carlo method. When the medium fluctuates more rapidly in the
longitudinal direction, the corresponding Fokker–Planck-like equation can be
solved exactly.

PACS numbers: 05.10.Ln, 42.25.Dd

1. Introduction

A central quantity of wave propagation in random media is the correlation of wave field
at two spacetime points. Through spectral decomposition of the time-dependent signal the
spacetime correlation is equivalent to the space–frequency correlation of the wave field [16].
The main focus of the present work is on deriving rigorously closed form equations governing
the space–frequency correlation of paraxial waves in the radiative transfer regime.

For optical wave propagating through the turbulent atmosphere, the complex-valued
wave amplitude is governed by the stochastic Schrödinger (paraxial) equation with a white-
noise potential [17]. The conventional approach uses the two-frequency mutual coherence
function and various ad hoc approximations [13]. Recently, we have introduced the two-
frequency Wigner distribution in terms of which we derived rigorously a complete set of
two-frequency all-order moment equations and solved exactly the mutual coherence function
in the geometrical optics regime [7].

In this paper, we consider the different regime of radiative transfer and prove the
self-averaging convergence of the two-frequency Wigner distribution for the paraxial wave
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equation. In other words, in radiative transfer, the whole hierarchy of two-frequency moment
equations is reduced to a single radiative-transfer-like equation.

Let Lz and Lx be, respectively, the characteristic macroscopic length scales of the wave
beam in the longitudinal and transverse directions. We assume the phase speed in the vacuum
is unity. The Fresnel number commonly defined as

F = L2
x

λ0Lz

with the central wavelength λ0 = 2π/k0 measures the significance of Fresnel diffraction. In
all the scalings considered here the corresponding Fresnel number is large, indicating strong
Fresnel diffraction effect.

We use λ0, Lz, Lx to non-dimensionalize the paraxial wave equation [13]. Let k1, k2 be
two (relative) wavenumbers nondimensionalized by the central wavenumber k0. Then the
wave field �j of wavenumber kj satisfies

i
∂

∂z
�j (z, x) +

γ

2kj

∇2
x�j(z, x) +

µkj

γ
V

(
zLz

�z

,
xLx

�x

)
�j(z, x) = 0, j = 1, 2 (1)

where γ is the reciprocal of Fresnel number, V represents the refractive index fluctuation with
the correlation lengths �z and �x in the longitudinal and transverse directions, respectively,
and µ is the magnitude of the fluctuation. We denote the ratios �z/Lz and �x/Lx , respectively,
by ρz and ρx which then are the correlation lengths of the medium fluctuations in the unit of
characteristic length scales of the wave beam.

Let us now describe a family of scaling limits which would yield a non-trivial self-
averaging limit for the space–frequency correlation of the wave beam. The main characteristic
of the scaling limits is that the transverse correlation length �x is much smaller than the beam
width Lx but is comparable or much larger than the central wavelength λ0. Roughly speaking,
the wave beam experiences the spatial diversity as it propagates through the medium but it
does not do so over a single wavelength in order to avoid the effective medium regime. This
condition is best described by dimensionless quantities as

θ ≡ γ /ρx = O(1) (2)

which includes the possibility that θ � 1. This is the radiative transfer regime for
monochromatic waves [8].

To reduce the complexity of technique, however, we restrict ourselves mainly to the
longitudinal case where ρz/ρx = O(1), including the possible scenario ρz/ρx � 1. In this
case, the medium fluctuation of the following order of magnitude

µ = γ

θ
√

ρz

= ρx√
ρz

(3)

would lead to a non-trivial multiple scattering effect (see [6, 8] and references therein).
For wave fields of two different frequencies to interfere coherently, the unscaled frequency

shift needs to be limited to O(1) regardless the central frequency. In other words, we look
for O(1) coherence bandwidth which is a characteristic of the random medium. Again, this is
best expressed in the dimensionless quantities as

lim
�x→0

k1 = lim
�x→0

k2 = k, lim
�x→0

γ −1k−1(k2 − k1) = β. (4)

We assume β > 0 below. We call this the two-frequency radiative transfer scaling limits.
Let us now review the basic framework of two-frequency Wigner distribution in the

paraxial regime. The two-frequency Wigner distribution is defined as [7]

W(z, x, p) = 1

(2π)d

∫
e−ip·y�1

(
z,

x√
k1

+
γ y

2
√

k1

)
�∗

2

(
z,

x√
k2

− γ y

2
√

k2

)
dy (5)
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where the scaling factor
√

kj is introduced so that W satisfies a closed-form equation (see
below). Note here the scaling factor for the parabolic wave is different from that for the
spherical wave introduced in [10].

The following property can be derived easily from the definition

‖W(z, ·, ·)‖2 =
(√

k1k2

2γπ

)d/2

‖�1(z, ·)‖2‖�2(z, ·)‖2.

Since �j are governed by the Schrödinger-like equation the L2-norm does not change with
z, i.e. ‖W(z, ·, ·)‖2 = ‖W(0, ·, ·)‖2. The Wigner distribution has the following obvious
properties:∫

W(z, x, p) eip·ydp = �1

(
z,

x√
k1

+
γ y

2
√

k1

)
�∗

2

(
z,

x√
k2

− γ y

2
√

k2

)
(6)

∫
R

d

W(z, x, p) e−ix·q dx =
(

π2
√

k1k2

γ

)d

�̂1

(
z,

p
√

k1

4γ
+

√
k1q
2

)
× �̂∗

2

(
z,

p
√

k2

4γ
−

√
k2q
2

)
(7)

and so contains essentially all the information in the two-point two-frequency function.
The Wigner distribution Wz satisfies the Wigner–Moyal equation exactly [7]

∂W

∂z
+ p · ∇xW +

1√
ρz

LzW = 0 (8)

where the operator Lz is formally given as

LzW = i
∫

θ−1

[
exp(iq · x̃/

√
k1)k1W

(
z, x, p +

θq

2
√

k1

)
− exp(iq · x̃/

√
k2)k2W

(
z, x, p − θq

2
√

k2

) ]
V̂

(
z

ρz

, dq
)

with x̃ = x/ρx being the ‘fast’ transverse variable. As ρz → 0, ρ
−1/2
z Lz displays the classical

central limit scaling in the z-variable and thus this is referred to as the longitudinal case. The
complex conjugate Wε

z
∗(x, p) satisfies a similar equation

∂W ∗

∂z
+ p · ∇xW

∗ +
1√
ρz

L∗
zW

∗ = 0 (9)

where

L∗
zW

∗ = i
∫

θ−1

[
exp(iq · x̃/

√
k2)k2W

∗
(

z, x, p +
θq

2
√

k2

)
− exp(iq · x̃/

√
k1)k1W

∗
(

z, x, p − θq

2
√

k1

) ]
V̂

(
z

ρz

, dq
)

.

We use the following definition of the Fourier transform and inversion:

Ff (p) = 1

(2π)d

∫
e−ix·pf (x) dx

F−1g(x) =
∫

eip·xg(p) dp.

