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Gradient Elasticity Theory for
Mode III Fracture in Functionally
Graded Materials—Part I: Crack
Perpendicular to the Material
Gradation
Anisotropic strain gradient elasticity theory is applied to the solution of a mode III cr
in a functionally graded material. The theory possesses two material characte
lengths,, and ,8, which describe the size scale effect resulting from the underlin
microstructure, and are associated to volumetric and surface strain energy, respect
The governing differential equation of the problem is derived assuming that the s
modulus is a function of the Cartesian coordinate y, i.e., G5G~y!5G0egy, where G0
and g are material constants. The crack boundary value problem is solved by mea
Fourier transforms and the hypersingular integrodifferential equation method. The
gral equation is discretized using the collocation method and a Chebyshev polyn
expansion. Formulas for stress intensity factors, KIII , are derived, and numerical result
of KIII for various combinations of,, ,8, and g are provided. Finally, conclusions are
inferred and potential extensions of this work are discussed.@DOI: 10.1115/1.1532321#
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1 Introduction
Classical~local! continuum theories possess no intrinsic leng

scale. Typical dimensions of length are generally associated
the overall geometry of the domain under consideration. T
classical elasticity and plasticity are scale-free continuum theo
in which there is no microstructure associated with mate
points,@1#. In contrast, strain gradient theories enrich the class
continuum with additional material characteristic lengths in or
to describe the size~or scale! effects resulting from the underlin
ing microstructures. Recent work on strain gradient theories
account for size~or scale! effects in materials can be found in th
articles by Wu@2#, Fleck and Hutchinson@3#, Lakes@4,5#, Smy-
shlyaev and Fleck@6#, and Van Vliet and Van Mier@7#. Recent
applications of gradient elasticity to fracture mechanics inclu
the work by Fannjiang et al.@8#, Paulino et al.@9#, Exadaktylos
et al.@10#, Vardoulakis et al.@11#, Aifantis @12#, Zhang et al.@13#,
Hwang et al.@14#, and the review paper by Hutchinson and Eva
@15#. The present work focuses on anisotropic strain gradient e
ticity theory for fracture problems in functionally graded materia
~FGMs!. To the best of the authors’ knowledge, this is the first~or
one of the first! solutions for FGMs with gradient terms.

The emergence of FGMs is the outcome of the need to acc
modate material exposure to nonuniform service requireme
These multiphased materials feature gradual transition in com
sition and/or microstructure for the specific purpose of controll
variations in thermal, structural, or functional properties. The s
tial variation of microstructure is accomplished through nonu
form distribution of the reinforcement phase with different pro
erties, sizes, and shapes, as well as by interchanging the rol
reinforcement and matrix~base! materials in a continuous manne
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This concept is illustrated by Fig. 1, which shows an FGM with
continuously graded microstructure. Typical examples of FG
include ceramic/ceramic~e.g., MoSi2 /SiC @16# and TiC/SiC@17#!,
and metal/ceramic~e.g., Nb/Nb5Si3 @18# and Ti/TiB @19#!, sys-
tems. Comprehensive reviews on several aspects of FGMs ca
found in the articles by Markworth et al.@20#, Erdogan@21#, and
Hirai @22#, and in the book by Suresh and Mortensen@23#.

This paper presents a linkage between gradient elasticity
graded materials within the framework of fracture mechanics. T
remainder of the paper is organized as follows. First, the con
tutive equations of anisotropic gradient elasticity for nonhomo
neous materials subjected to antiplane shear deformation
given. Then, the governing partial differential equations~PDEs!

8,
the
nt of
ara,
nalFig. 1 Functionally graded material „FGM… with continuously
graded microstructure
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are derived and the Fourier transform method is introduced
applied to convert the governing PDE into an ordinary differen
equation~ODE!. Afterwards, the crack boundary value problem
described and a specific complete set of boundary condition
given. The governing hypersingular integrodifferential equation
derived and discretized using the collocation method. Next, v
ous relevant aspects of the numerical discretization are desc
in detail. Subsequently, numerical results are given, conclus
are inferred, and potential extensions of this work are discus
Two appendices supplement the paper. One contains the len
expression of the regular kernel in the final~governing! hypersin-
gular integrodifferential equation, and the other provides so
useful formulas for evaluating hypersingular integrals and co
puting stress intensity factors~SIFs!.

2 Constitutive Equations of Gradient Elasticity
This section introduces the notation and constitutive equat

of gradient elasticity, which will be used to investigate antipla
shear cracks in functionally graded materials~FGMs!. In three-
dimensional space, the displacement components are defined

ux[u, uy[v, uz[w, (1)

and for antiplane shear problems, the following relations hold

u5v50, w5w~x,y!. (2)

Strains are defined as

e i j 5
1

2 S ]ui

]xj
1

]uj

]xi
D , (3)

where both the indicesi and j run through (x1 ,x2 ,x3)
5(x,y,z). For antiplane shear problems, the nontrivial strains

exz5
1

2

]w

]x
, eyz5

1

2

]w

]y
. (4)

Casal@24–26# has established the connection between surf
tension effects and anisotropic gradient elasticity theory. Fo
material graded in they-direction, the Casal’s continuum can b
extended so that the strain-energy density has the following f

W5
1
2l~y!e i i e j j 1G~y!e i j e j i 1G~y!,2~]ke i j !~]ke j i !

