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Abstract. We consider the effect of random inhomogeneities on the focusing singularity of the
nonlinear Schrödinger equation in three dimensions, in the high frequency limit. After giving a phase
space formulation of the high frequency limit using the Wigner distribution, we derive a nonlinear
diffusion equation for the evolution of the wave energy density when random inhomogeneities are
present. We show that this equation is linearly stable even in the case of a focusing nonlinearity
provided that it is not too strong. The linear stability condition is related to the variance identity
for the nonlinear Schrödinger equation in an unexpected way. We carry out extensive numerical
computations to get a better understanding of the interaction between the focusing nonlinearity and
the randomness.

1. Introduction. The nonlinear Schrödinger equation (NLS)

i
∂φ

∂t
+

1

2
∆φ− β|φ|2φ = 0(1)

φ(0, x ) = φ0(x),

with x in three dimensions, arises as the subsonic limit of the Zakharov model of
Langmuir equations in plasma physics [19] and in many other contexts. The NLS
equation (1) is in dimensionless form with β a parameter that measures the strength
of the nonlinearity relative to wave dispersion. When β < 0 the nonlinearity is
focusing and when β > 0 it is defocusing. An important property of NLS is that, in
three dimensions, the solution in the focusing case may develop a singularity at some
finite time. This result is based on the existence of two invariants with respect to
time: the mass

M =

∫

R3

|φ(t,x)|2dx(2)

and the energy

H =

∫

R3

(

1

2
|∇φ(t,x)|2 + 1

2
β|φ(t,x)|4

)

dx,(3)

together with the variance identity

d2

dt2

∫

R3

|x|2|φ(t,x)|2 dx = 8H + 2β

∫

R3

|φ(t,x)|4 dx .(4)

In the focusing case β < 0 and with a negative energy H < 0, the solution cannot
remain bounded for all time. More precisely, it follows from the variance identity and
the uncertainty inequality that the L2 norm of the gradient of the solution blows up
in finite time [6]. Many other properties of NLS can be found in [17].
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The goal of this paper is to investigate the effect of random inhomogeneities on the
focusing NLS in the high frequency regime. In the absence of the regularizing effect
of the random inhomogeneities the initial value problem for the focusing NLS is, in
this regime, catastrophically ill-posed, even if the original NLS does not blow up. The
random inhomogeneities are modeled by a potential that is a zero mean, stationary
random function with correlation length comparable to the wavelength, and with
small variance. Using the Wigner phase space form of the Schrödinger equation we
derive a nonlinear mean field transport approximation, in the high frequency and
weak fluctuation limit. When, moreover, the transport mean free path is small, this
nonlinear, phase space transport equation can be further approximated by a nonlinear
degenerate diffusion equation (equation (73)). This is the main result of this paper,
and it captures in a precise way the interaction between the focusing nonlinearity
and the random medium, in the high frequency limit. A linear stability analysis of
this diffusion equation reveals in a simplified but physically clear way the form of the
nonlinearity-randomness interaction. We find that the condition that the linearized
diffusion equation be stable reduces to the positivity of the right hand of the
variance identity (4) of NLS, in the high frequency limit (equation (91)). This
is a surprising result because it is precisely the opposite of this condition, a negative
right hand side for (4), which produces a focusing singularity in NLS (1). We see that
this condition, or rather its opposite

8H + 2β

∫

R3

|φ(t,x)|4 dx > 0(5)

becomes a stability condition, in a well defined high frequency regime, provided that
the focusing mechanism is regularized by random inhomogeneities.

The paper is organized as follows. In section 2 we review briefly the nonlinear
high frequency limit in its usual form and in section 3 we reconsider it in its phase
space form, using the Wigner distribution. In section 4 the random initial data is
discussed. In section 5 we introduce random inhomogeneities and describe the mean
field, transport approximation for the Wigner distribution. In section 6 we rewrite
the nonlinear transport equation in parity form, introducing the odd and even parts
of the Wigner distribution, and in section 7 we derive the diffusion approximation, in
the small mean free path limit. The linearized stability condition for this degenerate,
nonlinear diffusion equation is obtained in section 8.

In section 9 we introduce a numerical scheme for the mean field, nonlinear trans-
port equation and present the results of several numerical calculations. In section 10
we do the same for the degenerate nonlinear diffusion equation for the wave energy
density. Our numerical results indicate that in the high frequency regime the random
inhomogeneities slow down the propagation of wave energy, in the linear and defo-
cusing cases. In the focusing case, the randomness is able to interact fully with the
focusing nonlinearity as long as the nonlinearity is not too strong. In the diffusive
regime, the randomness interacts fully with the focusing or defocusing nonlinearity, in
a diffusive way, provided that the stability condition (91) holds. We end with section
11 that contains a brief summary and conclusions.

2. Nonlinear high frequency limit. We review briefly the high frequency
asymptotic analysis for solutions of (1) with oscillatory initial data. In the high
frequency limit the dimensionless time and propagation distance are long compared
to the scale of variation of the potential V (x). To make this precise we introduce slow
time and space variables t→ t/ε, x→ x/ε, with ε a small parameter, and the scaled

2



wave function φε(t,x) = φ(t/ε,x/ε), which satisfies the scaled Schrödinger equation

iεφεt +
ε2

2
∆φε − V (t,x)φε = 0,(6)

V (t,x) = β|φ(t,x)|2 + V0(x).

The potential has the nonlinear part from the NLS and a linear part that we may add
since it does not affect the analysis as long as it does not depend on ε. In the usual
high frequency approximation [11] we consider initial data of the form

φε(0,x) = eiS0(x)/εA0(x)(7)

with a smooth, real valued initial phase function S0(x) and a smooth compactly
supported complex valued initial amplitude A0(x). We then look for an asymptotic
solution of (6) in the same form as the initial data (7), with evolved phase and
amplitude

φε(t,x) ∼ eiS(t,x)/εA(t,x).(8)

Inserting this form into (6) and equating powers of ε we get approximate evolution
equations for the phase and amplitude

St +
1

2
|∇S|2 + V (t,x) = 0, S(0,x) = S0(x)(9)

and

(|A|2)t +∇ · (|A|2∇S) = 0, |A(0,x)|2 = |A0(x)|2.(10)

The phase equation (9) is the eiconal and the amplitude equation (10) the transport
equation. The terminology for the latter is standard in the high frequency approxi-
mation but should not be confused with the radiative transport equation that will be
derived later. These equations can be rewritten using the high frequency dispersion
relation, ω, of the Schrödinger equation

ω(t,x,k) =
1

2
|k|2 + V (t,x).(11)

The energy in the high frequency regime is obtained by using the ansatz (8) in the
energy (3) so that for small ε

H ≈
∫

R3

(
1

2
|∇S|2 + β

2
|A|2 + V0)|A|2dx.(12)

The potential is V (t,x) = β|A(t,x)|2 + V0(x). Even when it does not depend on
the amplitude |A|, in the linear case, the eiconal equation (9) is nonlinear and its
solution exists in general only up to some time t∗ that depends on the initial phase
S0(x) and V0(x). This solution can be constructed by the method of characteristics
and singularities form when these characteristics (rays) cross. The eiconal and the
transport equations are decoupled in the linear case.

