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Abstract: Starting with the Wigner distribution formulation for beam wave propagation
in Hölder continuous non-Gaussian random refractive index fields we show that the wave
beam regime naturally leads to the white-noise scaling limit and converges to a Gauss-
ian white-noise model which is characterized by the martingale problem associated to a
stochastic differential-integral equation of the Itô type. In the simultaneous geometrical
optics the convergence to the Gaussian white-noise model for the Liouville equation
is also established if the ultraviolet cutoff or the Fresnel number vanishes sufficiently
slowly. The advantage of the Gaussian white-noise model is that its n-point correlation
functions are governed by closed form equations.

1. Introduction

Laser beam propagation in the turbulent atmosphere is governed by the classical wave
equation with a randomly inhomogeneous refractive index field

n(z, x) = n̄(1 + ñ(z, x)), (z, x) ∈ R
3,

where n̄ is the mean and ñ(x) is the fluctuation of the refractive index field. We seek
the solution of the form E(t, z, x) = �(z, x) exp [in̄(kz − wt)] + c.c., where E is the
(scalar) electric field, k and w = kc0/n̄ are the carrier wavenumber and frequency,
respectively, with c0 being the wave speed in vacuum. Here and below z and x denote
the variables in the longitudinal and transverse directions of the wave beam, respectively.

In the paraxial approximation [24], the modulation � is approximated by the solution
of the parabolic wave equation which after nondimensionalization with respect to some
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reference lengths Lz and Lx in the longitudinal and transverse directions, respectively,
has this form

ik̃
∂�

∂z
+ γ

2
�� + k̃2k0Lzñ(zLz, xLx)� = 0,

�(0, x) = �0(x) ∈ L2(Rd), d = 2 (1)

where k̃ = k/k0 is the normalized wavenumber with respect to the central wavenumber
k0 and γ is the Fresnel number

γ = Lz

k0L2
x

.

A widely used model for the fluctuating refractive index field ñ is a spatially homoge-
neous random field (usually assumed to be Gaussian) with the spatial structure function

Dn(|�x|) = E[ñ(�x + ·) − ñ(·)]2 = C2
n|�x|2/3, |�x| ∈ (�0, L0),

�x = (z, x) ∈ R
d+1, d = 2,

where �0 and L0 are the inner and outer scales, respectively. Here and below E stands
for ensemble average.

The refractive index structure function has a spectral representation

Dn(|�x|) = 8π

∫ ∞

0
�n(|�k|)

[
1 − sin (|�k||�x|)

|�k||�x|

]
|�k|2d|�k|, �k ∈ R

d+1 (2)

with the Kolmogorov spectral density

�n(|�k|) = 0.033C2
n|�k|−11/3, |�k| ∈ (�0, L0). (3)

Here the structure parameter C2
n depends in general on the temperature gradient on the

scales larger than L0. See, e.g., [21, 16, 5] for more sophisticated models of turbulent
refractive index fields.

In this paper we will consider a general class of spectral density parametrized by
H ∈ (0, 1) and satisfying the upper bound

�(�k)≤K(L−2
0 +|�k|2)−H−1/2−d/2

(
1+�−2

0 |k|2
)−2

, �k=(ξ, k) ∈ R
d+1, d =2 (4)

for some positive constant K < ∞. L0 and �0 in (4) are the infrared and ultravio-
let cutoffs. The ultraviolet cutoff is physically due to dissipation on the small scales
which normally results in a Gaussian decay factor [21]. We are particularly interested
in the regime where the ratio L0/�0 is large as in the high Reynolds number turbulent
atmosphere.

Let us introduce the non-dimensional parameters that are pertinent to our scaling:

ε =
√

Lx

Lz

, η = Lx

L0
, ρ = Lx

�0
.

In terms of the parameters and the power-law spectrum in (4) we rewrite (1) as

ik̃
∂�ε

∂z
+ γ

2
��ε + k̃2

γ

µ

ε
V (

z

ε2 , x)�ε = 0, �ε(0, x) = �0(x) (5)
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with

µ = σLH
x

ε3 , (6)

where σ is the standard variation of the homogeneous field ñ(z, x) and V is the normal-
ized refractive index field with a spectral density satisfying the upper bound

�η,ρ(�k) ≤ K(η2 + |�k|2)−H−1/2−d/2
(

1 + ρ−2|k|2
)−2

,

�k ∈ R
d+1, H ∈ (0, 1) (7)

for some positive constant K .
The generalized von Kármán spectral density [10, 21]

�vk(�k) = 2H−1�(H + d + 1

2
)η2H π−(d+1)/2(η2 + |�k|2)−H−1/2−d/2 (8)

corresponds to the isotropic covariance function

Bvk(�x) = E
[
V (�x + ·)V (·)] = |η�x|H KH (η|�x|), �x = (z, x) ∈ R

d+1,

where KH is a Bessel function of the third kind given by

KH (z) =
∫ ∞

0
exp

[
−z

et + e−t

2

]
eHt + e−Ht

2
dt.