1,8nk]k@G~y!e i j e j i #, ,.0, (5)

which has been generalized for an FGM with Lame´ moduli l
[l(y) andG[G(y). Moreover,]k5]/]xk . When the formula-
tion is derived by means of a variational principle~or principle of
virtual work!, terms associated with, undertake a volume inte
gral, and terms associated with,8 can be reduced to a surfac
integral using the divergence theorem. In this sense, the cha
teristic length , is responsible for volumetric strain-gradie
terms, and the characteristic,8 is responsible for surface strain
gradient terms. Moreover,nk , ]knk50, is a director field equal to
the unit outer normalnk on the boundaries.

The Cauchy stressest i j , the couple stressesmki j and the total
stressess i j are defined as

t i j 5]W/]e i j (6)

mki j5]W/]e i j ,k (7)

s i j 5t i j 2]kmki j . (8)

For homogeneous materials~i.e., l and G constants!, the stress
fields are expressed in terms of strains and strain derivatives

s i j 5lekkd i j 12G~e i j 2,2¹2e i j ! (9)

t i j 5lekkd i j 12Ge i j 12G,8nk]ke i j (10)

mki j52G~,8nke i j 1,2]ke i j !. (11)
532 Õ Vol. 70, JULY 2003
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As pointed out by Chan et al.@27#, the constitutive equations o
gradient elasticity for FGMs have a different form from the on
above. Thus, for FGMs with material gradation along the Ca
sian coordinatey, the constitutive equations of gradient elastici
are

s i j 5l~y!ekkd i j 12G~y!~e i j 2,2¹2e i j !22,2@]kG~y!#~]ke i j !

(12)

t i j 5l~y!ekkd i j 12G~y!e i j 12,8nk@e i j ]kG~y!1G~y!]ke i j #

(13)

mki j52,8nkG~y!e i j 12,2G~y!]ke i j . (14)

Note that the Cauchy stressest i j are influenced by a term con
taining the spatial derivative of the shear modulus, and so are
total stressess i j . The term ‘‘22,2@]kG(y)#(]ke i j )’’ that appear
in ~12!, but not in ~9!, can be interpreted as the interaction b
tween the material gradation and the nonlocal strain gradient
fect, which will play a role in the governing partial differentia
equation~PDE! ~17! discussed in the next section. Moreover, ifl
andG are constants, the constitutive equations for homogene
materials~see Vardoulakis et al.@11#, Exadaktylos et al.@10#, and
Fannjiang et al.@8#! are recovered as a particular case of E
~12!–~14!. If the shear modulusG is a function ofy ~see Fig. 2!
and a mode III problem is under consideration, then each com
nent of the stress field can be written as,@27#:

sxx5syy5szz50, sxy50

sxz52G~y!~exz2,2¹2exz!22,2@]yG~y!#~]yexz!Þ0

syz52G~y!~eyz2,2¹2eyz!22,2@]yG~y!#~]yeyz!Þ0 (15)

mxxz52G~y!,2]xexz

mxyz52G~y!,2]xeyz

Fig. 2 Mode III crack in a functionally graded material
Transactions of the ASME
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myxz52G~y!~,2]yexz2,8exz!

myyz52G~y!~,2]yeyz2,8eyz!.

Again, it is worth pointing out that there is an extra term insxz
andsyz as compared to the homogeneous material case~see Vard-
oulakis et al.@11# p. 4534!.

3 Governing Partial Differential Equation
By imposing the only nontrivial equilibrium equation

]sxz

]x
1

]syz

]y
50, (16)

the following partial differential equation~PDE! for general form
of G(y) is obtained:

]

]x FG~y!S ]w

]x
2,2¹2

]w

]x D G1
]

]y FG~y!S ]w

]y
2,2¹2

]w

]y D G
2,2F]2G~y!

]y2

]2w

]y2 1
]G~y!

]y

]3w

]y3 1
]G~y!

]y

]3w

]x2]yG50.

(17)

If the shear modulusG is an exponential function ofy, i.e.,

G[G~y!5G0egy, (18)

then ~17! can be simplified as

2,2¹4w22g,2¹2
]w

]y
1¹2w2g2,2

]2w

]y2 1g
]w

]y
50, (19)

or in a factored form

S 12g,2
]

]y
2,2¹2D S ¹21g

]

]yDw50. (20)

In terms of the differential operator notation,~20! can be writ-
ten in the form as

HgLgw50; Hg512g,2
]

]y
2,2¹2, Lg5¹21g

]

]y
,

(21)

whereHg is the perturbed Helmholtz operator,Lg is the perturbed
Laplacian operator, and the two operators commute, i.e.,HgLg
5LgHg . Thus, the PDE~20! can be considered as a double pe
turbation of the composition of the Helmholtz and harmon
equations,

~12,2¹2!¹2w50, (22)

that is, one perturbation is to the Helmholtz operator
2,2¹2), and the other perturbation is to the Laplacian opera
¹2. Both the Helmholtz and the Laplacian operators are invar
under ‘‘rigid-body motions.’’ However, FGMs bring in the pertu
bation and destroy such invariance. By settingg→0 in ~20!, one
gets~22!, which is the PDE for gradient elasticity.

Another viewpoint of the perturbation is focused on the role
the characteristic length,. By taking ,→0 ~at the level of the
differential equation!, we obtain a lower order of PDE,

Table 1 Governing partial differential equations „PDEs… in an-
tiplane shear problems
Journal of Applied Mechanics
r-
ic

(1
tor
ant
-

of

S ¹21g
]

]yDw50,

i.e., the perturbed harmonic equation, which has been investig
by Erdogan and Ozturk@28#. However, because the correspondi
term to the coefficient,2 affects the highest differential in the
governing PDE~19!, a singular perturbation is expected as t
limit ,→0 is considered. By taking bothg→0 and ,→0, we
obtain the harmonic equation for classical elasticity. Various co
bination of parameters, andg with the corresponding governing
PDE are listed in Table 1.