To see more clearly the form of the eiconal and transport equations in the NLS
case, we let ρ = |A|2,u = ∇S, take the gradient of (9), with only the nonlinear
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potential V (t,x) = β|A(t,x)|2, and rewrite this differentiated eiconal and (10) in
conservation law form:

ρt +∇ · (ρu) = 0,(13)

(ρu)t +∇ · (ρuu) +∇p(ρ) = 0,(14)

where

p(ρ) =
β

2
ρ2.(15)

Now the eiconal and transport equations are fully coupled. When β > 0, this system
of conservation laws are the isentropic gas dynamics equations, with equation of state
given by (15) (γ-law gas with γ = 2). It is hyperbolic, and the solution may become
discontinuous at a finite time. The velocity u is irrotational since it is a gradient,
so ∇ × u = 0. The eiconal equation (9) is the Bernoulli form of the momentum
conservation law (14) for time dependent and irrotational flows. Another form of the
momentum conservation law is

ρ(ut + u · ∇u) +∇p = 0(16)

and the conservation of energy is exactly as in (12) with V0 = 0, which we rewrite in
the fluid variables

∂

∂t
H =

∂

∂t

∫

R3

(
1

2
ρ|u|2 + p)dx = 0(17)

In the one-dimensional defocusing case, the nonlinear high frequency limit was
analyzed in detail in [9, 10]. In the higher dimensional defocusing case, mathematical
results are only available for the more regular Schrödinger-Poisson high frequency
equations [5, 13, 7]. When β < 0, the system of conservation laws (13)-(14) has com-
plex characteristics and the initial value problem is catastrophically ill-posed. This
is the case even if the original NLS does not have solutions that blow up, when the
Hamiltonian H > 0, for example. Thus the high frequency limit for the focusing NLS,
without any regularizing mechanisms, does not make sense physically or mathemati-
cally.

3. The Wigner distribution. An essential step in deriving phase space trans-
port equations from wave equations is the introduction of the Wigner distribution
[18, 14]. We begin with a brief review of some basic facts and then give the phase
space form of the high frequency limit.

For any smooth function φ, rapidly decaying at infinity, the Wigner distribution
is defined by

W (x,k) =

(

1

2π

)3 ∫

R3

eik·yφ(x− y

2
)φ(x+

y

2
)dy(18)

where φ̄ is the complex conjugate of φ. The Wigner distribution is defined on phase
space and has many important properties. It is real and its k-integral is the modulus
square of the function φ,

∫

R3

W (x,k)dk = |φ(x)|2,(19)
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so we may think of W (x,k) as wave number-resolved mass density. This is not quite
right though because W (x,k) is not always positive but it does become positive in
the high frequency limit. The energy flux is expressed through W (x,k) by

F =
1

2i
(φ∇φ− φ∇φ) =

∫

R3

kW (x,k)dk(20)

and its second moment in k is
∫

|k|2W (x,k)dk = |∇φ(x)|2.(21)

The Wigner distribution possesses an important x-to-k duality given by the alterna-
tive definition

W (x,k) =

∫

eip·xφ̂(−k− p

2
)φ̂(−k+

p

2
)dp.(22)

where φ̂ is the Fourier transform of φ

φ̂(k) =
1

(2π)3

∫

eik·xφ(x)dx.(23)

These properties make the Wigner distribution a good quantity for analyzing the
evolution of wave energy in phase space.

Given a wave function of the form (8), that is, an inhomogeneous wave with phase
S(t,x)/ε, its scaled Wigner distribution has the weak limit

W ε(x,k) =
1

ε3
W (x,

k

ε
)→ |A(x)|2δ(k−∇S(x)),(24)

as a generalized function, as ε→ 0. This suggests that the correct scaling for the high
frequency limit is

W ε(t,x,k) =

(

1

2π

)3 ∫

eik·yφε(t,x− εy

2
)φε(t,x+

εy

2
)dy ,(25)

where φε satisfies (6). From (24) we conclude that as ε → 0 the scaled Wigner
distribution of the solution φε(t,x) of (6) with initial data (7) is given by

W (t,x,k) = |A(t,x)|2δ(k−∇S(t,x)),(26)

where S(t,x) and A(t,x) are solutions of the eiconal and transport equations (9) and
(10), respectively.

We will now sketch the derivation of the high frequency approximation of the
scaled Wigner distribution directly from the Schrödinger equation. Let us assume
that the initial Wigner distribution W ε

0 (x,k) tends to a smooth function W0(x,k)
that has compact support. Note that this is not the case with the Wigner function
corresponding to φε(0,x) given by (7) but it may be the case for random initial wave
functions. We explain this briefly in the next section. The evolution equation for
W ε(t,x,k) corresponding to the Schrödinger equation (6) is the Wigner equation

W ε
t + k · ∇xW

ε + LεW ε = 0.(27)
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Here the operator Lε is defined by

LεZ(x,k) = i

∫

R3

e−ip·xV̂ (p)
1

ε

[

Z(x,k+
εp

2
)− Z(x,k− εp

2
)
]

dp(28)

on any smooth function Z in phase space. The Fourier transform of V is V̂ .
From (28) we can find easily the limit of the operator Lε as ε → 0, in the linear

case where the potential V does not depend on the solution. For any smooth and
decaying function Z(x,k) we have

LεZ(x,k)→ −∇xV · ∇kZ.(29)

Thus, the limit Wigner equation is the Liouville equation in phase space

Wt + k · ∇xW −∇V · ∇kW = 0(30)

with the initial conditionW (0,x,k) =W0(x,k). When the initial Wigner distribution
has the form

W0(x,k) = |A0(x)|2δ(k−∇S0(x))(31)

then it is easy to see that, up to the time of singularity formation, the solution of (30)
is given by

W (t,x,k) = |A(t,x)|2δ(k−∇S(t,x))(32)

where S(t,x) and A(t,x) are solutions of the eiconal and transport equations (9) and
(10), respectively. If theW0(x,k) and V (x) are smooth so will be the solution of (29),
in the linear case.

In the nonlinear case the potential depends on the solution. The Liouville, or
Liouville-Vlasov, equation is a nonlinear partial differential equation since

V = βρ(t,x) + V0(x) and ρ =

∫

R3

Wdk .(33)

For the initial conditions (31) it is better to use the fluid variables

ρ(t,x) = |A(t,x)|2 and ρ(t,x)u(t,x) = ρ(t,x)∇S(t,x) =
∫

R3

kWdk(34)

which solve the conservation laws (13)-(14). In the defocusing case, up to the time of
shock formation the solution to the Liouville-Vlasov equation is given by

W (t,x,k) = ρ(t,x)δ(k− u(t,x)).(35)

We see, therefore, that from the Wigner distribution we can recover all the information
about the high frequency approximation, when it makes sense. In addition, it provides
flexibility to deal with initial data that are not of the form (31).