When making a partial (inverse) Fourier transform on a phase-space function we will write
F1 (resp. F−1

1 ) and F2 (resp. F−1
2 ) to denote the (resp. inverse) transform w.r.t. x and p

respectively.
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2. Formulation and theorems

To describe the scaling limits more efficiently we introduce two controlling parameters ε, α > 0
and set

ρz = ε2, ρx = ε2α. (10)

By (2)–(4) all the other parameters can be expressed in terms of ε, α and θ . The radiative
transfer scalings in the longitudinal case then correspond to

ε → 0, α ∈ (0, 1], lim
ε→0

θ < ∞ (11)

along with (2)–(4).
To get the self-averaging result, it is essential to consider the weak formulation of

the Wigner–Moyal equation: to find Wε
z in the space C([0,∞);L2

w(R2d) of z-continuous,
L2(R2d)-valued processes such that ‖Wε

z ‖2 � ‖W0‖2,∀ z > 0, and〈
Wε

z ,�
〉 − 〈W0,�〉 =

∫ z

0

〈
Wε

s , p · ∇x�
〉
ds +

1

ε

∫ z

0

〈
Wε

s ,L∗
s �

〉
ds, (12)

where W0 ∈ L2(R2d) is the initial data and we consider all the smooth test functions of
compact supports � ∈ C∞

c (R2d). Here and below L2
w(R2d) is the space of complex-valued

square integrable functions on the phase space R
2d endowed with the weak topology and the

inner product

〈W1,W2〉 =
∫

W ∗
1 (x, p)W2(x, p) dx dp.

We define for every realization of V ε
z the operator L∗

z to act on a phase-space test function
� as

L∗
z�(x, p) ≡ −iθ−1F2

[
δεV

ε
z (x, y)F−1

2 �(x, y)
]

(13)

with the difference operator δε given by

δεV
ε
z (x, y) ≡ k1V

ε
z

(
x√
k1

+
θy

2
√

k1

)
− k2V

ε
z

(
x√
k2

− θy

2
√

k2

)
. (14)

We define Lz in the similar way.
The existence of solutions in the space C([0,∞);L2

w(R2d)) can be established by the
same weak compactness argument as in [7]. We will not, however, address the uniqueness of
solution for the Wigner–Moyal equation (12) but we will show that as ε → 0 any sequence
of weak solutions to equation (12) converges in a suitable sense to the unique solution of a
deterministic equation (see theorems 1 and 2).

We assume that Vz(x) = V (z, x) is a real-valued, centred, z-stationary, x-homogeneous
ergodic random field admitting the spectral representation

Vz(x) =
∫

exp(ip · x)V̂z(dp)

with the z-stationary spectral measure V̂z(·) satisfying

E[V̂z(dp)V̂z(dq)] = δ(p + q)�0(p) dp dq.

The transverse power spectrum density is related to the full power spectrum density
�(w, p) as �0(p) = ∫

�(w, p) dw. The power spectral density �(k) satisfies �(k) =
�(−k),∀ k = (w, p) ∈ R

d+1 because the electric susceptibility field is assumed to be real-
valued. Hence �(w, p) = �(−w, p) = �(w,−p) = �(−w,−p) which is related to the
detailed balance of the limiting scattering operators described below.
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The first main assumption is the Gaussian property of the random potential.

Assumption 1. V (z, x) is a Gaussian process with a spectral density �(k), k = (w, p) ∈ R
d+1

which is smooth, uniformly bounded and decays at |k| = ∞ with sufficiently high power of
|k|−1.

We note that the assumption of Gaussianity is not essential and is made here to simplify the
presentation. Its main use is in deriving the estimates (40), (41) below.

Let Fz and F+
z be the sigma-algebras generated by {Vs : ∀ s � z} and {Vs : ∀ s � z},

respectively and let L2(Fz) and L2
(
F+

z

)
denote the square-integrable functions measurable

w.r.t. them respectively. The maximal correlation coefficient ρ(t) is given by

ρ(t) = sup
h∈L2(Fz)

E[h]=0,E[h2]=1

sup
g∈L2(F+

z+t )

E[g]=0,E[g2]=1

E[hg]. (15)

For Gaussian processes the correlation coefficient ρ(t) equals the linear correlation
coefficient given by

sup
g1,g2

∫
R(t − τ1 − τ2, k)g1(τ1, k)g2(τ2, k) dk dτ1 dτ2 (16)

where R(t, k) = ∫
eitξ�(ξ, k) dξ and the supremum is taken over all g1, g2 ∈ L2(Rd+1) which

are supported on (−∞, 0] × R
d and satisfy the constraint∫

R(t − t ′, k)g1(t, k)g∗
1(t

′, k) dt dt ′ dk =
∫

R(t − t ′, k)g2(t, k)g∗
2(t

′, k) dt dt ′ dk = 1.

There are various criteria for the decay rate of the linear correlation coefficients, see [12].
Next we make assumption on the mixing property of the random potential.

Assumption 2. The maximal correlation coefficient ρ(t) is integrable:
∫ ∞

0 ρ(s) ds < ∞.

We have two main theorems depending on whether limε→0 θ is positive or not.

Theorem 1. Let θ > 0 be fixed. Then under the two-frequency radiative transfer scaling
(2)–(4), (10) the weak solutions, denoted by Wε

z , of the Wigner–Moyal equation (8) converge
in probability in C([0,∞), L2

w(Rd)), the space of L2-valued z-continuous processes, to that
of the following deterministic equation

∂

∂z
Wz + p · ∇Wz = 2πk2

θ2

∫
K(p, q)

×
[

exp(−iβθq·x/(2
√

k))Wz

(
x, p +

θq√
k

)
− Wz(x, p)

]
dq (17)

where the kernel K is given by

K(p, q) = �(0, q), for α ∈ (0, 1),

and

K(p, q) = �

((
p +

θq

2
√

k

)
· q, q

)
, for α = 1.

Theorem 2. Assume limε→0 θ = 0. Then under the two-frequency radiative transfer scaling
(2)–(4), (10) the weak solutions of the Wigner–Moyal equation (8) converge in probability in
the space C([0,∞), L2

w(Rd)) to that of the following deterministic equation

∂

∂z
Wz + p · ∇Wz = k

(
∇p − i

2
βx

)
· D ·

(
∇p − i

2
βx

)
Wz (18)
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where the (momentum) diffusion coefficient D is given by

D = π

∫
�(0, q)q ⊗ q dq, for α ∈ (0, 1), (19)

D(p) = π

∫
�(p · q, q)q ⊗ q dq, for α = 1. (20)

Remark 1. In the transverse case of ρx � ρz (or α > 1), then with the choice of µ = √
ρx

(or εα) the limiting kernel and diffusion coefficient become, respectively

K(p, q) = δ

((
p +

θq

2
√

k

)
· q

) ∫
�(w, q) dw,

D(p) = π |p|−1
∫

p·p⊥=0

∫
�(w, p⊥) dwp⊥ ⊗ p⊥ dp⊥.

(21)

The proof of such result requires additional assumptions which would complicate our
presentation, so we will not pursue it here, cf [8, 6].

Remark 2. The form of (17) and (18) suggests the new quantity

Wz(x, p) = exp

(
− iβ

2
x · p

)
Wz(x, p)

in terms of which the equations can be written respectively as

∂

∂z
Wz + p · ∇Wz +

iβ

2
|p|2Wz = 2πk2

θ2

∫
K(p, q)

[
Wz

(
x, p +

θq√
k

)
− Wz(x, p)

]
dq, (22)

∂

∂z
Wz + p · ∇Wz +

iβ

2
|p|2Wz = k∇p · D · ∇pWz. (23)

The advantage of this is that the solution then is amenable to probabilistic representation as the
scattering terms on the right-hand side of equations are non-positive definite. Let (x(z), p(z))

be the stochastic process with x(0) = x, p(0) = p generated by the operator −p ·∇x +A where
A is the operator on the right-hand side of either (22) or (23). Then by Dynkin’s formula we
have

Wz(x, p) = Ex,p

[
exp

(
− iβ

2

∫ z

0
|p(t)|2 dt

)
exp

(
− iβ

2
x(z) · p(z)

)
W0(x(z), p(z))

]
(24)

where W0 are the initial data for the two-frequency Wigner distribution and Ex,p is the
expectation with respect to the probability measure associated with (x(z), p(z)). The
probabilistic solution (24) can be simulated by Monte Carlo method.