4 Fourier Transform
Let the Fourier transform be defined by

F~w!~j!5W~j!5
1

A2p
E

2`

`

w~x!eixjdx. (23)

The inverse Fourier transform theorem gives

F 21~W!~x!5w~x!5
1

A2p
E

2`

`

W~j!e2 ixjdj, (24)

wherei 5A21. Now let us assume that

w~x,y!5
1

A2p
E

2`

`

W~j,y!e2 ixjdj, (25)

i.e., w(x,y) is the inverse Fourier transform of the functio
W(j,y).

Considering each term in Eq.~17! term by term, and using Eq
~25!, one obtains

2,2¹4w52,2S ]4w~x,y!

]x4 12
]4w~x,y!

]x2]y2 1
]4w~x,y!

]y4 D
5

2,2

A2p
E

2`

` S j4W~j,y!22j2
]2W

]y2 1
]4W

]y4 De2 ixj dj

(26)

22g,2¹2
]w

]y
522g,2S ]3w~x,y!

]x2]y
1

]3w~x,y!

]y3 D
522

g,2

A2p
E

2`

` S 2j2
]W~j,y!

]y
1

]3W

]y3 De2 ixj dj

(27)

¹2w5
]2w~x,y!

]x2 1
]2w~x,y!

]y2

5
1

A2p
E

2`

` S 2j2W~j,y!1
]2W

]y2 De2 ixj dj (28)

2g2,2
]2w~x,y!

]y2 52
g2,2

A2p
E

2`

` ]2W~j,y!

]y2 e2 ixj dj (29)

g
]w~x,y!

]y
5

g

A2p
E

2`

` ]W~j,y!

]y
e2 ixj dj. (30)

Equations~26! to ~30! are added~according to Eq.~19!!, and after
simplification, the governing ordinary differential equation~ODE!
is obtained:

F,2
d4

dy4 12g,2
d3

dy3 2~2,2j21g2,211!
d2

dy2 2g~112,2j2!
d

dy

1~,2j41j2!GW50. (31)
JULY 2003, Vol. 70 Õ 533



Table 2 Roots l together with corresponding mechanics theory and type of material
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5 Solutions of the Ordinary Differential Equation
The corresponding characteristic equation to the ordinary

ferential equation~ODE! ~31! is

,2l412g,2l32~2,2j21g2,211!l22g~112,2j2!l

1~,2j41j2!50, (32)

which can be further factored as

@,2l21g,2l2~11,2j2!#~l21gl2j2!50. (33)

Clearly the four rootsl i ( i 51,2,3,4) of the polynomial~33!
above can be obtained as

l15
2g

2
2

Ag214j2

2
, l25

2g

2
1

Ag214j2

2
, (34)

l35
2g

2
2Aj21g2/411/,2, l45

2g

2
1Aj21g2/411/,2,

(35)

where we letl1,0 andl3,0. As g→0, we recover the roots
found by Vardoulakis et al.@11# and Fannjiang et al.@8#. The roots
l1 and l2 correspond to the solution of the perturbed harmo
equation, and the rootsl3 andl4 match with the solution of the
perturbed Helmholtz’s equation. Various choices of paramete,
and g with their corresponding mechanics theories and mate
types are listed in Table 2.

By taking account of the far-field boundary condition

w~x,y!→0 as Ax21y2→1`, (36)

and withy.0 ~the upper half plane!, one obtains

W~j,y!5A~j!el1y1B~j!el3y. (37)

Accordingly, the displacementw(x,y) takes the form

w~x,y!5
1

A2p
E

2`

`

@A~j!el1y1B~j!el3y#e2 ixjdj. (38)

Both A(j) andB(j) are determined by the boundary condition

6 Boundary Conditions
Figure 2 shows the geometry of the mode III crack problem

which a functionally graded material~FGM!, with shear modulus
G(y)5G0egy, bonded to a half-space is considered. Thus
problem reduces to the upper half-plane, andy50 is treated as the
boundary. By the principle of virtual work, the following mixe
boundary conditions can be derived:

H syz~x,0!5p~x!, uxu,a

w~x,0!50, uxu.a

myyz~x,0!50, 2`,x,1`,

(39)
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which are adopted in this paper. One may observe that the
two boundary conditions~BCs! in ~39! are from classical elastic
ity, e.g., linear elastic fracture mechanics~LEFM!. The last BC
regarding the couple-stressmyyz is needed as the higher orde
theory is considered.

7 Hypersingular Integrodifferential Equation
Approach

By taking account of the symmetry along thex-axis, we may
consider thatw(x,y) takes the following general solution form
~for the upper half-plane!:

w~x,y!5
1

A2p
E

2`

`

@A~j!el1y1B~j!el3y#e2 ixjdj, y>0

5
1

A2p
E

2`

`

@A~j!e2(g1A4j21g2)y/2

1B~j!e2(g1A4j21g214/,2)y/2#e2 ixjdj, y>0, (40)

whereA(j) and B(j) need to be determined from the bounda
conditions~39!. As Eq.~40! provides the form of the solution fo
w(x,y), it can be used in conjunction with Eq.~15! such that

syz~x,y!52G~y!~eyz2,2¹2eyz!22,2@]yG~y!#~]yeyz!