4. Random initial data. Let us consider initial wave functions of the form
φ0(

x
ε ,x) where φ0(y,x)is a stationary random field in y for each x with mean zero

and covariance

〈φ0(y1,x1)φ̄0(y2,x2)〉 = R0(y1 − y2,x1,x2).(36)
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Then with

W ε
0 (x,k) =

1

(2π)3

∫

eik·yφ0(
x

ε
− y

2
,x− εy

2
)φ̄0(

x

ε
+
y

2
,x+

εy

2
)dy(37)

we have that

〈W ε
0 (x,k)〉 → R̂0(k,x,x)(38)

pointwise in k and x. Here R̂0(k,x,x) is the diagonal part of the power spectral
density of R0, that is, its Fourier transform in y with x1 = x2 = x. We also have
that for any test function ψ(x,k)

∫

W ε
0 (x,k)ψ(x,k)dxdk→

∫

R̂0(k,x,x)ψ(x,k)dxdk(39)

in probability as ε → 0. This means that W ε
0 converges to R̂0 weakly in probability.

However, it does not converge in mean square, that is, the mean fluctuation 〈||W ε
0 −

R̂0||2L2〉 does not go to zero. This can be seen from the fact that 〈||W ε
0 ||2L2〉 does not

tend to ||R̂0||2L2 .
From the above example we see how smooth and compactly supported initial

Wigner functions can arise. For linear waves in random media there are no additional
complications when dealing with random initial data that are statistically independent
from the medium. The situation is much more complicated in the case of nonlinear
waves, and essentially unexplored mathematically.

5. High frequency limit with random inhomogeneities . We now consider
small random perturbations of the potential V (t,x). It is well known that in one space
dimension, linear waves in a random medium get localized even when the random
perturbations are small [15], so our analysis is restricted to three dimensions. The
two dimensional case is difficult because the mean field approximation that we use in
three dimensions is most likely incorrect.

We consider the linear case first. We assume that the correlation length of the
random perturbation is of the same order as the wavelength, so the potential has the
form V (t,x) + V1(

x
ε ) since the wavelength is of order ε. Here V (t,x) is the slowly

varying background, without the nonlinear part, and V1(y) is a mean zero, stationary
random function with correlation length of order one. This scaling allows the random
potential to interact fully with the waves. We shall also assume that the fluctuations
are statistically homogeneous and isotropic so that

〈V1(x)V1(y)〉 = R(|x− y|),(40)

where 〈, 〉 denotes statistical averaging and R(|x|) is the covariance of random fluctu-
ations. The power spectrum of the fluctuations is defined by

R̂(k) =

(

1

2π

)3 ∫

eik·xR(x)dx.(41)

When (40) holds, the fluctuations are isotropic and R̂ is a function of |k| only. Because
of the statistical homogeneity, the Fourier transform of the random potential V1 is a
generalized random process with orthogonal increments

〈V̂1(p)V̂1(q)〉 = R̂(p)δ(p+ q).(42)
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If the amplitude of these fluctuations is strong then scattering will dominate and
waves will be localized [4], at least in the linear case. This means that we cannot
assume that the fluctuations in the random potential V1(y) are large. If the random
fluctuations are too weak they will not affect energy transport at all. In order that the
scattering produced by the random potential and the influence of the slowly varying
background affect energy transport in comparable ways the fluctuations in the random
potential must be of order

√
ε. This makes the transport mean free time, the reciprocal

of Σ below, of order one and independent of ε. The scaled equation (6) becomes

iε
∂φε

∂t
+
ε2

2
∆φε − (V (t,x) +

√
εV1(

x

ε
))φε = 0

φε(0,x) = φ0(
x

ε
,x).(43)

To describe the passage from (43) to the transport equation in its simplest form
we will set V (t,x) = 0. A smooth and ε independent potential V (t,x) that is not
zero will not change the scattering terms in the phase space transport equation. It
will only affect the Liouville part, in the linear case. Now (27) for W ε has the form

∂W ε

∂t
+ k · ∇xW

ε +
1√
ε
L x

ε
W ε = 0(44)

where the operator L x
ε
, a rescaled form of (28), is given by

L x
ε
Z(x,k) = i

∫

e−ip·x/εV̂1(p)
(

Z(x,k+
p

2
)− Z(x,k− p

2
)
)

dp.(45)

The behavior of this operator as ε → 0 is very different from (29) when V1 is slowly
varying. We can find the correct results by a formal multiscale analysis [14].

Let y = x/ε be a fast space variable (on the scale of the wavelength) and introduce
an expansion of W ε of the form

W ε(t,x,k) =W (t,x,k) + ε1/2W (1)(t,x,y,k) + εW (2)(t,x,y,k) + . . . ,(46)

with y = x/ε on the right. We assume that the leading term does not depend on
the fast scale and that the initial Wigner distribution W ε(0,x,k) tends to a smooth
function W0(x,k) which is decaying fast enough at infinity. Then the average of the
Wigner distribution, 〈W ε〉, is close to W which satisfies the transport equation

∂W

∂t
+ k · ∇xW−∇xV · ∇kW = LW(47)

W (0,x,k) =W 0(x,k),

where we have inserted on the left the term due to the potential V in (33). The linear
operator L is given by

LW (x,k) = 4π

∫

R3

R̂(p− k)δ(k2 − p2)[W (x,p)−W (x,k)]dp.(48)

The left side of equation (47) has precisely the form (30) of the Liouville equation.
The right side is the linear transport operator with differential scattering cross-section
σ(k,k′) given by

σ(k,p) = 4πR̂(p− k)δ(k2 − p2)(49)
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and total scattering cross-section Σ(k) given by

Σ(k) = 4π

∫

R3

R̂(k− p)δ(k2 − p2)dp.(50)

Note also that the transport equation (47) has two important properties. First, the
total energy

E(t) =

∫ ∫

R3×R3

W (t,x,k)dkdx(51)

is conserved and second, the positivity of the solution W (t,x,k) is preserved, that
is, if the initial Wigner distribution W0(x,k) is non-negative then W (t,x,k) ≥ 0 for
t > 0.

The physical meaning of the transport approximation for the linear Schrödinger
equation with random potential is this. The characteristic wavelength introduced by
the initial data is comparable with the scale of the inhomogeneities of the random
potential. When we observe the wave energy far from the source and after a long
time, it appears to evolve in phase space according to a radiative transport equation
with a mean free path that is comparable to the distance from the source of the waves.
This kind of behavior is captured with the ε scaling that we have introduced. The
scaling of the size of the fluctuations by

√
ε is introduced so that the mean free path

between macroscopic scatterings is comparable to the propagation distance.
The mathematical analysis of the passage from waves to transport in the linear

case is considered in [2], [3], [8] and [16]. The paper of Ho, Landau and Wilkins [8] has
extensive references and the paper of Erdos and Yau [3] gives a result that is global
in time.

In the nonlinear case the potential V (t,x) = V ε(t,x) in (43) depends on the
solution. In terms of the Wigner function, the potential is βρε(t,x) + V0(x) with
ρε =

∫

W εdk. We will make a mean field hypothesis here, which says that in the
transport limit ε→ 0 the nonlinear potential keeps its form in the transport equation
(47). This amounts to assuming that ρε → ρ in a strong sense. Some evidence for
this is provided in the appendix. However, the mean field hypothesis is very difficult
to prove. It is also difficult to test numerically, since the fact that we are in three
dimensions is expected to play an important role. There are no mathematical results
that deal with the mean field approximation.