For H = 1/2 we have the exponential covariance function Bvk(�x) = exp [−η|�x|]. The
additional ultraviolet cutoff imposed in the upper bound (7) would then give rises to the
covariance function

B(�x) = G � Bvk(�x),

where G is the inverse Fourier transform of the cutoffs.
For high Reynolds number one has L0/�0 = ρ/η � 1 and thus a wide range of scales

in the power spectrum (7). Note that in the worst case scenario the refractive index field
loses spatial differentiability as ρ → ∞ and homogeneity as η → 0. The Gaussian
field with the von Kármán spectral density (8) has H as the upper limit of the Hölder
exponent of the sample field. The Kolmogorov spectrum has the exponent H = 1/3.
Since our result does not depend on d we hereafter take it to be any positive integer.

Although we do not assume isotropic spectral densities, the spectral density always
satisfies the basic symmetry:

�(η,ρ)(ξ, k) = �(η,ρ)(−ξ, k) = �(η,ρ)(ξ, −k), ∀(ξ, k) ∈ R
d+1. (9)

In other words, the spectral density is invariant under change of sign in any component
of the argument because the underlying stochastic process is real-valued.

We also assume that Vz(x) ≡ V (z, x) is a centered, square-integrable, z-stationary
and x-homogeneous process with the (partial) spectral representation

Vz(x) =
∫

exp (ip · x)V̂z(dp), (10)
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where the process V̂z(dp) is the z−stationary orthogonal spectral measure satisfying

E

[
V̂z(dp)V̂z(dq)

]
= δ(p + q)

[∫
�(w, p)dw

]
dpdq. (11)

We do not assume the Gaussian property but instead a sub-Gaussian property (see
Sect. 3.1 for precise statements).

If the observation scales Lz and Lx are the longitudinal and transverse scales, respec-
tively, of the wave beam then ε 	 1 corresponds to a long, narrow wave beam. The
white-noise scaling then corresponds to ε → 0 with a fixed µ. For convenience we set
µ = 1. The white-noise scaling limit ε → 0 of Eq. (5) is analyzed in [3, 4, 11]. The limit
γ → 0 corresponds to the geometrical optics limit. In this paper we study the higher
moments behavior in both white-noise and geometrical optics limits by considering the
Wigner transform of the modulation function.

Our method is also suitable for the situation where deterministic large-scale inhomo-
geneities are present. One type of slowly varying, large-scale inhomogeneities is multi-
plicative and can be modeled by a bounded smooth deterministic function µ = µ(z, x)

due to variability of any one of the three factors in (6) (see, e.g., [5, 2] for models with
slowly varying σ ). The second type is additive and can be modeled by adding a smooth
background V0(z, x). Altogether we can treat the random refractive index field of the
general type

V0(z, x) + µ(z, x)

ε
V

(
z

ε2 , x
)

with a bounded smooth deterministic modulation µ(z, x) and background V0(z, x). We
describe the results in Sect. 2.3 but omit the details of the argument for simplicity of
presentation.As the small-scale turbulent fluctuations are invariably embedded in a struc-
ture determined by large-scale geophysics this generalization is necessary for practical
application of the scaling limits.

1.1. Wigner distribution and Wigner-Moyal equation. The Wigner transform of �ε,
called the Wigner distribution, is defined as

Wε
z (x, p) = 1

(2π)d

∫
e−ip·y�ε

(
z, x + γ y

2

)
�ε∗

(
z, x − γ y

2

)
dy. (12)

One has the following bounds from (12)

‖Wε
z ‖∞ ≤ (2γπ)−d‖�ε(z, ·)‖2

2, ‖Wε
z ‖2 = (2γπ)−d/2‖�ε(z, ·)‖2

2

[13, 15, 20]. The Wigner distribution has many important properties. For instance, it is
real and its p-integral is the modulus square of the function φ,∫

Rd

Wε(x, p)dp = |�ε(x)|2, (13)

so we may think of W(x, p) as wave number-resolved mass density. Additionally, its
x-integral is

∫
Rd

Wε(x, p)dx =
(

2π

γ

)d

|�̂ε|2(p/γ ).
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The energy flux is expressed through Wε(x, p) as

1

2i
(�∇�∗ − �∗∇�) =

∫
Rd

pWε(x, p)dp (14)

and its second moment in p is∫
|p|2W(x, p)dp = |∇�ε(x)|2. (15)

In view of these properties it is tempting to think of the Wigner distribution as a phase-
space probability density, which is unfortunately not the case, since it is not everywhere
non-negative. Nevertheless, the Wigner distribution is a useful tool for analyzing the
evolution of wave energy in the phase space. Moreover, in the recent development of
time reversal of waves in which a part of the waves is received, phase-conjugated and
then back-propagated toward the source the refocused wave field is given by a Wigner
distribution of mixed-state type (see (25) below) [7, 23, 12].