5
G~y!

A2p
E

2`

`

l1~g,j!A~j!e2(g1Ag214j2)y/22 ixjdj,

y>0. (41)

Notice that the term associated withB(j) has been dropped ou
from syz(x,y). Moreover,

myyz~x,y!52G~y!S ,2
]eyz

]y
2,8eyzD , y>0,

5
G~y!

A2p
E

2`

`

$~,2l1
22,8l1!A~j!el1y1~,2l3

2

2,8l3!B~j!el3y%e2 ixjdj

5
G~y!

A2p
E

2`

`

$cA~g,j!A~j!e2(g1Ag214j2)y/2

1cB~g,j!B~j!e2(g1A4j21g214/,2)y/2%e2 ixjdj, (42)

where
Transactions of the ASME



cA~g,j!5,2l1
22,8l1

5
g

2
~g,21,8!1

1

2
~g,21,8!Ag214j21,2j2,

(43)

and

cB~g,j!5,2l3
22,8l3

5,2j21
g

2
~g,21,8!11

1
1

2
~g,21,8!A4j21g214/,2. (44)

In order to derive the Fredholm integral equation, we define
density as the slope function

f~x!5]w~x,01!/]x. (45)

The second boundary condition in~39!, and Eq.~45!, imply that

f~x!50, uxu.a, (46)

and

E
2a

a

f~x!dx50, (47)

which is the single-valuedness condition. The definition~45!, to-
gether with Eq.~40!, lead to

1

A2p
E

2`

`

~2 i j!@A~j!1B~j!#e2 ixjdj5f~x!, 2`,x,`.

(48)

By inverting the Fourier transform and using~46!, one obtains

~ i j!@A~j!1B~j!#5
21

A2p
E

2`

`

f~x!eixjdx, 2`,x,`

5
21

A2p
E

2a

a

f~ t !ei jtdt. (49)

The last boundary condition in~39!, imposed onmyyz(x,y),
provides the following pointwise relationship betweenA(j) and
B(j):

B~j!52
,2j21~g,21,8!Ag2/41j21g~g,21,8!/2

,2j2111@~g,21,8!/2#~g1A4j21g214/,2!
A~j!

5r~g,j!A~j!, (50)

where the notationr(g,j) is introduced here, i.e.,

r~g,j!52
,2j21~g,21,8!Ag2/41j21g~g,21,8!/2

,2j2111@~g,21,8!/2#~g1A4j21g214/,2!
.

(51)

Substituting~50! into ~49!, one obtains

A~j!5
21

A2p i j
F 1

11r~g,j!G E2a

a

f~ t !ei jtdt, (52)

where

1

11r~g,j!
5

,2j2111@~g,21,8!/2#~g1A4j21g214/,2!

11@~g,21,8!/2#~A4j21g214/,22A4j21g2!
.

(53)
Journal of Applied Mechanics
the

ReplacingA(j) in Eq. ~41! and using the~first! boundary condi-
tion for syz ~that is, limy→01syz(x,y)5p(x), uxu,a) in ~39!, one
obtains the following integral equation in limit form:

lim
y→01

G~y!

2p E
2`

` F 2l1~g,j!

i j~11r~g,j!!G
3F E

2a

a

f~ t !ei jtdtGe2(g1Ag214j2)y/22 ixjdj

5p~x!, uxu,a. (54)

By rearranging the order of integration, we obtain

lim
y→01

G~y!

2p E
2a

a

f~ t !E
2`

` 2l1~g,j!

~ i j!@11r~g,j!#

3e2(g1Ag214j2)y/2ei j(t2x)djdt

5p~x!, uxu,a, (55)

which can be rewritten as

lim
y→01

G

2p E
2a

a

f~ t !E
2`

`

K~j,y!ei j(t2x)djdt5p~x!, uxu,a,

(56)

with the kernel

K~j,y!5
2l1~g,j!

i j@11r~g,j!#
e2(g1Ag214j2)y/2. (57)

Asymptotic analysis allows splitting of the kernelK(j,y) into
the singular@K`(j,y)5 limuju→`K(j,y)# and nonsingular parts:

(58)

where~asy is set to zero!

K`~j,0!5
uju
i j H F5,2g2

8
1

,8g

4
112S ,8

2l D
2G

1
2g,21,8

2
uju1,2j2J , (59)

and K(j,0)2K`(j,0), denoted byN(j,0)5N(j), can be ex-
pressed as a fraction:

N~j,0!5N~j!5
P~j!

Q~j!
, (60)

with P(j) andQ(j) described in Appendix A.
Substitution of Eq.~59! into ~56!, in the sense of distribution

theory,@29#, leads to

lim
y→01

E
2`

`

K`~j,y!ei j(t2x)dj

5
22,2

~ t2x!3 2
p

2
~2,2g1,8!d8~ t2x!

1
5,2g2/81,8g/4112@,8/~2, !#2

t2x
,

and to the following hypersingular integral equation:
JULY 2003, Vol. 70 Õ 535
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Fig. 3 Plot of the integrand in Eq. „62… for øÄ0.05, ø8Ä0.005, gÄ0.1, rÄ)Õ7, and s
Ä&Õ3. „a… j«†0,5000‡; „b… Zoom for the range j«†0,500‡. Moreover, as j\0, the limit
of N„j…sin †j„sÀr…‡ is about 22.4 Ã10À3.
s

l

lar
ess

ue
od,
q.

ge
(61)

where the regular kernel is

k~x,t !5E
0

`

N~j!sin@j~ t2x!#dj (62)

with N(j) described in Eq.~60!. Figure 3 permits to graphically
evaluate the behavior of the integrand of Eq.~62!. Clearly, such
kernel is oscillatory, but the magnitude of oscillation decrea
and tend to zero asj increases, i.e., limj→` N(j)sin@j(t2x)#50.
Another point that we need to be cautious about in Eq.~62! is the
behavior atj50 of N(j)5P(j)/Q(j) asQ(j) has the factorj in
the denominator. However, this would not affect the integrabi
of the integrand in Eq.~62! because of the term sin@j(t2x)#. Thus
limj→0 N(j)sin@j(t2x)# exists and is finite, which depends on th
values oft, x, ,, ,8, andg.