When k1 = k2 or β = 0, equations (17) and (18) reduce to the standard radiative transfer
equations derived in [6, 8]. In view of definition (5) the two-frequency Wigner distribution
captures the space–frequency correlation on the nondimensionalized scale of γ (in space as
well as in frequency). The self-averaging property simply reflects the fact that on the wave
field essentially decorrelates on the macroscopic scale � γ and the rapidly fluctuating limit
is then statistically stabilized by coupling with a smooth deterministic test function.

A notable fact is that equation (18) with (19) is the same governing equation, except for a
constant damping term, for the ensemble-averaged two-frequency Wigner distribution for the
z-white-noise potential in the geometrical optics regime [7]. Fortunately, equations (18) and
(19) are exactly solvable and the solution yields asymptotically precise information about the
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cross-frequency correlation, important for analysing the information transfer and time reversal
with broadband signals in the channel described by the stochastic Schrödinger equation with
a z-white-noise potential [9] (see also [2–4]). Moreover, equations (18) and (19) arise as the
boundary layer equations for the two-frequency radiative transfer of spherical wave [10].

The proof of theorem 2 is analogous to that of theorem 1 and for the sake of space we
will not repeat the argument. We refer the reader to [6] for the needed minor modification.
More directly equation (18) can be obtained from equation (17) in the limit θ → 0 by
Taylor expanding the terms involving θ on the right-hand side of (17) up to second order in
θ . The first-order-in-θ terms are also first-order-in-q and thus vanish due to the symmetry
K(p, q) = K(p,−q). The remaining terms, after dividing by θ2 and passing to the limit,
become the right-hand side of (18).

For the proof of theorem 1, we set θ = 1 for the ease of notation.

3. Martingale formulation

For tightness as well as identification of the limit, the following infinitesimal operator Aε

will play an important role. Let V ε
z ≡ V (z/ε2, ·). Let F ε

z be the σ -algebras generated
by

{
V ε

s , s � z
}

and E
ε
z the corresponding conditional expectation w.r.t. F ε

z . Let Mε

be the space of measurable function adapted to {F ε
z ,∀ t} such that supz<z0

E|f (z)| < ∞.
We say f (·) ∈ D(Aε), the domain of Aε, and Aεf = g if f, g ∈ Mε and for
f δ(z) ≡ δ−1

[
E

ε
zf (z + δ) − f (z)

]
we have

sup
z,δ

E|f δ(z)| < ∞ lim
δ→0

E|f δ(z) − g(z)| = 0, ∀ z.

Considering a special class of admissible functions f (z) = φ
(〈
Wε

z ,�
〉)
, f ′(z) =

φ′(〈Wε
z ,�

〉)
,∀φ ∈ C∞(R) we have the following expression from (12) and the chain rule

Aεf (z) = f ′(z)
[〈

Wε
z , p · ∇�

〉
+

1

ε

〈
Wε

z ,L∗
z�

〉]
. (25)

In the case of the test function � that is also a functional of the media we have

Aεf (z) = f ′(z)
[〈

Wε
z , p · ∇�

〉
+

1

ε

〈
Wε

z ,L∗
z�

〉
+

〈
Wε

z ,Aε�
〉]

(26)

and when � depends explicitly on the fast spatial variable

x̃ = x/ε2α

the gradient ∇ is a sum of two terms:

∇ = ∇x + ε−2α∇x̃

where ∇x is the gradient w.r.t. the slow variable x and ∇x̃ the gradient w.r.t. the fast variable x̃.
A main property of Aε is that

f (z) −
∫ z

0
Aεf (s) ds is a F ε

z -martingale, ∀ f ∈ D(Aε). (27)

Also,

E
ε
sf (z) − f (s) =

∫ z

s

E
ε
sAεf (τ ) dτ ∀ s < z a.s. (28)

(see [14]). We denote by A the infinitesimal operator corresponding to the unscaled process
Vz(·) = V (z, ·).
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4. Proof of tightness

In the following we will adopt the following notation:

f (z) ≡ φ
(〈
Wε

z ,�
〉)
, f ′(z) ≡ φ′(〈Wε

z ,�
〉)
,

f ′′(z) ≡ φ′′(〈Wε
z ,�

〉)
, ∀φ ∈ C∞(R).

Namely, the prime stands for the differentiation w.r.t. the original argument (not t) of f, f ′ etc.
A family of processes

{
Wε

z , 0 < ε < 1
}

in the Skorohod space D([0,∞);L2
w(R2d)) is

tight if and only if the family of processes
{〈

Wε
z ,�

〉
, 0 < ε < 1

} ⊂ D([0,∞);L2
w(R2d))

is tight for all � ∈ C∞
c [11]. We use the tightness criterion of [15] (chapter 3, theorem 4),

namely, we will prove: firstly,

lim
N→∞

lim sup
ε→0

P
{

sup
z<z0

∣∣〈Wε
z ,�

〉∣∣ � N
} = 0, ∀ z0 < ∞. (29)

Secondly, for each φ ∈ C∞(R) there is a sequence f ε(z) ∈ D(Aε) such that for each
z0 < ∞{Aεf ε(z), 0 < ε < 1, 0 < z < z0} is uniformly integrable and

lim
ε→0

P
{

sup
z<z0

∣∣f ε(z) − φ(
〈
Wε

z ,�
〉)∣∣ � δ

} = 0, ∀ δ > 0. (30)

Then it follows that the laws of
{〈

Wε
z ,�

〉
, 0 < ε < 1

}
are tight in the space of D([0,∞); R).

To prove the tightness in the space C([0,∞);L2
w(R2d) let us recall that Wε

z ∈
C([0,∞);L2

w(R2d) and that the Skorohod metric and the uniform metric induce the same
topology on C([0,∞);L2

w(R2d)).
Let us note first that condition (29) is satisfied because the L2-norm is uniformly bounded.

The rest of the argument for tightness will be concerned with establishing the second part of
the criterion.

Consider now the expression

L̃∗
z�(x, x̃, p) ≡ − iε−2

∫ ∞

z

∫ [
exp(iq · x̃/

√
k1)k1�

(
x, p − q

2
√

k1

)
− exp(iq · x̃/

√
k2)k2�

×
(

x, p +
q

2
√

k2

) ]
exp(i(s − z)p · q/ε2α)Eε

zV̂
ε
s (dq) ds (31)

or equivalently

F−1
2 L̃∗

z�(x, x̃, y) = ε−2
∫ ∞

z

exp(−iε−2α(s − z)∇y · ∇x̃)
[
E

ε
z

[
δεV

ε
s

]
F−1

2 �
]
(x, x̃, y) ds (32)

where δεV
ε
s is defined by (14). It is straightforward to check that (31) solves the corrector

equation

[ε−2αp · ∇x̃ + Aε]L̃∗
z� = ε−2L∗

z�. (33)

Recall that ∇x̃ and ∇x are the gradients w.r.t. the fast variable x̃ and the slow variable x,
respectively.

We have the following estimate.

Lemma 1.