The Wigner distribution, written as Wε
z (x, p) = Wε(z, x, p), satisfies an evolution

equation, called the Wigner-Moyal equation,

∂Wε
z

∂z
+ p

k̃
· ∇xW

ε
z + k̃

ε
Lε

zW
ε
z = 0 (16)

with the initial data

W0(x, k) = 1

(2π)d

∫
eik·y�0(x − γ y

2
)�∗

0 (x + γ y
2

)dy , (17)

where the operator Lε
z is formally given as

Lε
zW

ε
z = i

∫
eiq·xγ −1 [Wε

z (x, p + γ q/2) − Wε
z (x, p − γ q/2)

]
V̂ (

z

ε2 , dq)

= 2γ −1
∫

Wε
z (x, γ q/2)Im

[
e−i2γ −1p·xeiq·xV̂ (

z

ε2 , dq)
]
. (18)

We will use the following definition of the Fourier transform and inversion:

Ff (p) = 1

(2π)d

∫
e−ix·pf (x)dx,

F−1g(x) =
∫

eip·xg(p)dp.

When making a partial (inverse) Fourier transform on a phase-space function we will
write F1 (resp. F−1

1 ) and F2 (resp. F−1
2 ) to denote the (resp. inverse) transform w.r.t. x

and p respectively.
A useful way of analyzing Lε

zW
ε
z as formally given in (18) is to look at its partial

inverse Fourier transform F−1
2 Lε

zW
ε
z (x, y) acting on

F−1
2 Wε

z (x, y) ≡
∫

eip·yWε
z (x, p) dp = �ε(x + γ y/2)�ε∗(x − γ y/2)

in the following completely local manner:

F−1
2 Lε

zW
ε
z (x, y) = −iγ −1δγ V ε

z (x, y)F−1
2 Wε

z (x, y), (19)
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where

δγ V ε
z (x, y) ≡ V ε

z (x + γ y/2) − V ε
z (x − γ y/2), (20)

V ε
z (x) = Vz/ε2(x). (21)

Hereby we define for every realization of V ε
z the operator Lε

z to act on a phase-space
test function θ as

Lε
zθ(x, p) ≡ −iγ −1F2

[
δγ V ε

z (x, y)F−1
2 θ(x, y)

]
(22)

with the difference operator δγ given by (20) for any test function θ ∈ S, where

S =
{
θ(x, p) ∈ L2(R2d); F−1

2 θ(x, y) ∈ C∞
c (R2d)

}
.

We note that Lε
z is skew-symmetric and real (i.e. mapping real-valued functions to real-

valued functions). In this paper we consider the weak formulation of the Wigner-Moyal
equation: To find Wε

z ∈ D([0, ∞); L2(R2d)) such that ‖Wε
z ‖2 ≤ ‖W0‖2, ∀z > 0, and

〈
Wε

z , θ
〉−〈W0, θ〉= k̃−1

∫ z

0

〈
Wε

s , p · ∇xθ
〉
ds+ k̃

ε

∫ z

0

〈
Wε

s , Lε
s θ
〉
ds, ∀θ ∈ S. (23)

Remark 1. Since Eq. (23) is linear , the existence of weak solutions can be established
straightforwardly by the weak-� compactness argument. Let us briefly comment on this.
Without loss of generality we set ε = 1. First, we introduce truncation N < ∞,

VN(z, x) = INV (z, x),

where IN is the characteristic function of the set {|V (z, x)| < N}. Clearly, for such
bounded VN the corresponding operator Lε

z is a bounded skew-adjoint operator on
L2(R2d). Hence the corresponding Wigner-Moyal equation gives rise to a unique group
of unitary maps on L2. Let us denote the solution by W

(N)
z . Passing to the limit N → ∞

by selecting a weakly convergent subsequence we obtain a L2-weak solution for the
Wigner-Moyal equation with the truncation removed if V is locally square-integrable
as is assumed here. The limiting solution Wz has a L2-norm equal to or less than that of
W0.