5.1. A linear stability analysis. Let ξ be the unit vector in the direction of
k, i.e., k = kξ where k = |k|. For simplicity, in the sequel of the paper we assume
that the power spectral density of the inhomogeneities is

R̂ = α/2π

with α is a constant. Then (47)-(48) can be written as

∂tW + k · ∇xW −∇xV · ∇kW = α

∫

|ξ′
|=1

W (t,x, k, ξ′)dξ′ − 4παW,(52)

with

V = βρ and ρ =

∫

R3

Wdk.(53)
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The initial condition (31) is now rewritten as

W (0,x, k, ξ) =
1

4πk2
δ (k − |∇S0(x)|) δ

(

ξ − ∇S0(x)

|∇S0(x)|

)

|A0(x)|2.(54)

In order to carry out a linear stability analysis we first take the first two moments
of (52). Multiplying (52) by 1 and k respectively and integrating over k, we have

∂tρ+∇x · ρu = 0(55)

∂tρu+∇x ·
∫

kkW dk−
∫

k∇xV · ∇kW dk = −4παρu .(56)

Thus the random inhomogeneity contributes a damping effect. Of course these equa-
tions are not closed since high moments are undefined. However they can be used in
the linear stability analysis.

First we note that

ρ0 ≡ %̄ , u0 ≡ 0 , W0 ≡ δ(k)%̄ ,

with %̄ a constant, is a solution of the moment equations (55)-(56). We look for a
solution near these constant states, in the form

ρ = ρ+ ρ(1) , u = u(1) ,(57)

where

ρ(1) << ρ , |u(1)| << 1 .(58)

We also set

W = δ(k− u)ρ .(59)

With this ansatz the moment equations can be closed to give

∂tρ
(1) +∇x · ρu(1) = 0(60)

∂tρu
(1) +∇x · u(1)u(1)ρ+ βρ∇xρ = −4παρu(1) .(61)

Using (58) and ignoring higher order terms we obtain the leading order equations

∂tρ
(1) + ρ∇x · u(1) = 0(62)

∂tu
(1) + β∇xρ

(1) = −4παu(1) .(63)

This system is hyperbolic if β ≥ 0 and so is stable in the linear and defocusing cases.
However, in the focusing case β < 0, the system is elliptic. A dispersion relation
analysis for (62)-(63) shows that there are three negative eigenvalues

−1, −1, −2πα−
√

4π2α2 − βρ|η|2

where η is the wave number, and a fourth one

−2πα+
√

4π2α2 − βρ|η|2 .
This last one is always negative when β > 0, and zero when β = 0, suggesting stability
in the defocusing and linear cases. It is always negative when β < 0. The focusing
case near uniform solutions with u = 0 is, therefore, linearly unstable.

This means that the only hope for linear stability in the focusing case is to have a
nonzero u. This is consistent with the linear stability of the diffusion approximation
in the focusing case, which will be derived next.
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6. The parity formulation. It is convenient to use the parity formulation of
the transport equation (47). This allows us to obtain the diffusion approximation in
a transparent way.

To get the parity form of (52), we split it into two equations, one for k and one
for −k:

∂tW (k) + k · ∇xW (k)−∇xV · ∇kW (k)

= α

∫

|ξ′
|=1

W (t,x, k, ξ′)dξ′ − 4παW (k),(64)

∂tW (−k)− k · ∇xW (−k) +∇xV · ∇kW (−k)

= α

∫

|ξ′
|=1

W (t,x, k, ξ′)dξ′ − 4παW (−k).(65)

Define the even and odd parities as

W+ =
1

2
[W (t,x,k) +W (t,x,−k)],

W− =
1

2
[W (t,x,k)−W (t,x,−k)].

Adding and subtracting (64) and (65) gives the parity form of the transport equation

∂tW
+ + k · ∇xW

− −∇xV · ∇kW
− = α

∫

|ξ′
|=1

W+(t,x, k, ξ′)dξ′ − 4παW+,(66)

∂tW
− + k · ∇xW

+ −∇xV · ∇kW
+ = −4παW− .(67)

The parity formulation has the advantage that the diffusion approximation can
be derived easily, as will be shown in the next section.

7. Nonlinear diffusion limit. The diffusion approximation is obtained from
the parity equations (66) and (67) in the small mean free time limit 1/α → 0, and
with the time stretched t→ αt. Then equation (66) implies that for α large

W+(t,x,k) =
1

4π

∫

|ξ′
|=1

W+(t,x, k, ξ′)dξ′ ≡W0(t,x, k) ,(68)

and so the leading term of W+ is independent of ξ. From (67) we have that

W− = − 1

4πα
(k · ∇xW0 − β∇xρ0 · ∇kW0) ,(69)

where

ρ0(t,x) =

∫

k2W0 dk

and where the time derivative can be neglected on the long-time scale. Using (69) in
(66) we get

∂tW0 − k · ∇x

1

4πα
(k · ∇xW0 − β∇xρ0 · ∇kW0)

+β∇xρ0 · ∇k

1

4πα
(k · ∇xW0 − β∇xρ0 · ∇kW0) = 0.(70)
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Taking the ξ average 1
4π

∫

|ξ|=1
·dξ in (70) yields

∂W0

∂t
− k

2

4π

1

4πα

∫

|ξ|=1

ξ · ∇x (ξ · ∇xW0) dξ + β
1

4π

k

4πα

∫

|ξ|=1

ξ · ∇x (∇xρ0 · ∇kW0) dξ

+β
1

4πα
∇xρ0 ·

1

4π

∫

|ξ|=1

∇k (k · ∇xW0) dξ

−β
2

4π
∇xρ0 ·

1

4πα

∫

|ξ|=1

∇k (∇xρ0 · ∇kW0) dξ = 0 .

(71)

By straightforward manipulations (71) becomes

α
∂W0

∂t
− 1

12π
k2∆W0 + β

k

12π
∇x ·

(

∂W0

∂k
∇xρ0

)

+β
1

12π
∇xρ0 ·

[

∇x

∂

∂k
(kW0) + 2∇xW0

]

− β2

12π
|∇xρ0|2

[

∂2W0

∂k2
+

2

k

∂W0

∂k

]

= 0 .(72)

This is the diffusion approximation of the transport equation (52) and it can also
be written in the form

α
∂W0

∂t
− 1

12π

(

∇x
∂
∂k

)

·
(

k2I3 −βk∇xρ0

−βk (∇xρ0)
T

β2|∇xρ0|2
)(

∇xW0
∂W0

∂k

)

+ β
1

6π
∇xρ0 · ∇xW0 −

β2

6πk
|∇xρ0|2

∂W0

∂k
= 0 .(73)

Here I3 is the 3× 3 identity matrix. The diffusion coefficient matrix in (73) is

D =
1

12π

(

k2I3 −βk∇xρ0

−βk(∇xρ0)
T β2|∇xρ0|2

)

(74)

and it is symmetric and nonnegative semi-definite. However, since detD = 0, the
diffusion matrix is degenerate. This is because the scattering operator in (48) is
concentrated on the unit sphere. The derivation of the nonlinear diffusion equation
(73) is the main result of this paper.