E[L̃∗
z�]2(x, p) �

[∫ ∞

0
ρ(s) ds

]2 ∫ ∣∣∣∣ exp(iq · x̃/
√

k1)k1�

(
x, p +

q

2
√

k1

)
− exp(iq · x̃/

√
k2)k2�

(
x, p − q

2
√

k2

) ∣∣∣∣2

�(ξ, q) dξ dq.
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Proof. Consider the following trial functions in the definition of the maximal correlation
coefficient

h = hs(x, p) = i
∫ [

exp(iq · x̃/
√

k1)k1�

(
x, p +

q

2
√

k1

)
− exp(iq · x̃/

√
k2)k2�

(
x, p − q

2
√

k2

) ]
exp(ik−1(s − z)p · q/ε2α)Eε

zV̂
ε
s (dq)

g = gt (x, p) = i
∫ [

exp(iq · x̃/
√

k1)k1�

(
x, p +

q

2
√

k1

)
− exp(iq · x̃/

√
k2)k2�

(
x, p − q

2
√

k2

) ]
exp(ik−1(t − z)p · q/ε2α)V̂ ε

t (dq)

It is easy to see that hs ∈ L2(P,�,Fε−2z)gt ∈∈ L2
(
P,�,F+

ε−2t

)
and their second moments

are uniformly bounded in x, p, ε since

E
[
h2

s

]
(x, p) � E

[
g2

s

]
(x, p)

E
[
g2

s

]
(x, p) =

∫ ∣∣∣∣ exp(iq · x̃/
√

k1)k1�

(
x, p +

q

2
√

k1

)
− exp(iq · x̃/

√
k2)k2�

(
x, p − q

2
√

k2

) ∣∣∣∣2

�(ξ, q) dξ dq

which is uniformly bounded for any integrable spectral density �.
From definition (15) we have

|E[hs(x, p)ht (y, q)]| = |E[hsgt ]| � ρ(ε−2(t − z))E1/2 [
h2

s (x, p)
]
E

1/2 [
g2

t (y, q)
]
.

Hence by setting s = t, x = y, p = q first and the Cauchy–Schwartz inequality we have

E
[
h2

s (x, p)
]

� ρ2(ε−2(s − z))E
[
g2

t (x, p)
]

|E[hs(x, p)ht (y, q)]| � ρ(ε−2(t − z))ρ(ε−2(s − z))E1/2[g2
t (x, p)

]
E

1/2[g2
t (y, q)

]
,

∀ s, t � z,∀ x, y.

Hence

ε−4
∫ ∞

z

∫ ∞

z

E[hs(x, p)gt (x, p)] ds dt � E
[
g2

t

]
(x, p)

[∫ ∞

0
ρ(s) ds

]2

which together with (34) yields the lemma. �

Corollary 1.

E[p · ∇xL̃∗
z�]2(x, p) �

[∫ ∞

0
ρ(s) ds

]2 ∫ ∣∣∣∣ exp(iq · x̃/
√

k1)k1p · ∇x�

(
x, p +

q

2
√

k1

)
− exp(iq · x̃/

√
k2)k2p · ∇x�

(
x, p − q

2
√

k2

) ∣∣∣∣2

�(ξ, q) dξ dq. (34)

Inequality (34) can be obtained from the expression

p · ∇xL̃∗
z�(x, x̃, p) ≡ iε−2

∫ ∞

z

∫
eiq·x̃

[
exp(iq · x̃/

√
k2)k2p · ∇x�

(
x, p +

q

2
√

k2

)
− exp(iq · x̃/

√
k1)k1p · ∇x�

(
x, p − q

2
√

k1

) ]
× exp(i(s − z)p · q/ε2α)Eε

zV̂
ε
s (dq) ds

as in lemma 1.
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We will need to estimate the iteration of Lz and L̃∗
z :

L∗
z L̃∗

z�(x, x̃, p) = − 1

ε2

∫ ∞

z

ds

∫
V̂ ε

z (dq)Eε
z

[
V̂ ε

s (dq′)
]

exp(i(s − z)p · q/ε2α)

×
{[

exp(iq · x̃/
√

k1) exp(iq′ · x̃/
√

k1)k
2
1�

(
x, p +

q′

2
√

k1
+

q

2
√

k1

)
− exp(iq · x̃/

√
k1) exp(iq′ · x̃/

√
k2)k1k2�

(
x, p − q′

2
√

k2
+

q

2
√

k1

) ]
× exp(i(s − z)q′ · q/(2ε2α))

−
[

exp(iqx̃/
√

k2) exp(iq′ · x̃/
√

k1)k1k2�

(
x, p +

q′

2
√

k1
− q

2
√

k2

)
− exp(iqx̃/

√
k2) exp(iq′ · x̃/

√
k2)k

2
2�

(
x, p − q′

2
√

k2
− q

2
√

k2

) ]
× exp(−i(s − z)q′ · q/(2ε2α))

}
L̃∗

z L̃∗
z�(x, x̃, p) = − 1

ε4

∫ ∞

z

∫ ∞

z

ds dt

∫
E

ε
zV̂

ε
s (dq)Eε

z

[
V̂ ε

t (dq′)
]

exp(i(s − z)p · q/ε2α)

× exp(i(t − z)p · q/ε2α)

{[
exp(iq · x̃/

√
k1) exp(iq′ · x̃/

√
k1)

× k2
1�

(
x, p +

q′

2
√

k1
+

q

2
√

k1

)
− exp(iq · x̃/

√
k1) exp(iq′ · x̃/

√
k2)k1k2�

×
(

x, p − q′

2
√

k2
+

q

2
√

k1

) ]
exp(i(s − z)q′ · q/(2ε2α))

−
[

exp(iqx̃/
√

k2) exp(iq′ · x̃/
√

k1)k1k2�

(
x, p +

q′

2
√

k1
− q

2
√

k2

)
− exp(iqx̃/

√
k2) exp(iq′ · x̃/

√
k2)k

2
2�

(
x, p − q′

2
√

k2
− q

2
√

k2

) ]
× exp(−i(s − z)q′ · q/(2ε2α))

}
which can be more easily estimated by using (32) as follows. First we have the expressions
after the inverse Fourier transform

F−1
2 {L∗

z L̃∗
z�}(x, x̃, y) = ε−2

∫ ∞

z

δεV
ε
z exp(−iε−2α(s − z)∇y · ∇x̃)

× [
Ez

[
δεV

ε
s

]
F−1

2 �
]
(x, x̃, y) ds (35)

F−1
2 {L̃∗

z L̃∗
z�}(x, x̃, y) = −ε−4

∫ ∞

z

exp(−iε−2α(t − z)∇y · ∇x̃)
{
Ez

[
δεV

ε
t

]
× exp(−iε−2α(s − z)∇y · ∇x̃)

[
Ez

[
δεV

ε
s

]
F−1

2 �
]}

(x, x̃, y) ds dt. (36)

Lemma 2.

E
∥∥L∗

z L̃∗
z�

∥∥2
2 � C

(∫ ∞

0
ρ(s) ds

)2

E[Vz]
2
∫ ∣∣∣∣ exp(iq · x̃/

√
k1)k1�

(
x, p +

q

2
√

k1

)
− exp(iq · x̃/

√
k2)k2�

(
x, p − q

2
√

k2

) ∣∣∣∣2

�(ξ, q) dξ dx dq dp
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E
∥∥L̃∗

z L̃∗
z�

∥∥2
2 � C

(∫ ∞

0
ρ(s) ds

)4

E[Vz]
2
∫ ∣∣∣∣ exp(iq · x̃/

√
k1)k1�

(
x, p +

q

2
√

k1

)
− exp(iq · x̃/

√
k2)k2�

(
x, p − q

2
√

k2

) ∣∣∣∣2

�(ξ, q) dξ dx dq dp

for some constant C independent of ε.