Moreover, from Eq. (23), it is easy to see that
〈
W

(N)
z , θ

〉
is equi-continuous on any

compact subset of z ∈ R. By the Arzela-Ascoli Lemma, 〈Wz, θ〉 is z-continuous almost

surely. Because
〈
W

(N)
z , θ

〉
is adapted to the filtration of Vz and the convergence is almost

sure, the resulting solution Wz is adapted to the filtration of Vz.
We will not address the uniqueness of solution for the Wigner-Moyal equation (23)

but we will show that as ε → 0 any sequence of weak solutions to Eq. (23) converges in
a suitable sense to the unique solution of a martingale problem (see Theorem 1 and 2).
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1.2. Liouville equation. In the geometrical optics limit γ → 0, if one takes the usual
WKB-type initial condition

�(0, x) = A0(x)eiS(x)/γ ,

then the Wigner distribution formally tends to the WKB-type distribution

W0(x, p) = |A0|2δ(p − ∇S(x)) (24)

which satisfies F−1
2 W0 ∈ L∞(R2d). It has been shown [6] that the primitive WKB-type

distribution (24) can not arise from the geometrical optics limit (γ → 0) from any
pure state Wigner distribution as given by (17) but rather from a mixed state Wigner
distribution of the form

W0(x, k) = 1

(2π)d

∫ ∫
eik·y�0(x − γ y

2
; α)�∗

0 (x + γ y
2

; α)dydP (α) , (25)

where P(α) is a probability distribution of a family of states �0(·, α) parametrized by α.
The mixed state Wigner distributions generally give rise to a smeared initial condition,
i.e. W0(x, p) ∈ L2(R2d) even in the geometrical optics limit. This, instead of the WKB
type, is the kind of initial conditions considered in this paper.

When acting on the test function space S, Lε
z as given by (22) has the following limit:

lim
γ→0

Lε
zθ(x, p) = −F2

[
∇xV

ε
z (x) ·

[
iyF−1

2 θ(x, y)
]]

= −∇xVz(x) · ∇pθ(x, p) (26)

in the L2-sense for all θ ∈ S and all locally square-integrable Vz. Hence the Wigner-
Moyal equation (23) formally becomes in the limit γ → 0 the Liouville equation in the
weak formulation

〈
Wε

z , θ
〉− 〈W0, θ〉 = k̃−1

∫ z

0

〈
Wε

s , p · ∇xθ
〉
ds

− k̃

ε

∫ z

0

〈
Wε

s , ∇xV
ε
s · ∇pθ

〉
ds, ∀θ ∈ S. (27)

The same weak-� compactness argument as described in Remark 1 establishes the
existence of L2-weak solution of the Liouville equation except now that the operator
(26) is unbounded and requires local square integrability of ∇Vz(·). We will show that as
ε → 0 any sequence of weak solutions of the Wigner-Moyal equation with any L2-initial
condition converge as ε, γ → 0 in a suitable sense to the unique solution of a martingale
problem associated with the Gaussian white-noise model of the Liouville equation (see
Theorem 2).

In addition to the limit ε → 0 we shall also let ρ → ∞ and η → 0 simultaneously.
We first study the case ρ → ∞, but η fixed, as ε → 0. This means that the Fresnel
length is comparable to the outer scale. Then we study the narrow beam regime η → 0,
where the Fresnel length is in the middle of the inertial-convective subrange.
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2. Formulation

2.1. Martingale formulation. The tightness result (see below) implies that for L2 ini-
tial data the limiting measure P is supported in L2([0, z0]; L2(R2d)). For tightness as
well as identification of the limit, the following infinitesimal operator Aε will play an
important role. Let V ε

z ≡ V (z/ε2, ·) and z0 < ∞ be any positive number. Let Fε
z be the

σ -algebras generated by {V ε
s , s ≤ t} and E

ε
z the corresponding conditional expectation

w.r.t. Fε
z . Let Mε be the space of a measurable function adapted to {Fε

z , z ∈ R} such
that supz<z0

E|fz| < ∞. We say fz ∈ D(Aε), the domain of Aε, and Aεfz = gz if
fz, gz ∈ Mε and for f δ

z ≡ δ−1[Eε
zfz+δ − fz] we have

sup
z,δ>0

E|f δ
z | < ∞,

lim
δ→0

E|f δ
z − gz| = 0, ∀t.