The diffusion equation (72), or (73), can be rewritten into a very simple form [1].
Let

e =
k2

2
, ∇̃ = ∇x − β∇xρ

∂

∂e
,(75)

then (72) becomes

12πα
∂W0

∂t
− ∇̃ ·

(

2e∇̃W0

)

+ β∇xρ0 · ∇̃W0 = 0 .(76)

We can get equations for moments of W0 which, however, are not closed. First
we multiply (72) by k2, integrate over k and then integrate by parts to get

12πα
∂ρ0

∂t
− 3β∇x · (ρ0∇xρ0) = −∆

∫

k4W0 dk .(77)
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This gives mass conservation

∂

∂t

∫

ρ0(t,x) dx = 0 .

Let u0 be given by

u0 =
1

ρ0

∫

k3W0(t,x k) dk .(78)

To get an equation for the second moment we multiply (72) by k3 and integrate over
k. After integrating by parts we obtain

∂ρ0u0

∂t
−∆

∫

k5W0 dk − 4β∇x · (ρ0u0∇xρ0)−β∇xρ0 · ∇xρ0u0

−2β2|∇xρ0|2
∫

kW0 dk = 0 .(79)

Note that equations (77) and (79) are not closed since they involve higher k moments
of W0.

As in the usual diffusion theory of the transport equation, an initial layer analysis
gives the initial condition for W0 as

W0(0,x, k) =
1

k2
δ (k − |∇S0(x)|) |A0(x)|2 .(80)

8. Linear stability condition for the nonlinear diffusion equation. In
this section we carry out a linear stability analysis on the diffusion equation (72).
This stability analysis gives a simplified but clear picture of how the nonlinear and
random effects interact.

We use the moment equations (77) and (79) for the stability analysis. First we
note that

ρ0 ≡ %̄ , u0 ≡ u , W0 ≡
1

k2
δ(k − u)%̄ ,

where %̄, u are constants, is a solution of the moment equations (77) and (79). We
look for a solution near these constant states, in the form

ρ0 = ρ+ ρ(1) , u0 = u+ u(1) ,(81)

where

ρ(1) << ρ , u(1) << u .

We also set

W0 =
1

k2
δ(k − u0)ρ0 .(82)

With this ansatz the moment equations can be closed to give

12πα
∂ρ0

∂t
−∆ρ0u

2
0 − 3β∇x · (ρ0∇xρ0) = 0 .(83)

12πα
∂ρ0u0

∂t
−∆ρ0u

3
0 − 4β∇x · (ρ0u0∇xρ0)(84)

−β∇xρ0 · ∇xρ0u0 − 2β2|∇xρ0|2
ρ0

u0
= 0 .
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With the linearization (81), the last two terms in (84) are insignificant and so will be
neglected. The moment equations thus become

12πα
∂ρ0

∂t
−∆ρ0u

2
0 − 3β∇x · (ρ0∇xρ0) = 0 ,(85)

12πα
∂ρ0u0

∂t
−∆ρ0u

3
0 − 4β∇x · (ρ0u0∇xρ0) = 0 .(86)

We now do the linearization (81) and, keeping only the leading terms, obtain the
coupled system of linear diffusion equations

12πα
∂ρ1

∂t
= (u2 + 3β%̄)∆ρ1 + 2%̄u∆u1 ,(87)

12πα
∂u1

∂t
= βu∆ρ1 + u2∆u1 .(88)

8.1. Linear stability from the diffusion matrix. The diffusion coefficient
matrix of (87) and (88)

A =

(

u2 + 3β%̄ 2%̄u
βu u2

)

(89)

has two eigenvalues

λ± = u2 +
3

2
β%̄± 1

2

√

8β%̄u2 + 9β2u2 .(90)

Clearly, Re(λ±) > 0 if and only if

u2 +
3

2
β%̄ > 0 .(91)

This means that the right side of the variance identity (4) in the high frequency limit,
where H has the form (12) or (17) in the ρ, u variables, must be positive for stability.
Therefore, even in the focusing case β < 0, the initial value problems for the linear
diffusion equations (87) and (88) are well posed as long as (91) is satisfied,

It is surprising that the stability condition (91) does not depend on the strength α
of the random inhomogeneities, although the diffusion rate does. It is also surprising
that the right side of the variance identity comes up as a stability condition, while
in the analysis of the NLS equation it is used to get focusing solutions (instability)
when (5) is negative.

8.2. Linear stability for the energy. We now study the stability of (87)-(88)
in the energy norm. In the linear case when β = 0, it is obvious that (87)-(88) is
stable. We analyze the defocusing and focusing cases separately.

In the defocusing case, β > 0, we multiply (87) by βρ, and (88) by %̄u, then add
the resulting equations and integrate over x. Upon integration by parts, we obtain

12πα
∂

∂t

∫
(

β

2
ρ2 +

1

2
%̄u2

)

dx= −
∫

β(u2 + 3β%̄)|∇ρ|2 + 3β%̄u∇ρ · ∇u+ %̄u2|∇u|2 dx

= −
∫

β(u2 +
3

4
β%̄)|∇ρ|2 dx

−
∫

9

4
β2%̄|∇ρ|2 + 3β%̄u∇ρ · ∇u+ %̄u2|∇u|2 dx

= −
∫

β(u2 +
3

4
β%̄)|∇ρ|2 dx−

∫

%̄|3
2
β∇ρ+ u∇u|2 dx

≤ 0 .(92)
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Thus, in the defocusing case the system (87)-(88) is always stable.
In the focusing case, β < 0, we again multiply (87) by βρ, and (88) by 2%̄u. We

then subtract the first equation from the second one. By integrating over x and
integrating by parts, we obtain

12πα
∂

∂t

∫
(

%̄u2 − β

2
ρ2

)

dx = −2%̄u2

∫

|∇u|2 dx+ β

∫

(u2 + 3β%̄)|∇ρ|2 dx .(93)

Clearly, a sufficient condition for the above term to be non-positive is

u2 + 3β%̄ ≥ 0.(94)

This means that the coefficient of ∆ρ in (87) should be nonnegative, which means
that the diagonal entries of the matrix A should be nonnegative.

9. Numerical solution of the nonlinear transport equation. In this sec-
tion we will present some numerical results for the nonlinear transport equation (52)-
(53). In order to have good resolution we assume spherical symmetry and use a second
order, non-oscillatory, upwind scheme [12]. The solution depends only on r = |x|, k
and θ = cos−1 x · k

rk
, the angle between x and k. In these variables equations (52)

and (53) become

∂W

∂t
+ kcosθ

∂W

∂r
− k

r
sin θ

∂W

∂θ
− β ∂V

∂r

(

cos θ
∂W

∂k
− sin θ

k

∂W

∂θ

)

(95)

= 2πα

π
∫

0

W sin θdθ − 4παW,

V = V (ρ) , ρ =

∞
∫

0

2π
∫

0

Wk2 sin θdk dθ.