Proof. Let us consider L̃∗
z L̃∗

z� here. The calculation for L∗
z L̃∗

z� is similar.
By the Parseval theorem and the unitarity of exp (iτ∇y · ∇x̃), τ ∈ R,

E
∥∥L̃∗

z L̃∗
z�

∥∥2
2 = E

∥∥F−1
2 L̃∗

z L̃∗
z�

∥∥2
2 � C0ε

−8
∫ ∫ ∞

z

∣∣E{
Ez

[
δεV

ε
t

]
exp(−iε−2α(s − z)∇y · ∇x̃)

× [
Ez

[
δεV

ε
s

]
F−1

2 �
]}

(x, x̃, y)
∣∣ ds dt

∫ ∞

z

∣∣E{
Ez

[
δεV

ε
t ′
]

× exp(iε−2α(s ′ − z)∇y · ∇x̃)
[
Ez

[
δεV

ε
s ′
]
F−1

2 �
]}

(x, x̃, y)
∣∣ ds ′ dt ′ dx dy

+ C0ε
−8

∫ ∫ ∞

z

∣∣E[
Ez

[
δεV

ε
t

]
Ez

[
δεV

ε
t ′
]]∣∣∣∣E{

exp(−iε−2α(s − z)∇y · ∇x̃)

× [
Ez

[
δεV

ε
s

]
F−1

2 �
]
(x, y) exp(iε−2α(s ′ − z)∇y · ∇x̃)

× [
Ez[δεV

ε
s ′ ]F−1

2 �
]
(x, x̃, y)

}∣∣ ds dt ds ′ dt ′ dx dy.

The last inequality follows from the Gaussian property. Note that in the x integrals above the
fast variable x̃ is integrated and is not treated as independent of x.

Let

g(t) = δεV
ε
t

and

h(s) = exp(−iε−2α(s − z)∇y · ∇x̃)
[
δεV

ε
s F−1

2 �
]
.

The same argument as that for lemma 1 yields

|E[Ez[g(t)]Ez[h(s)]]| � E
1/2[Ez[g(t)]2]E1/2[Ez[h(s)]2]

� ρ(ε−2(t − z))ρ(ε−2(s − z))E1/2[g2(t)]E1/2[h2(s)], t, s � z;
|E[Ez[g(t)]Ez[g(t ′)]]| � E

1/2[Ez[g(t)]2]E1/2[Ez[g(t ′)]2]

� ρ(ε−2(t − z))ρ(ε−2(t ′ − z))E1/2[g2(t)]E1/2[g2(t ′)], t, t ′ � z;
|E[Ez[h(s)]Ez[h(s ′)]]| � E

1/2[Ez[h(s)]2]E1/2[Ez[h(s ′)]2]

� ρ(ε−2(s − z))ρ(ε−2(s ′ − z))E1/2[h2(s)]E1/2[h2(s ′)], s, s ′ � z.

Combining the above estimates we get

E
∥∥L̃∗

z L̃∗
z�

∥∥2
2 � C1

(∫ ∞

0
ρ(s) ds

)4 ∫
E

[
δεV

ε
z

]2
E

× [
exp(−iε−2α(s − z)∇y · ∇x̃)

[
δεV

ε
s F−1

2 �
]]2

dx dy

� C2

(∫ ∞

0
ρ(s) ds

)4

E
[
V ε

z

]2
∫ ∣∣∣∣ exp(iq · x̃/

√
k1)k1∇x�

(
x, p +

q

2
√

k1

)
− exp(iq · x̃/

√
k2)k2∇x�

(
x, p − q

2
√

k2

) ∣∣∣∣2

�(ξ, q) dξ dx dq dp �



5036 A C Fannjiang

Now let us consider the second moment of p · ∇xL̃∗
z L̃∗

z� and L∗
z L̃∗

z L̃∗
z�:

F−1
2

{
p · ∇xL̃∗

z L̃∗
z�

}
(x, x̃, y) = iε−2∇y · ∇x

∫ ∞

z

exp(−iε−2α(t − z)∇y · ∇x̃)

× {
Ez

[
δεV

ε
t

]
exp(−iε−2α(s − z)∇y · ∇x̃)

[
Ez

[
δεV

ε
s

]
F−1

2 �
]}

(x, y) ds dt

= iε−2
∫ ∞

z

exp(−iε−2α(t − z)∇y · ∇x̃)
{
Ez

[
δεV

ε
t

]
exp(−iε−2α(s − z)∇y · ∇x̃)

× [
Ez

[∇yδεV
ε
s

] · F−1
2 ∇x�

]}
(x, y) ds dt + iε−2

∫ ∞

z

exp(−iε−2α(t − z)∇y · ∇x̃)

× {
Ez

[∇yδεV
ε
t

] · exp(−iε−2α(s − z)∇y · ∇x̃)
[
Ez

[
δεV

ε
s

]
F−1

2 ∇x�
]}

(x, y) ds dt

F−1
2

{
L∗

z L̃∗
z L̃∗

z�
}
(x, x̃, y) = iε−4δεV

ε
z (x̃, y)

∫ ∞

z

exp(−iε−2α(t − z)∇y · ∇x̃)

× {
Ez

[
δεV

ε
t

]
exp(−iε−2α(s − z)∇y · ∇x̃)

[
Ez

[
δεV

ε
s

]
F−1

2 �
]}

(x, y) ds dt.

The same calculation as in lemma 2 yields the following estimates:

Corollary 2.

E
∥∥p · ∇xL̃∗

z L̃∗
z�

∥∥2
2 � C

(∫ ∞

0
ρ(s) ds

)4

×
{

E
[∇yV

ε
z

]2
∫ ∣∣∣∣ exp(iq · x̃/

√
k1)k1∇x�

(
x, p +

q

2
√

k1

)
− exp(iq · x̃/

√
k2)k2∇x�

(
x, p − q

2
√

k2

) ∣∣∣∣2

�(ξ, q) dξ dx dq dp

+ E
[
V ε

z

]2
∫ ∣∣∣∣ exp(iq · x̃/

√
k1)k1p · ∇x�

(
x, p +

q

2
√

k1

)
− exp(iq · x̃/

√
k2)k2p · ∇x�

(
x, p − q

2
√

k2

) ∣∣∣∣2

�(ξ, q) dξ dx dq dp
}
;

E
∥∥L∗

z L̃∗
z L̃∗

z�
∥∥2

2 � C

(∫ ∞

0
ρ(s) ds

)4

E
[
V ε

z

]4
∫ ∣∣∣∣ exp(iq · x̃/

√
k1)k1�

(
x, p +

q

2
√

k1

)
− exp(iq · x̃/

√
k2)k2�

(
x, p − q

2
√

k2

) ∣∣∣∣2

�(ξ, q) dξ dx dq dp

for some constant C independent of ε.

Let

f1(z) = εf ′(z)
〈
Wε

z , L̃∗
z�

〉
(37)

be the first perturbation of f (z).

Proposition 1.

lim
ε→0

sup
z<z0

E|f1(z)| = 0, lim
ε→0

sup
z<z0

|f1(z)| = 0 in probability.