Consider a special class of admissible functions fz = f (
〈
Wε

z , θ
〉
), f ′

z = f ′(
〈
Wε

z , θ
〉
),

∀f ∈ C∞(R). We have the following expression from (23) and the chain rule:

Aεfz = f ′
z

[
1

k̃

〈
Wε

z , p · ∇xθ
〉+ k̃

ε

〈
Wε

z , Lε
zθ
〉]

. (28)

A main property of Aε is that

fz −
∫ z

0
Aεfsds is a Fε

z -martingale, ∀f ∈ D(Aε). (29)

Also,

E
ε
sfz − fs =

∫ z

s

E
ε
sAεfτ dτ ∀s < z a.s. (30)

(see [18]). Note that the process Wε
z is not Markovian and Aε is not its generator. We

denote by A the infinitesimal operator corresponding to the unscaled process Vz(·) =
V (z, ·).

2.2. White-noise models. Now we formulate the solutions for the Gaussian white-noise
model as the solutions to the corresponding martingale problem: Find the law Q on
Z = D([0, ∞); L2

w(R2d)) such that for ζ ∈ Z and Wz(ω) ≡ ζ(z), z ≥ 0 we have that
Q
(
W0(ω) = W0 ∈ L2(R2d)

) = 1 and that

f (〈Wz, θ〉) −
∫ z

0

{
f ′(〈Ws, θ〉)

[
1

k̃
〈Ws, p · ∇xθ〉 + k̃2 〈Ws, Q0θ

〉]

+k̃2f ′′(〈Ws, θ〉) 〈Ws, KθWs

〉 }
ds

is a martingale for each f ∈ C∞(R)

with

KθWs =
∫

Q(θ ⊗ θ)(x, p, y, q)Ws(y, q) dydq. (31)
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Here, in the case of the white-noise model for the Wigner-Moyal equation (Theorem 1),
the covariance operators Q, Q0 are defined as

Q0θ =
∫

�∞
η (q)γ −2 [−2θ(x, p) + θ(x, p − γ q)

+ θ(x, p + γ q)
]
dq, (32)

Q(θ ⊗ θ)(x, p, y, q) =
∫

eiq′·(x−y)�∞
η (q′)γ −2 [θ(x, p − γ q′/2)

− θ(x, p + γ q′/2)
]

× [θ(y, q − γ q′/2) − θ(y, q + γ q′/2)
]
dq′ (33)

and, in the case of the white-noise model for the Liouville equation (Theorem 2),

Q0θ(x, p) = ∇p ·
∫

�ρ
η(q)q ⊗ q dq · ∇pθ(x, p), (34)

Q(θ ⊗ θ)(x, p, y, q) =∇pθ(x, p)·
[∫

eiq′·(x−y)�ρ
η(q′)q′ ⊗ q′dq′

]
· ∇qθ(y, q),

η ≥ 0, ρ < ∞, (35)

with the spectral density �∞
η (q) given by

�∞
η (q) = lim

ρ→∞ �ρ
η(q) ≡ lim

ρ→∞ �η,ρ(0, q), η ≥ 0.

Note that the operators Q and Q0 are well-defined for any test function θ ∈ S in the
former case for any H ∈ (0, 1), η > 0 or η = 0, H ∈ (0, 1/2), and in the latter case for
H ∈ (0, 1), 0η < ρ < ∞ or H ∈ (0, 1/2), 0 = η < ρ < ∞ or H ∈ (1/2, 1), 0 < η <

ρ = ∞.
That the martingale problem as formulated with the special class of test functions

is sufficient to characterize the law Q follows from the uniqueness result discussed in
Sect. 2.4.

To see that (31)–(33) is square-integrable and well-defined for any L2(R2d)-valued
process Wz, we apply F−1

2 to (31) and obtain

F−1
2 KθWs(x, x′) = F−1

2 θ(x, x′)
∫

eiq′·(x−y)�∞
η (q′)γ −2

[
eiγ q′·x′/2 − e−iγ q′·x′/2

]

× [θ(y, q − γ q′/2) − θ(y, q + γ q′/2)
]
Wz(y, q)dydqdq′ (36)

= (2π)−dF−1
2 θ(x, x′)

∫
F−1

2 θ(y, y′)F−1
2 Wz(y, −y′)

×
∫

eiq′·(x−y)�∞
η (q′)γ −2

[
eiγ q′·x′/2 − e−iγ q′·x′/2

]

×
[
eiγ q′·y′/2 − e−iγ q′·y′/2

]
q′dydy′. (37)

The integral on the right side of (36) is bounded over compact sets of (x, x′) because
firstly θ ∈ S, Wz ∈ L2(R2d), and secondly the function

�∞
η (q′)

[
eiγ q′·x′/2 − e−iγ q′·x′/2

] [
eiγ q′·y′/2 − e−iγ q′·y′/2

]
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is integrable in q′ ∈ R
d and the associated integral is bounded over compact sets of x′

for any H ∈ (0, 1), η > 0 or η = 0, H < 1/2. Hence the function on the right side
of (36) has a compact support and is square-integrable. Similarly, one can show that
(32)–(35) is well defined for H ∈ (0, 1), ρ < ∞ or H > 1/2, ρ = ∞.