As a result of distribution theory,@29#, the differentiation of a
delta function,d(t), has the following property:

E
2`

`

d8~ t2x!f~ t !dt52f8~x!. (63)

Thus one may rewrite Eq.~61! as

(64)
Y 2003
es

ity

e

which is an integrodifferential equation with both hypersingu
and Cauchy singular kernels. In addition to the single-valuedn
condition condition in ~47!, the integrodifferential Eq.~64!
is solved under the physical constraint~‘‘smooth closure
condition’’!:

f~a!5f~2a!50, (65)

so that the solution can be found uniquely~see Refs.@8# and@30#!.

8 Numerical Solution
The numerical solution of the mode III fracture boundary val

problem is accomplished by means of the collocation meth
@31,32#. The process of obtaining the numerical solution of E
~64! can be divided into the following steps:

• Normalization,
• representation of the density function,
• Chebyshev polynomial expansion,
• evaluation of the derivative of the density function,
• formation of the linear system of equations,
• evaluation of singular and hypersingular integrals, and
• evaluation of nonsingular integral.

Relevant details for each of the above items are given below.

8.1 Normalization. By the following change of variables,

s5@2/~d2c!#@ t2~c1d!/2#,

one may convert the integral*c
dg(t)dt into the form of

*21
1 f (s)ds. Because the crack surface is located in the ran

(2a,a), a convenient change of variables becomes

t/a5s and x/a5r ,

which is the normalization of the variablest andx, respectively.
Thus Eq.~64! can be written in normalized fashion as
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where

F~r !5f~ar !, P~r !5p~ar !, K~r ,s!5ak~ar,as!.

As clearly seen in Eq.~66!, the quantities,/a, ,8/a, andag are
dimensionless parameters. Thus the following dimensionless
rameters are defined:

,̃5,/a, ,̃85,8/a, g̃5ag, (67)

which will be used in the numerical implementation and resul

8.2 Representation of the Density Function. The next step
of the numerical approach to the~normalized! hypersingular inte-
gral Eq. ~66! is to establish the actual behavior of the unknow
density functionF(s) around the two crack tipss561. For ex-
ample, the governing integral equation in classical linear ela
fracture mechanics~LEFM! has Cauchy singularity if the slop
function, sayF(s)LEFM , is chosen to be the unknown densi
function. A well-known representation is,@31,32#,

F~s!LEFM5 f ~s!/A12s2, usu,1,

where f (61)Þ0. For the cubic hypersingular integral, Eq.~66!,
the representation ofF(s) is found to be,@8#,

F~s!GE[F~s!5g~s!A12s2, (68)

whereg(61) is finite,g(61)Þ0, and the subscript GE stands fo
gradient elasticity. Thus by approximatingg(s), one can find the
numerical solution toF(s).

8.3 Chebyshev Polynomial Expansion. The approximation
of g(s) in Eq. ~68! is accomplished by means of Chebyshev po
nomial expansions. Either Chebyshev polynomials of the fi
kind Tn(s), or of the second kindUn(s), may be employed in the
approximation, i.e.,

g~s!5(
n50

`

anTn~s! or g~s!5(
n50

`

AnUn~s!. (69)

The coefficientsans or Ans are determined numerically by th
collocation method. As shown by Chan et al.@33#, the two expan-
sions should lead to the same numerical results. In this paper
expansion usingUn(s) is adopted, i.e.,

F~s!5A12s2(
n50

`

AnUn~s!, (70)

whereUn(s) is defined, as usual, by

Un~s!5
sin@~n11!cos21~s!#

sin@cos21~s!#
, n50, 1, 2, . . . . (71)

Satisfaction of the single-valuedness condition~47!, or equiva-
lently, *21

1 F(s) ds50, requires that the following relation holds

A050. (72)

8.4 Evaluation of the Derivative of the Density Function.
The termF8(r ) in Eq. ~66! is evaluated using the expansion~70!
and the fact that
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d

dr
@Un~r !A12r 2#52

n11

A12r 2
Tn11~r !, n>0. (73)

Thus

F8~r !5
d

dr FA12r 2(
n50

`

AnUn~r !G
5

21

A12r 2 (n50

`

~n11!AnTn~r !. (74)

8.5 Formation of the Linear System of Equations. The
strategy to determine the coefficientsAns consists of forming a se
of linear algebraic equations. ReplacingF(s) in ~66! by the rep-
resentation~70!, and using~74! one obtains the governing integra
equation in discretized form:

(75)

Notice that the running indexn starts from 1 instead of 0~see
~72!!.

8.6 Evaluation of Singular and Hypersingular Integrals.
The governing integrodifferential Eq.~64!, and its discretized ver-
sion, Eq. ~75!, contain both Cauchy singular and hypersingu
integrals~cubic singularity!, which need to be evaluated. Erdoga
et al. @31,32# have presented formulas for evaluating Cauchy s
gular integrals, and Chan et al.@34# have presented formulas fo
evaluating a broad class of hypersingular integrals, which ge
alizes previous derivations,@31,32,35#, in the literature. Here,
such integrals are interpreted in the finite-part sense, and liste
Appendix B ~Eq. ~93! to ~95!!.