Proof. We have

E[|f1(z)|] � ε‖f ′‖∞‖W0‖2E‖L̃∗
z�‖2 (38)
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and

sup
z<z0

|f ε
1 (z)| � ε‖f ′‖∞‖W0‖2 sup

z<z0

‖L̃∗
z�‖2. (39)

Since L̃∗
z� is a Gaussian process and L̃∗

z L̃∗
z� is a χ2-process, by an application of Borell’s

inequality [1] we have

E
[

sup
z<z0

‖L̃∗
z�‖2

2

]
� C log

(
1

ε

)
E‖L̃∗

z�‖2
2; (40)

E
[

sup
z<z0

‖L̃∗
z L̃∗

z�‖2
2

]
� C log2

(
1

ε

)
E‖L̃∗

z L̃∗
z�‖2

2, (41)

i.e. the supremum over z < z0 inside the expectation can be over-estimated by a log (1/ε)

factor for excursion on the scale of any power of 1/ε. Hence the right-hand side of (38) is
O(ε) while the right-hand side of (39) is o(1) in probability by Chebyshev’s inequality. �

Set f ε(z) = f (z) + f1(z). Then (30) follows immediately from proposition 1.
Let us now prove the uniform integrability of Aεf ε. A straightforward calculation yields

Aεf1 = εf ′(z)
〈
Wε

z , p · ∇xL̃∗
z�

〉
+ εf ′′(z)

〈
Wε

z , p · ∇x�
〉 〈

Wε
z , L̃∗�

〉
+ f ′(z)

〈
Wε

z ,L∗
z L̃∗

z�
〉
+ f ′′(z)

〈
Wε

z ,L∗
z�

〉 〈
Wε

z , L̃∗
z�

〉 − 1

ε
f ′(z)

〈
Wε

z ,L∗
z�

〉
and, hence

Aεf ε(z) = f ′(z)
〈
Wε

z , p · ∇x�
〉
+ f ′(z)

〈
Wε

z ,L∗
z L̃∗

z�
〉
+ f ′′(z)

〈
Wε

z ,L∗
z�

〉 〈
Wε

z , L̃∗
z�

〉
+ ε

[
f ′(z)

〈
Wε

z , p · ∇xL̃∗
z�

〉
+ f ′′(z)

〈
Wε

z , p · ∇x�
〉 〈

Wε
z , L̃∗

z�
〉]

= A0(z) + A1(z) + A2(z) + R1(z) (42)

where A1(z) and A2(z) are the O(1) statistical coupling terms.

Proposition 2.
lim
ε→0

sup
z<z0

E|R1(z)|2 = 0

.

Proof. First we note that

|R1| � ε
[‖f ′′‖∞‖W0‖2

2‖p · ∇x�‖2‖L̃∗
z�‖2 + ‖f ′‖∞‖Wε

z ‖2‖p · ∇x(L̃∗
z�)‖2

]
.

Clearly we have

lim
ε→0

sup
z<z0

E|R1(z)|2 = 0.

by lemma 1 and corollary 1. �
For the tightness criterion stated in the beginnings of the section, it remains to show

Proposition 3. {Aεf ε} are uniformly integrable.

Proof. Let us show first that {Ai}, i = 0, 1, 2, 3 are uniformly integrable.
For this we have the following estimates:

|A0(z)| � ‖f ′‖∞‖W0‖2‖p · ∇x�‖2

|A1(z)| � ‖f ′‖∞‖W0‖2‖L∗
z L̃∗

z�‖2

|A2(z)| � ‖f ′′‖∞‖W0‖2
2‖L∗

z�‖2‖L̃∗
z�‖2.

The second moments of the right-hand side of the above expressions are uniformly bounded
as ε → 0 by lemmas 1 and 2 and hence A0(z), A1(z), A2(z) are uniformly integrable.
By proposition 2, R1 is uniformly integrable. Therefore Aεf ε is uniformly integrable
by (42). �



5038 A C Fannjiang

5. Identification of the limit

The tightness just established permits passing to the weak limit. Our strategy for identifying
the limit is to show directly that in passing to the weak limit the limiting process solves the
martingale problem with null quadratic variation. This would imply the limiting equation is
deterministic. The uniqueness of solution to the limiting deterministic equation for given data
then identifies the limit.

For this purpose, we introduce the next perturbations f2, f3. Let

A
(1)
2 (ψ) ≡

∫
ψ(x, p)Q1(� ⊗ �)(x, p, y, q)ψ(y, q) dx dp dy dq (43)

A
(1)
1 (ψ) ≡

∫
Q′

1�(x, p)ψ(x, p) dx dp, ∀ψ ∈ L2(R2d) (44)

where

Q1(� ⊗ �)(x, p, y, q) = E[L∗
z�(x, p)L̃∗

z�(y, q)]

and

Q′
1�(x, p) = E[L∗

z L̃∗
z�(x, p)].

Clearly,

A
(1)
2 (ψ) = E[〈ψ,L∗

z�〉〈ψ, L̃∗
z�〉].

Let

Q2(� ⊗ �)(x, p, y, q) ≡ E[L̃∗
z�(x, p)L̃∗

z�(y, q)]

and

Q′
2�(x, p) = E[L̃∗

z L̃∗
z�(x, p)].

Let

A
(2)
2 (ψ) ≡

∫
ψ(x, p)Q2(� ⊗ �)(x, p, y, q)ψ(y, q) dx dp dy dq

A
(2)
1 (ψ) ≡

∫
Q′

2�(x, p)ψ(x, p) dx dp.

Define

f2(z) = ε2

2
f ′′(z)

[〈
Wε

z , L̃∗
z�

〉2 − A
(2)
2

(
Wε

z

)]
(45)

f3(z) = ε2

2
f ′(z)

[〈
Wε

z , L̃∗
z L̃∗

z�
〉 − A

(2)
1

(
Wε

z

)]
. (46)

Proposition 4.

lim
ε→0

sup
z<z0

E|f2(z)| = 0, lim
ε→0

sup
z<z0

E|f3(z)| = 0.

Proof. We have the bounds

sup
z<z0

E|f2(z)| � sup
z<z0

ε2‖f ′′‖∞
[‖W0‖2

2E‖L̃∗
z�‖2

2 + E
[
A

(2)
2

(
Wε

z

)]]
sup
z<z0

E
∣∣f ε

3 (z)
∣∣ � sup

z<z0

ε2‖f ′‖∞
[‖W0‖2E‖L̃∗

z L̃∗
z�‖2 + E

[
A

(2)
1

(
Wε

z

)]]
.
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A straightforward calculation shows that E
[
A

(2)
2

(
Wε

z

)]
and E

[
A

(2)
1

(
Wε

z

)]
stay uniformly

bounded w.r.t. ε. The right-hand side of the above expressions then tends to zero as ε → 0 by
lemmas 1 and 2. �

We have

Aεf2(z) = f ′′(z)
[−〈

Wε
z ,L∗

z�
〉〈
Wε

z , L̃∗
z�

〉
+ A

(1)
2

(
Wε

z

)]
+ R2(z)

Aεf3(z) = f ′(z)
[−〈

Wε
z ,L∗

z(L̃∗
z�)

〉
+ A

(1)
1

(
Wε

z

)]
+ R3(z)

with

R2(z) = ε2 f ′′′(z)
2

[〈
Wε

z , p · ∇x�
〉
+

1

ε

〈
Wε

z ,L∗
z�

〉] [〈
Wε

z , L̃∗
z�

〉2 − A
(2)
2

(
Wε

z

)]
+ ε2f ′′(z)

〈
Wε

z , L̃∗
z�

〉 [〈
Wε

z , p · ∇x(L̃∗
z�)

〉
+

1

ε

〈
Wε

z ,L∗
z L̃∗

z�
〉]

− ε2f ′′(z)
[〈

Wε
z , p · ∇x

(
G

(2)
� Wε

z

)〉
+

1

ε

〈
Wε

z ,L∗
zG

(2)
� Wε

z

〉]
(47)

where G
(2)
� denotes the operator

G
(2)
� ψ ≡

∫
Q2(� ⊗ �)(x, p, y, q)ψ(y, q) dy dq.