In view of the martingale problem the white-noise model is an infinite-dimensional
Markov process whose generator when applied to the special class of test functions fz

has the form

Āfz ≡ f ′
s

[
1

k̃
〈Wz, p · ∇xθ〉 + k̃2Ā1(Wz)

]
+ k̃2f ′′

z Ā2(Wz).

This Markov process Wz can also be formulated as weak solutions to the Itô’s equation

dWz =
(−1

k̃
p · ∇x + k̃2Q0

)
Wz dz + k̃dBzWz, W0(x) ∈ L2(R2d) (38)

or as the Stratonovich’s equation

dWz = −1

k̃
p · ∇x + k̃dBz ◦ Wz, W0(x) ∈ L2(R2d),

where Bz is the operator-valued Brownian motion with the covariance operator Q, i.e.

E
[
dBzθ(x, p)dB̄z′θ(y, q)

] = δ(z − z′)Q(θ ⊗ θ)(x, p, y, q)dzdz′.

Equation (38) should be solved in the space D([0, ∞); L2
w(R2d)), namely, to find Wz ∈

D([0, ∞); L2
w(R2d)) such that for all θ ∈ L2(R2d),

d 〈Wz, θ〉=
〈
Wz,

(
1

k̃
p · ∇x+k̃2Q0

)
θ

〉
dz+k̃

〈
Wz, dBzθ

〉
, W0(x)∈L2(R2d). (39)

Our results show that the weak solution to (39) exists, is unique and satisfies the L2-bound

‖Wz‖2 ≤ ‖W0‖2

(cf. Theorem 1, 2, Remark 1, 2 and Sect. 2.4).
In view of (33), (32), (34) and (35) we can interpret the white-noise limit ε → 0 as

giving rise to a white-noise-in-z potential V ∗
z whose spectral density is bounded from

above by

K∗(η2 + |k|2)−H ∗−d/2

for some constant K∗ < ∞ with the effective Hölder exponent H∗ = H + 1/2 by
observing that

lim
ε→0

Lε
zθ(x, p) = −iF2

[
γ −1δγ V ∗

z (x, y)F−1
2 θ(x, y)

]
, ∀θ ∈ S, (40)

lim
ε,γ→0

Lε
zθ(x, p) = ∇xV

∗
z (x) · ∇pθ(x, p), ∀θ ∈ S (41)

in the mean square sense.
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2.3. White-noise models with large-scale inhomogeneities. First we consider the case
of deterministic, large-scale inhomogeneities of a multiplicative type which has µ, given
by (6), as a bounded smooth function µ = µ(z, x). The resulting limiting process can
be described analogously as above except with the term �∞

η replaced by

�∞
η (k) −→ µ(z, x)µ(z, y)�∞

η (k), in Q,

�∞
η (k) −→ µ2(z, x)�∞

η (k), in Q0.

As a consequence the operator Q0 is no longer of convolution type.
Next we add a slowly varying smooth deterministic background V0(z, x) to the rap-

idly fluctuating field ε−1µ(z, x)V (ε−2z, x). Namely we have

V0(z, x) + µ(z, x)

ε
V (

z

ε2 , x)

as the potential term in the parabolic wave equation (5).
The resulting martingale problem has an additional term

−
∫ z

0
k̃ 〈Ws, L0θ〉 ds (42)

in the martingale formulation where L0θ has the form

L0θ(x, p) = i

∫
eiq·xγ −1 [θ(x, p + γ q/2) − θ(x, p − γ q/2)

]
V̂0(z, dq)

≡ −iγ −1F2

[
(V0(x + γ y/2) − V0(x − γ y/2))F−1

2 θ(x, y)
]

(43)

for γ > 0 fixed in the limit, and the form

L0θ(x, p) = −∇xV0(z, x) · ∇pθ(x, p) (44)

in the case of γ → 0.

2.4. Multiple-point correlation functions of the limiting model. The martingale solutions
of the limiting models are uniquely determined by their n-point correlation functions
which satisfy a closed set of evolution equations.