8.7 Evaluation of Nonsingular Integral. Combining all
the results obtained so far in the numerical approximation,
may rewrite Eq.~75! in the following form:

2 ,̃2

2~12r 2!
(
n51

`

An@~n21n!Un11~r !2~2n213n12!Un21~r !#

2F11
5,̃2g̃2

8
1

,̃8g̃

4
2S ,̃8

2,̃
D 2G(

n51

`

AnTn11~r !

1(
n51

`
An

p
E

21

1

A12s2Un~s!K~r ,s!ds

2
,̃812,̃2g̃

2A12r 2 (
n51

`

An~n11!Tn11~r !5
P~r !

G
, ur u,1.

(76)

Thus the last step for applying the collocation method consist
evaluating the~regular! integral in~76!, which is actually a double
integral, i.e.,
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21

1

A12s2Un~s!K~r ,s!ds

5E
21

1

A12s2Un~s!ak~ar,as!ds

5E
21

1

A12s2Un~s!E
0

`

aN~j!sin@aj~s2r !#djds.

The integral along@0, `! is a Fourier sine transform, and can b
efficiently evaluated by applying fast Fourier transform~FFT!
@36#. The integral along@21,1# can be readily obtained by th
Gaussian quadrature method,@37#.

9 Stress Intensity Factors„SIFs…
Since the~macroscopic! propagation of a crack starts around

tips, it is very important to study and determine the SIFs at b
crack tips. In classical linear elastic fracture mechanics~LEFM!,
the stresssyz(x,0) has 1/Ax2a singularity asx→a1 ~or 1/Ax1a,
asx→2a2), and thus SIFs are defined and can be calculated

K III ~a!5 lim
x→a1

A2p~x2a!syz~x,0!, ~x.a!, (77)

and

K III ~2a!5 lim
x→2a2

A2p~2a2x!syz~x,0!, ~x,2a!.

(78)

However, the same definition may not hold for strain-gradi
elasticity becausesyz(x,0) may have a stronger singularity,@13#.
Thus SIFs will be redefined in the development below.

First, note that the limit in Eqs.~77! and~78! is taken from the
region outside the crack surfaces toward both tips, and the inte
Eq. ~64! is the expression forsyz(x,0) which is valid foruxu.a as
well as uxu,a, i.e.,

syz~x,0!5
G

p E
2a

a H 22,2

~ t2x!3 1
5,2g2/81,8g/4112~,8/, !2/4

t2x

1k~x,t !J f~ t !dt1
G

2
~,812,2g!f8~x!, uxu.a.

(79)

Second, after normalization and with the density functionF(t)
expanded by Chebyshev polynomials of the second kindUn ,
some integral formulas, which are useful for deriving SIFs, ne
to be developed forur u.1 ~Chan et al.@34#!, and are listed in
Appendix B~see Eqs.~96! to ~98!!. Notice that the highest singu
larity in the Eqs.~96! to ~98! appears in the last term in Eq.~98!,
and it has singularity (r 221)23/2 as r→11 or r→212. Moti-
vated by such asymptotic behavior, we generalize the SIFs
strain gradient elasticity from those of classical LEFM. Thus

,K III ~a!5 lim
x→a1

2A2p~x2a!~x2a! syz~x,0!, (80)

,K III ~2a!5 lim
x→2a2

2A2p~x1a!~x1a!syz~x,0!. (81)

Therefore, the following formulas for the normalized mode
SIFs in the strain-gradient elasticity theory may be derived:

,K III ~a!5 lim
x→a1

2A2p~x2a!~x2a!syz~x,0!, ~x.a!

5 lim
r→11

2A2p~ar2a!~ar2a!syz~ar,0!, ~r .1!

52aApa G0 lim
r→11

A2~r 21!~r 21!
22,2

pa2
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3E
21

1 F~s!

~s2r !3 ds, ~r .1!. (82)

After cancellation of the common terms, Eq.~82! can be contin-
ued by introducing formula~98!, and using the representatio
~70!, i.e.,

K III ~a!52A2paS 22,

a DG0 lim
r→11

~r 21!3/2(
n50

N
2~n11!

2

3S r 2
ur u
r

Ar 221D n21F nS 12
ur u

Ar 221
D 2

1

r 2
ur u
r

Ar 221

Ar 2213
GAn

5Apa ~,/a!G0 (
n50

`

~n11!An . (83)

Similarly,

K III ~2a!5Apa ~,/a!G0 (
n50

`

~21!n~n11!An . (84)

Formulas~83! and ~84! will be used to obtain numerical result
for SIFs.

10 Results and Discussion
The boundary value problem illustrated in Fig. 2 is conside

for all the examples in this paper. To validate the present form
lation, consider the case where,, ,8→0 in a certain special limit
sense~see Fannjiang et al.@8#!, so that the classical elasticity so
lution is represented. The results for classical stress intensity
tors ~SIFs! ~Eqs.~77! and ~78!! are given in Table 3. It is clearly
seen from Table 3 that the present results are in agreement
those of Erdogan and Ozturk@28#. Note that the SIFs decreas
monotonically asg increases. Moreover, it is interesting to inve
tigate the asymptotic behavior of the SIFs asg→6`. As g→`
the stiffness of the medium increases indefinitely and, under fi
loading (p0), the crack-opening displacement and the SI
K III (a) tend to zero. Similarly, asg→2` the stiffness of the

Table 3 Variation of classical „normalized … stress intensity
factors „SIFs… with the material gradation parameter g̃ÄgÕa
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medium decreases indefinitely, and consequentlyK III (a) tend to
infinity. These physically expected trends can be observed
Table 3.