In terms of the direction cosine −1 ≤ µ = cos θ ≤ 1, (95) can be rewritten in
conservation form as

∂W

∂t
+

∂

∂r
(µkW ) +

∂

∂k

(

−βµ∂V
∂r

W

)

+
∂

∂µ

[

(1− µ2)

(

k

r
− β

k

∂V

∂r

)

W

]

(96)

= 2πα

1
∫

−1

W (t, r, k, µ′) dµ′ − 4παW,

V = V (ρ) , ρ =

∞
∫

0

1
∫

−1

Wk2dkdµ,

where W =W (t, r, k, µ). The initial condition for (96) is

W (0, r, k, µ) =
1

k2
δ (k − u0(r)) δ(µ− a0(r))ρ0(r).(97)

9.1. The numerical method. We will use a second order upwind scheme for
spatial discretizations. This is a natural choice since (96) is a hyperbolic equation. We
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use the composite midpoint rule for angular integration and the second order explicit
Runge-Kutta method for time discretization. The overall accuracy is of second order.

Let ri+1/2(0 ≤ i ≤ I) be the grid points in the r-direction, and likewise define
kj+1/2(0 ≤ j ≤ J) and µl+1/2(0 ≤ l ≤ L). Let ri, kj , µl be the midpoints (for example

ri = 1
2 (ri+1/2 + ri−1/2)). Let ∆r = ri+1/2 − ri−1/2, ∆k = kj+1/2 − kj−1/2 and

∆µ = µl+1/2 − µl−1/2 be the uniform grid sizes in each direction. Let Wijl be the
numerical approximation of W at (ri, kj , µl), and Wi+1/2,j,l be the approximation of
W at (ri+1/2, sj , µl). We define Wi,j+1/2,l and Wij,l+1/2 in a similar way. A second
order conservative approximation for (96) is

∂

∂t
Wijl +

µlkj
∆r

(Wi+1/2,j,l −Wi−1/2,j,l)−
µl
∆k

∂Vi
∂r

(Wi,j+1/2,l −Wi,j−1/2,l)(98)

+
1− µ2

l

∆µ

(

kj
ri
− 1

kj

∂Vi
∂r

)

(Wi,j,l+1/2 −Wi,j,l−1/2)

= 2πα

1
∫

−1

Wij (t, r, k, µ
′)− 4παWijl.

To get the flux Wi+1/2,jl from the known quantity Wijl we use the second order
upwind scheme due to van Leer [12]

Wi+1/2,jl =Wijl +
∆r

2
σri , if µl > 0 ;(99)

Wi+1/2,jl =Wi+1,jl −
∆r

2
σri+1 , if µl < 0 .(100)

Here σri is the limited slope [12]

σri =
1

∆r
(Wi+1,jl −Wijl)φ(θ

r)(101)

θr =
Wijl −Wi−1,jl

Wi+1,jl −Wijl
(102)

φ(θ) =
|θ|+ θ

1 + |θ| ,(103)

A limited slope scheme is necessary, especially for the defocusing case, since moments
of the nonlinear transport equation are close to the gas dynamics equations. Without
a limited slope the numerical solutions become oscillatory when shocks develop. We
define the flux in the k-direction in a similar way

Wi,j+1/2,l =Wijl +
∆k

2
σkj , if − µl

∂Vi
∂r

> 0 ;(104)

Wi,j+1/2,l =Wi,j+1,l −
∆k

2
σkj+1 , if − µl

∂Vi
∂r

< 0 ,(105)

where σki is defined as in (101). The flux in the µ-direction is given by

Wi,j,l+1/2 =Wijl +
∆µ

2
σµl , if

kj
ri
− 1

kj

∂V

∂r
> 0 ;(106)

Wi,j,l+1/2 =Wi,j,l+1 −
∆µ

2
σµl+1 , if

kj
ri
− 1

kj

∂V

∂r
< 0 ,(107)
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where σµl is defined as in (101).

To find ∂Vi
∂r , given that V ′(r) = V ′(ρ)∂ρ∂r , we need to evaluate ∂ρi

∂r . We use the
centered difference

∂ρi
∂r
≈ ρi+1/2 − ρi−1/2

∆r
(108)

=
1

∆r

(
∫ ∞

0

∫ 1

−1

Wi+1/2(t, k, µ)dkdµ−
∫ ∞

0

∫ 1

−1

Wi−1/2(t, k, µ)dkdµ

)

≈ ∆k∆µ

∆r

∑

j,l

(Wi+1/2,j,l −Wi−1/2,j,l).

Here we have used the composite midpoint rule to approximate the integral. It has
second order accuracy in k and µ. We can use the flux Wi+1/2,j,l already obtained
from (100) in (108). To recover Vi+1/2 we use the integral

ρi+1/2 = ρ1/2 +

∫ ri+1/2

0

∂ρ

∂r
dr ≈ ρ1/2 +

i
∑

j=0

∂ρj
∂r

∆r(109)

where the composite midpoint rule has again been used.
Time discretization: We use the second order Runge-Kutta method.
Boundary conditions: Since the numerical flux has a five point stencil it is

necessary to have two fictitious points outside the physical boundaries. To define W
on the left of r = 0 we use the condition

W (t,−r, k, µ) =W (t, r, k,−µ) .(110)

This makes sense physically because equation (96) remains unchanged if we replace r
by −r and µ by −µ simultaneously. To define W to the left of k = 0 we use a similar
condition

W (t, r,−k, µ) =W (t, r, k,−µ) .(111)

The scattering term in (96) is small near k = 0. At outer boundaries of r and k we
use outgoing boundary conditions. For the computations the domain in k is large
enough so that at the outer boundary W is nearly zero. At µ = ±1 we simply use the
reflecting boundary condition ∂W

∂µ = 0.
More precisely, we fix the numerical boundary conditions at r = 0 as follows. If

∂V
∂r < 0 we first extrapolate W to second order for µ < 0 from the interior value of
W to get W−1/2,jl and W−2/3,jl, where r−1/2 = −r1/2 and r−3/2 = −r3/2 are the
fictitious points. To obtain W at the fictitious points for µ > 0 we use the condition
(110) numerically, i.e., W−1/2.jl = W1/2,j,L−l+1 and W−3/2,jl = W3/2,j,L−l+1. If
∂V
∂r > 0 we reverse this process. This corresponds to extrapolation in an upwind
direction, which is necessary for a hyperbolic equation. At k = 0 we impose a similar
boundary condition. At the outer boundaries we always assume zero incoming flux
and the outgoing flux is simply the outflow boundary condition.

9.2. Numerical results. We will now present the results of some numerical
experiments for the nonlinear transport equation (96). We want to see the effect of
randomness, which in (96) is the scattering term, on the focusing nonlinearity. We
use the potential

V (ρ) = βρ.
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The initial energy density is

W (0, r, k, µ) =
1

k2
δ(k − 1)δ(µ)ρ0(r) ,(112)

but in the numerical computations we use the Gaussian

W (0, r, k, µ) =
λ2

π

1

k2
e−λ

2((k−1)2+µ2)ρ0(r)(113)

which gives for

ρ0(r) = e−λ
2r2 + 0.5 .(114)

This initial density regularizes the delta-function. The smoothing effect of the pa-
rameter λ is explored numerically below. The nonlinear transport equation with
delta-function initial data is quite singular and there is no theoretical justification
for expecting it to correspond to the limiting behavior λ → ∞ of the regularized
solutions.
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Fig. 1. The density ρ(t, r) versus r for the linear case without randomness, (α = β = 0) and
λ = 3. Note that the energy is propagating away from the origin.