Using the function f (r) = rn in the martingale formulation and taking expectation,
we arrive after some algebra at the following equation:

∂F (n)

∂z
= 1

k̃

n∑
j=1

pj · ∇xj
F (n) + k̃2

n∑
j=1

Q0(xj , pj )F
(n)

+k̃2
n∑

j,k=1
j �=k

Q(xj , pj , xk, pk)F
(n) (45)

for the n−point correlation function

F (n)(z, x1, p1, . . . , xn, pn) ≡ E
[
Wz(x1, p1) · · · Wz(xn, pn)

]
,
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whereQ0(xj , pj ) is the operatorQ0 acting on the variables (xj , pj ) andQ(xj , pj , xk, pk)

is the operator Q acting on the variables (xj , pj , xk, pk), namely

Q(xj , pj , xk, pk)F
(n)(

n∏
i=1

(xi , pi ))

= E




 ∏

i �=j,k

Wz(xi , pi )



∫

eiq·(xj −xk)�(η,∞)(0, q)γ −2

×[Wz(xj , pj − γ q/2) − Wz(xj , pj + γ q/2)]

× [Wz(xk, pk − γ q/2) − Wz(xk, pk + γ q/2)] dq} .

Equation (45) can be more conveniently written as

∂F (n)

∂z
= 1

k̃

n∑
j=1

pj · ∇xj
F (n) + k̃2

n∑
j,k=1

Q(xj , pj , xk, pk)F
(n) (46)

with the identification Q(xj , pj , xj , pj ) = Q0(xj , pj ). The operator

Qsum =
n∑

j,k=1

Q(xj , pj , xk, pk) (47)

is a non-positive symmetric operator. We note that the mean Wigner distribution can
be exactly solved for from Eq. (46) for n = 1 [12] and has a number of interesting
applications in optics including time reversal. The 2nd moment equation n = 2 is related
to the problem of scintillation [24] (see, e.g., [5]).

The uniqueness for Eq. (45) with any initial data

F (n)(z = 0, x1, p1, . . . , xn, pn) = E
[
W0(x1, p1) · · · W0(xn, pn)

]
, W0 ∈ L2(R2d)

in the case of the Wigner-Moyal equation can be easily established by observing that
the operator given by (47) is self-adjoint. For instance, for n = 2, we have that

F−1
2 QF (2)(x1, y1, x2, y2) = F−1

2 Q(x1, y1, x2, y2)F−1
2 F (2)(x1, y1, x2, y2),

where

F−1
2 F (2)(x1, y1, x2, y2) = E

[
F−1

2 Wz(x1, y1)F−1
2 Wz(x2, y2)

]

and F−1
2 Q(x1, y1, x2, y2) is the function∫
eiq·(x1−x2)�(η,∞)(0, q)γ −2

[
eiγ y1·q/2 − e−iγ y1·q/2

] [
eiγ y2·q/2 − e−iγ y2·q/2

]
dq

= −8γ −2
∫

cos
[
q · (x1 − x2)

]
�(η,∞)(0, q) sin

[
γ y1 · q/2

]
sin
[
γ y2 · q/2

]
dq.

Namely, in the (xj , yj ) variables, the operator Qsum becomes the multiplication by a
function which is dominated by the “diagonal terms” with j = k,

F−1
2 Q0F

(2)(xj , yj ) = −8γ −2
∫

�(η,∞)(0, q) sin2 [γ yj · q/2
]
dq

and hence is non-positive. Therefore Qsum is a non-positive self-adjoint operator on L2.
The case with n > 2 is similar.
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Each of the operators on the right side of (46) generates a unique C0-semigroup of
contractions on L2(R2nd) and, by the product formula, their sum generates a unique
C0-semigroup of contractions on L2(R2nd). Standard theory for linear equations then
yields the uniqueness result for the weak solution of (46).

In the case of the Liouville equation, Eq. (46) can be more explicitly written as the
Fokker-Planck equation on the phase space

∂F (n)

∂z
= 1

k̃

n∑
j=1

pj · ∇xj
F (n) + k̃2

n∑
j,k=1

D(xj − xk) : ∇pj
∇pk

F (n) (48)

with

D(xj − xk) =
∫

eiq·(xj −xk)�ρ
η(q)q ⊗ qdq

with η ≥ 0. In the worst case scenario allowed by the bound (7) (cf. (8)) the diffusion
coefficient D(0) diverges as ρ → ∞ (but well-defined as η → 0) when H < 1/2.

When H > 1/2 then the limit ρ → 0 poses no difficulty.
Moreover the diffusion operator

n∑
j,k=1

D(xj − xk) : ∇pj
∇pk

is an essentially self-adjoint positive operator on C∞
c (R2nd) ⊂ L2(R2nd) due to the sub-

Lipschitz growth of the square-root of D(xk − xk) at large |xj |, |xk| [8]. The uniqueness
follows from the same argument as in the previous case.