Similarly

R3(z) = ε2f ′(z)
[〈

Wε
z , p · ∇x(L̃∗

z L̃∗
z�)

〉
+

k

ε

〈
Wε

z ,L∗
z L̃∗

z L̃∗
z�

〉]
+

ε2

2
f ′′(z)

[〈
Wε

z , p · ∇x�
〉
+

1

ε

〈
Wε

z ,L∗
z�

〉] [〈
Wε

z , L̃∗
z L̃∗

z�
〉 − A

(2)
1

(
Wε

z

)]
− ε2f ′(z)

[〈
Wε

z , p · ∇x(Q′
2�)

〉
+

1

ε

〈
Wε

z ,L∗
zQ′

2�
〉]

. (48)

Proposition 5.

lim
ε→0

sup
z<z0

E|R2(z)| = 0, lim
ε→0

sup
z<z0

E|R3(z)| = 0.

Proof. Part of the argument is analogous to that given for proposition 4. The additional
estimates that we need to consider are the following.

In R2: first we have

sup
z<z0

ε2
E

∣∣〈Wε
z , p · ∇x

(
G

(2)
� Wε

z

)〉∣∣
= ε2

∫
E

[
Wε

z (x, p)Wε
z (y, q)

]
E[p · ∇xL̃∗

z�(x, p)L̃∗
z�(y, q)] dx dy dp dq

� ε2
∫

E
[
Wε

z (x, p)Wε
z (y, q)

]
E

1/2[p · ∇xL̃∗
z�]2(x, p)E1/2[L̃∗

z�]2(y, q) dx dy dp dq

which is O(ε2) by using lemma 1, corollary 1 and the fact E
[
Wε

z (x, p)Wε
z (y, q)

] ∈ L2(R4d)

in conjunction with the same argument as in proof of lemma 1. Secondly, we have

sup
z<z0

εE
∣∣〈Wε

z ,L∗
zG

(2)
� Wε

z

〉∣∣ = sup
z<z0

ε‖W0‖2E‖L∗
zE[L̃∗

z� ⊗ L̃∗
z�]Wε

z ‖2

= sup
z<z0

ε‖W0‖2E
∥∥F−1

2 L∗
zE

[
F−1

2 L̃∗
z� ⊗ F−1

2 L̃∗
z�

]
F−1

2 Wε
z

∥∥
2.



5040 A C Fannjiang

Define

hs = exp(−iε−2α(s − z)∇y · ∇x̃)
[
δεV

ε
z F−1

2 �
]
.

We then have

E
∥∥F−1

2 L∗
zE

[
F−1

2 L̃∗
z� ⊗ F−1

2 L̃∗
z�

]
F−1

2 Wε
z

∥∥
2 = E

{ ∫ ∣∣∣∣ε−4
∫ ∫ ∞

z

δεV
ε
z (x, y)E[Ez[hs(x, y)]

× Ez[ht (dx′, dy′)]]F−1
2 Wε

z (x′, y′) dx′dy′ ds dt

∣∣∣∣2

dx dy
}1/2

� E
1/2

{∫ ∣∣∣∣ε−4
∫ ∞

z

∣∣δεV
ε
z (x, y)

∣∣ρ(ε−2(s − z))ρ(ε−2(t − z))E1/2[hs(x, y)]2

×
( ∫

E[ht (dx′, dy′)]2 dx′ dy′
)( ∫ ∣∣Wε

z (x′, p′)
∣∣2

dx′ dp′
)

ds dt

∣∣∣∣2

dx dy
}
.

Recall that
∥∥Wε

z

∥∥
2 � ‖W0‖2 and∫

E[ht (dx′, dy′)]2dx′dy′ =
∫

[�(x, p + q/2) − �(x, p − q/2)]2�(ξ, q) dξ dq dx dp < ∞

so that

E
∥∥F−1

2 L∗
zE

[
F−1

2 L̃∗
z� ⊗ F−1

2 L̃∗
z�

]
F−1

2 Wε
z

∥∥
2

� ‖W0‖2E
1/2‖hs‖2

2

(
sup
x,y

E
[
δεV

ε
z

]2)
ε−8

∫ ∞

z

ρ(ε−2(s − z))ρ(ε−2(t − z))

× ρ(ε−2(s ′ − z))ρ(ε−2(t ′ − z))E1/2‖hs‖2
2E

1/2‖hs ′ ‖2
2 ds dt ds ′dt ′

� ‖W0‖2E
3/2‖hs‖2

2

(
sup
x,y

E
[
δεV

ε
z

]2) ∣∣∣∣∫ ∞

0
ρ(s) ds

∣∣∣∣2

< ∞.

Recall from (34) that

E‖hs‖2
2 =

∫
[�(x, p + q/2) − �(x, p − q/2)]2�(ξ, q) dξ dq dx dp < ∞.

Hence

sup
z<z0

εE
∣∣〈Wε

z ,L∗
zG

(2)
� Wε

z

〉∣∣ = O(ε).

In Rε
3:

sup
z<z0

εE
∣∣〈Wε

z ,L∗
z L̃∗

z L̃∗
z�

〉∣∣ � ε‖W0‖2 sup
z<z0

E‖L∗
z L̃∗

z L̃∗
z�‖2

which is O(ε) by corollary 2.
The other two terms in R3 have the respective expressions

ε2
E

∣∣〈Wε
z , p · ∇x(Q′

2�)
〉∣∣ � ε2‖W0‖2E

1/2‖p · ∇xE[L̃∗
z L̃∗

z�]‖2
2

� ε2‖W0‖2‖E[p · ∇xL̃∗
z L̃∗

z�]‖2

which is O(ε2) by corollary 2 and

εE
∣∣〈Wε

z ,L∗
zQ′

2�
〉∣∣ � ε‖W0‖2E‖L∗

zE[L̃∗
z L̃∗

z�]‖2

� ε‖W0‖2
(

sup
x,y

E
1/2

∣∣δεV
ε
z

∣∣2 )
E

1/2‖L̃∗
z L̃∗

z�‖2
2

which is O(ε) by lemma 2. �
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Consider the test function f ε(z) = f (z) + f1(z) + f2(z) + f3(z). We have

Aεf ε(z) = f ′(z)
〈
Wε

z , p · ∇x�
〉
+ f ′′(z)A(1)

2

(
Wε

z

)
+ f ′A(1)

1

(
Wε

z

)
+ R1(z) + R2(z) + R3(z).

(49)

Set

Rε(z) = R1(z) + R2(z) + R3(z). (50)

It follows from propositions 3 and 5 that

lim
ε→0

sup
z<z0

E|Rε(z)| = 0.

Proposition 6.

lim
ε→0

sup
z<z0

sup
‖ψ‖2=1

A
(1)
2 (ψ) = 0.

Proof. We have

A
(1)
2 (ψ) =

∫
ψ(x, p)Q1(� ⊗ �)(x, p, y, q)ψ(y, q) dx dp dy dq

= 1

2

∫
ψ(x, p)Q̃1(x, p, y, q)ψ(y, q) dx dp dy dq

where Q̃1 is defined by

Q̃1(x, p, y, q) = [Q1(� ⊗ �)(y, q, x, p) + Q1(� ⊗ �)(x, p, y, q)] .