The computational domain in r, k, µ space is [0, 2] × [0, 2] × [−1, 1]. We use 120
cells in r, 120 cells in k, and 40 cells in µ. We use ∆t = 10−4 for the linear case,
∆t = 5 × 10−6 for the defocusing case, and ∆t = 10−5 for the focusing cases. In
the focusing case the solution is less diffusive and the CFL condition allows a slightly
larger ∆t than in the defocusing case. We first use λ = 3.

1. The linear case (β = 0). If there is no randomness (α = 0), wave energy
moves away from the origin, as in Fig. 1. By turning on the random terms
(α = 0.7) we see that it tends to slow down the spreading of the energy as
shown in Fig. 2.
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Fig. 2. The density ρ(t, r) versus r for the linear case with randomness α = 0.7 and λ = 3.
Wave energy spreading is slower than that of Fig. 1 without randomness.

2. The defocusing case (β = 1). The energy density without randomness (α = 0)
is shown in Fig. 3. It propagates away from the origin much faster than in
the linear case, Fig. 1. In Fig. 4 we show the energy density in the defocusing
case with randomness (α = 0.7). The solution is more spread out than in the
linear case.

3. The focusing case. If there is no randomness (α = 0), the numerical solution
becomes highly oscillatory (one wave length per grid point), Fig. 5, reflecting
the unstable nature of the problem. By turning on the randomness, for
example, at α = 0.7, numerical results are stable, at least when |β| is not
too large. We compare the results of β = −0.2 and β = −0.5 in Fig. 6 and
Fig. 7 respectively. In both cases the solutions spread out slower than in
the linear case, and larger |β| slows down the spreading of the solution. We
also consider the smoothing effect of the initial data. In Fig. 8 and Fig. 9
we compare numerical solutions with λ = 6 and λ = 9, respectively. The
solutions are quite close to each other. The larger λ slows down spreading a
bit, but the qualitative behavior of the numerical solutions remains the same.

It still remains an important issue to investigate the quantitative relation among
α, β and λ and how it effects the stability of the physical problem. This will be a
topic for future research.

10. Numerical solution of the nonlinear diffusion equation. We also solve
numerically the nonlinear diffusion equation (72). We rescale the time variable so
that α disappears. We have four independent variables but we will assume spherical
symmetry to reduce them to two. Let r = |x|, and W (t,x, k) = W (t, r, k). The
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Fig. 3. The density ρ(t, r) versus r for the defocusing case with no randomness (α = 0, β = 1)
and λ = 3. The wave energy propagates away from the origin much faster than in the linear case.
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Fig. 4. The energy density ρ(t, r) versus r in the defocusing case with randomness (α = 0.7, β =
1) and λ = 3. The density is more spread out.
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Fig. 5. The energy density ρ(t, r) versus r for the focusing case with no randomness. Here
β = −0.2 and λ = 3.
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Fig. 6. The energy density ρ(t, r) versus r for the focusing case with randomness. Here α =
0.7, β = −0.2 and λ = 3.
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Fig. 7. The energy density ρ(t, r) versus r for the focusing case with randomness. Here α =
0.7, β = −0.5 and λ = 3.
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Fig. 8. The energy density ρ(t, r) versus r for the focusing case with randomness. Here α =
0.7, β = −0.2 and λ = 6.
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Fig. 9. The energy density ρ(t, r) versus r for the focusing case with randomness. Here α =
0.7, β = −0.2 and λ = 9.

diffusion equation (72) in polar coordinates is
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∂k
= 0 ,(115)

V (ρ) = βρ ,

with the initial condition

W0(0, r, k) =
1

k2
δ (k − u0(r)) ρ0(r).(116)

We use a second-order centered difference scheme for spatial derivatives and composite
midpoint rule to approximate ρ0(r). Let Wi,j denote the spatial discretization of W0.
The spatially discretized form of equation (115) is

∂Wi,j

∂t
− 1

12π

k2
j

r2i (∆r)
2
(r2i+1/2(Wi+1,j −Wi,j)− r2i−1/2(Wi,j −Wi−1,j)(117)

+
k

12πr2i
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Here we define ri+1/2 = (ri + ri+1)/2 and kj+1/2 = (kj + kj+1)/2. To get Vi from W
we use the composite midpoint rule. For time discretization we use the second-order
Runge-Kutta method. At r = 0 or k = 0 we use reflecting boundary conditions.
At the outer boundaries we use vanishing flux conditions. It is important to have a
domain in k that is large enough so that W is very small at the outer boundary of k.
We choose the initial data

W0(0, r, k) =
1

k2
e−9((k−1)2+r2)(118)

The domain of integration is [0, 1] × [0, 2]. We take 32 points in r, 64 points in
k and ∆t = 10−4. The numerical results for linear, defocusing and focusing (with
β = −1 and β = −0.5) are shown in Figs. 10,11,12,13, respectively. In the linear case
there is less diffusion than in the defocusing case, while in the focusing case diffusion
is quite reduced. In fact, in the focusing case with β = −1 the stability condition (91)
is not satisfied in part of the domain and ρ(t, r) grows locally as the solution tends
to focus. In Fig. 12 we show the solution until it is about to blow-up (at t ≈ 0.51).
By decreasing ∆t we may compute the solution to a slightly longer time but it still
breaks down numerically. For a stable solution we have to take a smaller |β|. In Fig
13 we show ρ with β = −0.5 so that the stability condition (91) is satisfied in the
whole domain. The solution is stable and diffuses, at a slower rate than in the linear
case. Our numerical results support the linear stability analysis that leads to (91). If
(91) holds at every point of the domain initially then the nonlinear diffusion equation
is stable in time.

In Fig. 14 we plot the diffusivity

σ(t) =

∫ ∞

0

∫ ∞

0

W0r
4k2 drdk(119)

as a function of time, where the integrals are computed numerically with the composite
midpoint rule. We see more clearly what we observe in the previous figures. The slope
of σ(t), the rate of diffusion, decreases as we go from the defocusing to the linear and
to the focusing (β = −0.5) case.

11. Summary and conclusions. We have studied the interaction of nonlinear
waves, solutions of the nonlinear Schrödinger equation (NLS), and random inhomo-
geneities, which have mean zero, are stationary and have correlation length com-
parable to the wavelength. Using the Wigner phase space form of the Schrödinger
equation, we derive formally a nonlinear, mean field transport approximation in the
high frequency limit, and then get the diffusion approximation of this nonlinear trans-
port equation. A linear stability analysis of the nonlinear diffusion equation shows in
a simplified way how the nonlinearity and randomness interact. The focusing nonlin-
earity has an anti-diffusive effect (see (91) with β < 0) but as long as it is not very
strong the diffusion equation is linearly stable. The linear stability condition (91) has
a surprising connection with the variance identity of the NLS (4): it is the right side
of this identity in the high frequency limit.
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Fig. 10. The energy density ρ(t, r) in the diffusion approximation in the linear case, plotted as
a function of r with ∆t = 0.0001.
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Fig. 11. The energy density ρ(t, r) in the diffusion approximation in the defocusing case (β =
1), plotted as a function of r with ∆t = 0.0001.
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Fig. 12. The energy density ρ(t, r) in the diffusion approximation in the focusing case with
β = −1, plotted as a function of r with ∆t = 0.0001. Note the onset of instability where condition
(91) is violated.
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Fig. 13. The energy density ρ(t, r) in the diffusion approximation in the focusing case with
β = −0.5, plotted as a function of r with ∆t = 0.0001. Now the condition (91) holds everywhere so
there is no instability.
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Fig. 14. A comparison of the diffusivity σ(t) defined in (119) for the linear, defocusing and
focusing cases.