Once the slope function is found numerically using the rep
sentation~68!, the crack displacement profilew(r ,0) can be ob-
tained as

w~r ,0!5E
21

r

F~s!ds5E
21

r

A12s2(
n50

N

AnUn~s!ds. (85)

Figure 4 shows the normalized crack displacement profile in
infinite medium of homogeneous material (g50) under uniform
crack surface loading for,̃50.2 and,̃850. Notice that the crack
tips form a cusp with zero enclosed angle and zero first deriva
of the displacement at the crack tips~see~65!!. This crack shape is
similar to the one obtained by Barenblatt@38# using ‘‘cohesive
zone theory,’’ but without the assumption regarding existence
interatomic forces.

Fig. 4 Full crack displacement profile in an infinite medium of
homogeneous material „g̃Ä0… under uniform crack surface
shear loading syz„x ,0…ÄÀp 0 with choice of „normalized … ø̃
Ä0.2 and ø̃8Ä0

Fig. 5 Crack surface displacement under uniform crack sur-
face shear loading syz„x ,0…ÄÀp 0 and shear modulus G„y …
ÄG0egy with choice of „normalized … ø̃Ä0.05, ø̃8Ä0, and various
g̃. The dashed line stands for the homogeneous material case
„g̃Ä0….
Journal of Applied Mechanics
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The solutions obtained in this study for a nonhomogene
half-plane having shear modulusG[G(y), y.0, is also valid for
the corresponding infinite medium in whichy50 is a plane of
symmetry~see Fig. 2!, i.e.,

G~2y!5G~y!.

Unless otherwise stated, uniform loading is considered on
crack face, i.e.,syz(x,0)52p0 , and the normalizationp0 /G0 has
been employed.

Further normalized crack displacement profiles for vario
combinations of the gradient parameters (,̃,,̃8) and material gra-
dation parameter (g̃) are presented in Fig. 5 to Fig. 8. Figures
and 6 show crack displacement profiles for selected values o,̃,
,̃8, and variousg. Figure 5 considers,̃50.05, ,̃850 and thus
r5,8/,50; while Fig. 6 considers,̃50.20, ,̃850.04 and thus
r5,8/,50.2. In both graphs, the broken lines stand for the h
mogeneous material (g50) in a gradient elastic medium. A com

Fig. 6 Crack surface displacement under uniform crack sur-
face shear loading syz„x ,0…ÄÀp 0 and shear modulus G„y …
ÄG0egy with choice of „normalized … ø̃Ä0.2, ø̃8Ä0.04, and vari-
ous g̃. The dashed line stands for the homogeneous material
„g̃Ä0… in a gradient elastic medium.

Fig. 7 Crack surface displacement profiles under uniform
crack surface shear loading syz„x ,0…ÄÀp 0 and shear modulus
G„y …ÄG0egy with choice of „normalized … ø̃8Ä0.05, g̃Ä0.1, and
various ø̃. The values of ø̃ are listed in the same order as the
solid-line curves.
JULY 2003, Vol. 70 Õ 539
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parison between Figs. 5 and 6 permits to assess the influen
the gradient parameters (,,,8) on the displacement solution
Moreover, asg increases the displacement magnitude decrea
which is consistent with similar results by Erdogan and Ozt
@28# using classical elasticity to model mode III cracks in fun
tionally graded materials~FGMs!.

Figure 7 shows crack displacement profiles for,̃850.05, g̃
50.10 and various,̃. As ,̃ increases, the displacement diminish
monotonically, or alternatively the crack becomes stiffer, in co
parison to the classical elasticity theory.

Fig. 8 Crack surface displacement profiles under uniform
crack surface shear loading syz„x ,0…ÄÀp 0 and shear modulus
G„y …ÄG0egy with choice of „normalized … ø̃Ä0.05, g̃Ä0.1, and
various ø̃8. The values of ø̃8 „and rÄøÕø8… are listed in the same
order as the solid-line and dashed-line „rÄ0… curves repre-
senting the strain gradient results.
540 Õ Vol. 70, JULY 2003
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Figure 8 shows crack displacement profiles for,̃50.05, g̃
50.10 and various,̃8. As is apparent from this figure, by main
taining the values of the relative volume energy parameter,̃ con-
stant, the crack stiffening effect becomes more pronounced as
relative surface energy parameter,̃8 increases in the range@0,,̃).
It is worth mentioning that, from energy considerations, the
rameter,̃8 can take negative values,@39#. Note from Fig. 8 that
the effect of a negative,̃8 leads to a more compliant crack. I
general, this is a desirable property of the mathematical mode
regards to describing experimental results and data.

Fig. 9 Crack surface displacement profiles under discontinu-
ous loading p „x Õa…ÄÀ1¿0.5 sgn „x Õa… and shear modulus
G„y …ÄG0egy with choice of „normalized … ø̃Ä0.05, g̃Ä0.2, and
various rÄøÕø8. The values of r are listed in the same order as
the solid-line and dashed-line „rÄ0… curves representing the
strain gradient results.
Table 4 Convergence of „normalized … generalized stress intensity factors „SIFs… for a mode III crack

Table 5 Normalized generalized stress intensity factors „SIFs… for a mode III crack
at various values of l̃ , l̃ 8, and g̃
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Figure 9 shows crack displacement profiles considering disc
tinuous loading

p~x!52110.5 sgn~x!

and ,̃50.05, g̃50.2, and variousr5,8/,. Similar comments to
those regarding Fig. 8 can be made with respect to Fig. 9. M
over, qualitatively the results displayed in Figs. 7 to 9 are in agr
ment with those of Vardoulakis et al.@11# for homogeneous
materials.