The symmetrized kernel has the following expressions,

Q̃1(x, p, y, q) =
∫ ∞

−∞
ds

∫
dp′�̌(s, p′) exp(ip′ · (x − y)/ε2α) exp(−isp · p′ε2−2α)

×
[

exp(ip′ · x̃/
√

k1)k1∇x�

(
x, p +

p′

2
√

k1

)
− exp(ip′ · x̃/

√
k2)k2∇x�

(
x, p − p′

2
√

k2

) ]
×

[
exp(ip′ · x̃/

√
k1)k1∇x�

(
x, q +

p′

2
√

k1

)
− exp(ip′ · x̃/

√
k2)k2∇x�

(
x, q − p′

2
√

k2

) ]
= 2π

∫
exp(ip′ · (x − y)/ε2α)

[
exp(ip′ · x̃/

√
k1)k1∇x�

(
x, p +

p′

2
√

k1

)
− exp(ip′ · x̃/

√
k2)k2∇x�

(
x, p − p′

2
√

k2

) ]
×

[
exp(ip′ · x̃/

√
k1)k1∇x�

(
x, q +

p′

2
√

k1

)
− exp(ip′ · x̃/

√
k2)k2∇x�

(
x, q − p′

2
√

k2

) ]
�(p · p′ε2−2α, p′) dp′.
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which, as the inverse Fourier transform tends to zero uniformly outside any neighbourhood
of x = y, because of assumption 1, and stays uniformly bounded everywhere. Therefore the
L2-norm of Q̃1 tends to zero and the proposition follows. �

Similar calculation leads to the following expression: for any real-valued, L2-weakly
convergent sequence ψε → ψ , we have

lim
ε→0

A
(1)
1 (ψε) = lim

ε→0

∫ ∞

0
ds

∫
dw dq dx dp ψε(x, p)�(w, q) eisw exp(−isp · qε2−2α)

×
{

exp

(
−i

s|q|2
2
√

k1
ε2−2α

)[
k1k2 exp

(
iq · xε−2α

(
1√
k1

− 1√
k2

))
×�

(
x, p +

1

2

(
1√
k1

+
1√
k2

)
q
)

− k2
1�(x, p)

]
+ exp

(
i
s|q|2
2
√

k2
ε2−2α

) [
k1k2 exp

(
−iq · xε−2α

(
1√
k1

− 1√
k2

))
×�

(
x, p − 1

2

(
1√
k1

+
1√
k2

)
q
)

− k2
2�(x, p)

]}
= k2 lim

ε→0

∫ ∞

0
ds

∫
dw dq dx dp ψε(x, p)�(w, q) eisw exp(−isp · qε2−2α)

×
{

exp

(
−i

s|q|2
2
√

k
ε2−2α

[
eiq · xβ/(2k1/2)�

(
x, p +

q√
k

)
− �(x, p)

]
+ exp

(
i
s|q|2
2
√

k
ε2−2α

) [
exp(−iq · xβ/(2k1/2))�

(
x, p − q√

k

)
− �(x, p)

]}
where we have used (4). Note that the integrand is invariant under the change of variables:
s → −s, q → −q. Thus we can write

lim
ε→0

A
(1)
1 (ψε) = k2 lim

ε→0

∫ ∞

−∞
ds

∫
dw dq dx dp ψε(x, p)�(w, q) eisw exp(−isp · qε2−2α)

× exp

(
−i

s|q|2
2
√

k
ε2−2α

) [
exp(iq · xβ/(2k1/2))�

(
x, p +

q√
k

)
− �(x, p)

]
= 2πk2 lim

ε→0

∫
dq dx dp ψε(x, p)�

(
ε2−2α

(
p +

q

2
√

k

)
· q, q

)
×

[
exp(iq · xβ/(2k1/2))�

(
x, p +

q√
k

)
− �(x, p)

]
from which we obtain

Ā1(ψ) = lim
ε→0

A
(1)
1 (ψε)

=


2πk2

∫
dq dx dp ψ(x, p)�(0, q)

[
exp(iq · xβ/(2k1/2))�

(
x, p +

q√
k

)
− �(x, p)

]
α ∈ (0, 1)

2πk2
∫

dq dx dp ψ(x, p)�

((
p +

q

2
√

k

)
· q, q

)[
exp(iq · xβ/(2k1/2))�

(
x, p +

q√
k

)
− �(x, p)

]
, α = 1.

Recall that

Mε
z (�) = f (z) + f1(z) + f2(z) + f3(z) −

∫ z

0
f ′(z)

〈
Wε

z , p · ∇x�
〉
ds

−
∫ z

0

[
f ′′(s)A(1)

2

(
Wε

s

)
+ f ′(s)A(1)

1

(
Wε

s

)]
ds −

∫ z

0
Rε(s) ds (51)
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is a martingale. The martingale property implies that for any finite sequence 0 < z1 < z2 <

z3 < · · · < zn � z, C2-function f and bounded continuous function h with compact support,
we have

E
{
h

(〈
Wε

z1
,�

〉
,
〈
Wε

z2
,�

〉
, . . . ,

〈
Wε

zn
,�

〉) [
Mε

z+s(�) − Mε
z (�)

]} = 0, (52)

∀ s > 0, z1 � z2 � · · · � zn � z.

Let

Āf (z) ≡ f ′(z)[〈Wz, p · ∇x�〉 + Ā1(Wz)].

Here and below, by slight abuse of notation, f (z) and f ′(z) stand for φ(〈Wz,�〉) and
φ′(〈Wz,�〉), respectively. In view of the results of propositions 1,2, 3, 4, 5, 6 we see
that

lim
ε→0

E
{
h

(〈
Wε

z1
,�

〉
,
〈
Wε

z2
,�

〉
, . . . ,

〈
Wε

zn
,�

〉) [
f ε(z) − φ

(〈
Wε

z ,�
〉)]} = 0,

lim
ε→0

E
{
h

(〈
Wε

z1
,�

〉
,
〈
Wε

z2
,�

〉
, . . . ,

〈
Wε

zn
,�

〉) [
Aεf ε(z) − Āφ

(〈
Wε

z ,�
〉)]} = 0.

With this and the tightness of Wε
z we can pass to the limit ε → 0 in (52) cf. [5], theorem 8.2.

Consequently the limiting process satisfies the martingale property that

E
{
h

(〈
Wz1 ,�

〉
,
〈
Wz2 ,�

〉
, . . . ,

〈
Wzn

,�
〉)

[Mz+s(�) − Mz(�)]
} = 0, ∀ s > 0

where

Mz(�) = f (z) −
∫ z

0
Āf (s) ds.

Then it follows that

E[Mz+s(�) − Mz(�)|Wu, u � z] = 0, ∀ z, s > 0

which proves that Mz(�) is a martingale.
Choosing φ(r) = r and r2 we see that

M(1)
z (�) = 〈Wz,�〉 −

∫ z

0
[〈Ws, p · ∇x�〉 + Ā1(Ws)] ds

is a martingale with the null quadratic variation

[M(1)(�),M(1)(�)]z = 0.

Thus

f (z) −
∫ z

0
{f ′(s)[〈Ws, p · ∇x�〉 + Ā1(Ws)]} ds = f (0), ∀ z > 0.

Since
〈
Wε

z ,�
〉

is uniformly bounded∣∣〈Wε
z ,�

〉∣∣ � ‖W0‖2‖�‖2

we have the convergence of the second moment

lim
ε→0

E
{〈

Wε
z ,�

〉2} = 〈Wz,�〉2

and hence the convergence in probability.
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