We then use suitable numerical schemes for both the mean-field transport equa-
tion and its nonlinear diffusion approximation, and obtain numerical solutions for
these two equations. Our results indicate that in the high frequency regime the ran-
dom inhomogeneities prevent the wave energy from propagating in the linear and
defocusing cases, but they are not strong enough to interact fully with the focusing
nonlinearity. However, in the diffusive regime, randomness and nonlinearity interact
fully, in a diffusive way, in all cases, defocusing and focusing. More precisely, we find
that:

1. In the high frequency regime, for the linear and defocusing Schrödinger equa-
tion, the presence of the random inhomogeneities prevents the wave energy
from propagating and damps its amplitude. In the focusing case, the random
inhomogeneities can stabilize the focusing nonlinearity if the nonlinearity is
not too strong.

2. In the diffusive regime the defocusing nonlinearity enhances the overall diffu-
sivity. The focusing nonlinearity is anti-diffusive. However, when the strength
of the nonlinearity is within a stability threshold, given by equation (91), the
random diffusivity dominates and the overall solution is diffusive. Thus, if
the original focusing NLS does not blow-up because the right hand side of
the variance identity (4) is negative, then the random inhomogeneities can
stabilize it in the high frequency and diffusive regime.

Appendix A. The mean field approximation and the correctors.
In this appendix, we provide some evidence supporting the mean field approxi-

mation invoked in Section 5 by analyzing the behavior of the correctorsW (1),W (2), ...
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in the multi-scale expansion (46).
In the linear case, Spohn [16] has proved local-in-time convergence of the solution

of the linear Schrödinger equation to that of the linear transport equation. Erdös
and Yau [3] have improved the result so that the convergence is global in time. Both
results involve detailed analysis of graphs corresponding to multiple scattering.

There are no rigorous results for the nonlinear case. The fact that the corrector
analysis predicts the same limiting Boltzmann equation and the dimension (d ≥ 3)
required for convergence as proved by Erdös and Yau [3] is probably not a coincidence.
The extent to which the correctors tell us about the fluctuation around the mean field
in the limit ε→ 0 remains to be tested and needs further investigation.

The terms in the expansion (46) are determined by substituting into the Wigner
equation (44) and collecting terms of same orders in ε:

O(
1

ε
) : k · ∇yW = 0(120)

O(
1√
ε
) : k · ∇yW

(1) + L x
ε
W = 0(121)

O(1) :
∂W

∂t
+ k · ∇xW + L x

ε
W (1) = −k · ∇yW

(2).(122)

Eq. (120) means that W = W (t,x,k) does not depend on the fast variable y. Eq.
(121) is the corrector equation for W (1) which is degenerate. With a standard regu-
larization, Eq. (121) becomes

εW (1)
ε + k · ∇yW

(1)
ε + L x

ε
W = 0(123)

which has the solution

W (1)
ε = i

∫

dpV̂ (p)
e−ip·y

ε− ik · p [W (t,x,k− p/2)−W (t,x,k+ p/2)] .(124)

Substituting (124) into Eq. (122), taking expectation and passing to the limit ε→ 0,
we get the transport equation (47) for W . We see from Eq. (122) that the second
order corrector W (2) satisfies the equation

k · ∇yW
(2) + L x

ε
W (1) − 〈L x

ε
W (1)〉 = 0,

which again should be regularized as in Eq. (124). Higher order correctors can be
determined similarly. We focus on the first corrector W (1).

As pointed out in Section 4 , the initial data for the Wigner function does not
converge strongly, so neither the solutionW ε of the Wigner equation nor the corrector

W
(1)
ε is expected to converge strongly. This is, indeed, the case as stated next.

Proposition A.1. Suppose W (t,x,k) is such that the function

f(k,p) = R̂(p)

∫

dx [W (x,k− p/2)−W (x,k+ p/2)]
2

is continuous and its zero set does not contain the set {(k,p) : k · p = 0}. Then,

ε
∫ ∫

〈|W (1)
ε |2〉 dxdk does not vanish as ε→ 0, in any dimension.

Proof. A straightforward calculation leads to

ε

∫ ∫

〈|W (1)
ε |2〉 dxdk
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=

∫

dp R̂(p)

∫

dk
ε

ε2 + (k · p)2
∫

dx [W (x,k− p/2)−W (x,k+ p/2)]
2

≥ 1

2ε

∫

dk

∫

|k·p|≤ε

dp R̂(p)

∫

dx [W (x,k− p/2)−W (x,k+ p/2)]
2

≥ 1

2ε

∫

dk

∫

|k·p|≤ε

dp f(k,p)(125)

As the set {k ∈ Rd : |k · p| ≤ ε} ⋂

supp{f(k,p)} has a measure of order ε for W
satisfying the stated assumption, the expression (125) does not vanish in the limit
ε→ 0, as we wanted to show.

We note that “generic” functions W that are not spherically symmetric in k
satisfy the condition stated in Proposition A.1.

However,
√
εW

(1)
ε does vanish strongly (in x) if it is first integrated against a test

function of k, as stated in the next proposition. This provides some reason for using
the mean field hypothesis in the derivation of the transport equation.

Proposition A.2. For d ≥ 3 and any differentiable W (x,k) with a compact

support, we have

lim
ε→0

ε

∫

dx 〈
∣

∣

∣

∣

∫

dkW (1)
ε φ(k)

∣

∣

∣

∣

2

〉 = 0, ∀φ(k) ∈ C∞c(126)

Proof. After taking the expectation, the expression on the left side of (126) becomes

ε

∫

dp
R̂(p)

|p|2
∫

dx

∣

∣

∣

∣

∫

dk
φ(k)

ε− ik · p̂ [W (x,k− p/2)−W (x,k+ p/2)]

∣

∣

∣

∣

2

(127)

where p̂ = p/|p|. Since φ(k)[W (x,k − p/2) −W (x,k + p/2)] is differentiable, we
have

lim
ε→0

∫

dk
φ(k)

ε− ik · p̂ [W (x,k− p/2)−W (x,k+ p/2)]

= lim
ε→0

∫

|k·p̂|>ε

dk
φ(k)

−ik · p̂ [W (x,k− p/2)−W (x,k+ p/2)]

= i

∫

dk⊥(p̂)

∫

− d(k · p̂) φ(k)
k · p̂ [W (x,k− p/2)−W (x,k+ p/2)](128)

with k⊥(p̂) the orthogonal projection of k unto the plane normal to p. Here
∫

−
stands for the Cauchy principal value integral. Since |p|−2 in (127) is an integrable
singularity in three or more dimensions, the expression in (126) is O(ε) as ε → 0, as
we wanted to show.
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