Table 4 shows a convergence study for~normalized! general-
ized SIFs~see Eqs.~80!, ~81!, and~83!, ~84!! involving nongraded
(g̃50) and graded (g̃Þ0) gradient elastic materials considerin
both ,̃850 and,̃8Þ0 (,̃8.0). Note that as the number of co
location points (N) increases, the generalized SIF results co
verge for both materials~i.e., nongraded and graded!. However,
the convergence is worse for the case,̃8Þ0 than for the case
,̃850. The condition number for all the examples investigated
always satisfactory.

Table 5 lists the generalized SIFs~see Eqs.~80!, ~81!! for gra-
dient elastic materials considering various values of the mate
parameterg and usingN561 collocation points in the numerica
solution. Notice that the SIF monotonically decreases asg in-
creases, which is in full agreement with the early results for c
sical elasticity considering nonhomogeneous materials~see Table
3!. Consider, for example, the caseg̃50. In this case, the crack
stiffening is due to the characteristic material lengths,̃ and ,̃8
( ,̃8.0) of the structured medium which are responsible for low
generalized SIFs (,1.0) and, consequently, lower energy relea
rates during crack propagation. The results indicate that a hig
external load, as compared to that of the classical case, mu
applied on the crack surfaces~or on the remote boundaries! to
propagate it in a material with microstructure.

A few comments about the determination of characteris
lengths in continua with microstructure are in order. Shi et al.@40#
have presented a brief discussion on determination of such len
in the context of Fleck and Hutchinson’s@3# strain gradient theory,
which is a generalization of Mindlin’s higher-order continuu
theory, @41,42#. Experimental work in the field include, for ex
ample, micro-torsion by Fleck et al.@43#, microbending by Stolk-
ens and Evans@44#, and microindentation by Nix@45#. The char-
acterization of actual materials, with respect to strain grad
length-scale~s!, is an ongoing research topic of much interest a
impact in the field of applied mechanics.

11 Concluding Remarks
This paper has presented a theoretical framework and co

sponding computational implementation for modeling antipla
shear cracks in functionally graded materials~FGMs! using strain
gradient elasticity~Casal’s continuum!, which includes both volu-
metric and surface energy terms. The characteristic lengths~, and
,8, respectively! associated to these terms are assumed to be
stant, and the material shear modulus is assumed to vary expo
tially ~see Eq.~18!!. In this study, the crack is considered to b
perpendicular to the material gradient. The present hypersing
integrodifferential equation approach leads to a numerically tr
table solution of the fracture problem, and relevant fracture
rameters have been investigated. These results include, fo
ample, crack displacement profiles and generalized stress inte
factors. A parametric study including various gradation parame
~g! and strain gradient parameters (,̃,,̃8) has been conducted an
discussed. A natural extension of this work is the solution of
antiplane shear crack where the crack is parallel to the mat
gradation. Another potential extension consists of investiga
the mode I fracture problem.
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Appendix A

The Regular Kernel. The regular kernelN(j,0) described in
Eq. ~60! can be expressed as the fractionP(j)/Q(j). Q(j) is
given by

Q~j!52 i j~Aj21g2/411/,21Aj21g2/41g1,8/,2!.
(86)

P(j) can be expressed as

P~j!5P4~j!1P3~j!1P2~j!1P1~j!1P0~j! (87)

in which

P4~j!5,2j23~Aj21g2/411/,2Aj21g2/41j2

2ujuAj21g2/411/,22ujuAj21g2/4!, (88)

P3~j!5
1
2~g,21,8!j2~Aj21g2/411/,21Aj21g2/4!

2~g,21,8!uju3, (89)

P2~j!5@11g~g,21,8!#Aj21g2/411/,2Aj21g2/4

1F11
1

4
g2,22

1

2 S ,8

, D 2

2
1

2
g,8Gj2

2F11
5

8
g2,22S ,8

2, D 2

1
1

4
g,8G

3uju~Aj21g2/411/,21Aj21g2/4!, (90)

P1~j!5
1

2
g~11g2,21g,8!Aj21g2/411/,2

1Fg

2
~11g2,21g,8!1

,8

,2GAj21g2/4

2S g1
,8

,2D F11
5

8
g2,22S ,8

2, D 2

1
1

4
g,8G uju, (91)

P0~j!5
1

4
,2g41

3

4
g21

1

4
g3,81

1

2

g,8

,2 . (92)

Appendix B

Singular and Hypersingular Integrals. Closed-form solu-
tions for evaluating singular and hypersingular integrals are p
vided here and can also be found in Chan et al.@34#. Those inte-
grals are interpreted in the finite-part sense.

The solution of the crack boundary value problem requires
following formulas. Thus forur u,1, we have

(93)

(94)
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The calculation of stress intensity factors requires the follow
formulas. Thus, forur u.1, we have

1

p E
21

1 Un~s!A12s2

s2r
ds52S r 2

ur u
r

Ar 221D n11

, n>0

(96)

1

p E
21

1 Un~s!A12s2

~s2r !2 ds52~n11!S 12
ur u

Ar 221
D

3S r 2
ur u
r

Ar 221D n

, n>0

(97)

1

p
E

21

1 Un~s!A12s2

~s2r !3 ds

5
21

2
~n11!S r 2

ur u

r
Ar 221D n21

3F nS 12
ur u

Ar 221
D 2

1

r 2
ur u

r
Ar 221

Ar 2213
G , n>0.

(98)
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