3. Assumptions and Main Theorems

3.1. Assumptions and properties of the refractive index field. As mentioned in the intro-
duction, we assume that Vz(x) is a square-integrable, z-stationary, x-homogeneous pro-
cess with a spectral density satisfying the upper bound (7).

Let r(t) be a non-negative (random or deterministic) function such that
∣∣E [Ez[Vs(x)]Ez[Vt (y)]

]∣∣ = ∣∣E [Ez[Vs(x)]Vt (y)
]∣∣

≤ r(s−z)r(t−z)E
[
V 2

z

]
, ∀s, t ≥z, ∀x, y ∈ R

d . (49)

An obvious candidate for r(t) is the correlation coefficient defined as follows. Let
Fz and F+

z be the sigma-algebras generated by {Vs : ∀s ≤ z} and {Vs : ∀s ≥ z},
respectively. The correlation coefficient rη,ρ(t) is given by

rη,ρ(t) = sup
h∈Fz

E[h]=0,E[h2]=1

sup
g∈F+

z+t

E[g]=0,E[g2]=1

E [hg] . (50)

Lemma 1. The correlation coefficient rη,ρ(t) as given by (50) satisfies the inequality
(49).
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Proof. Let

hs(x) = Ez[Vs(x)], gt (x) = Vt (x).

Clearly

hs ∈ L2(P, �, Fz),

gt ∈ ∈ L2(P, �, F+
t ),

and their second moments are uniformly bounded in x since

E[h2
s ](x) ≤ E[g2

s ](x),

E[g2
s ](x) =

∫
�(ξ, q)dξdq.

From the definition (50) we have

|E[hs(x)ht (y)]| = |E [hsgt ]| ≤ rη,ρ(t − z)E1/2
[
h2

s (x)
]

E
1/2
[
g2

t

]
.

Hence by setting s = t first and the Cauchy-Schwartz inequality we have

E

[
h2

s

(
x)] ≤ r2

η,ρ(s − z)E[g2
t ],

E
[
hs(x)ht (y)

] ≤ rη,ρ(t − z)rη,ρ(s − z)E[g2
t ], ∀s, t ≥ z, ∀x, y.

��
We assume

Assumption 1. The function r(t) in (49) satisfies
∫ ∞

0

∫ ∞

0
r(s)r(t)dsdt < ∞.

Corollary 1. The formula

Ṽz(x) =
∫ ∞

z

Ez [Vs(x)] ds (51)

defines a square-integrable z-stationary, x-homogeneous process.

Proof. Let ω ∈ � denote the random element and τ�x, �x = (z, x) ∈ R
d+1 the translation

operator acting on �. Then without loss of generality we may assume that there exists
a square-integrable function V defined on � such that

Vz(x, ω) = V (τ�xω).

It suffices to show that the second moment of

Ṽ (ω) ≡
∫ ∞

0
E0
[
V (τ(s,0)ω)

]
ds

is finite since

Ṽz(x, ω) = Ṽ (τ�xω), ∀�x = (z, x) ∈ R
d+1.
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To this end we have

E

[
Ṽ 2
]

= E

[∫ ∞

0

∫ ∞

0
E0[Vs(0)]E0[Vt (0)]dsdt

]

= E

[∫ ∞

0

∫ ∞

0
E0[Vs(0)]Vt (0)dsdt

]

≤
∫ ∞

0

∫ ∞

0
r(s)r(t)dsdtE[V 2

0 ]

which is finite by Assumption 1. ��
One can adopt other alternative mixing coefficients to get the above results and higher
order moment estimates, see Appendix A. Hereafter we will mainly focus on the corre-
lation coefficient as it is most convenient to work within the Gaussian case and we shall
write explicitly the dependence of the correlation coefficient on η, ρ as rη,ρ(t).

In the Gaussian case the correlation coefficient rη,ρ(t) equals the linear correlation
coefficient given by

rη,ρ(t) = sup
g1,g2

∫
R(t − τ1 − τ2, k)g1(τ1, k)g2(τ2, k)dkdτ1dτ2, (52)

where

R(t, k) =
∫

eitξ�(η,ρ)(ξ, k)dξ,

and the supremum is taken over allg1, g2 ∈ L2(Rd+1)which are supported on (−∞, 0]×
R

d and satisfy the constraint∫
R(t − t ′, k)g1(t, k)ḡ1(t

′, k)dtdt ′dk

=
∫

R(t − t ′, k)g2(t, k)ḡ2(t
′, k)dtdt ′dk = 1. (53)

Alternatively, by the Paley-Wiener theorem we can write

rη,ρ(t) = sup
f1,f2

∫
eiξ tf1(ξ, k)f2(ξ, k)�η,ρ(ξ, k)dξdk, (54)

where f1, f2 are elements of the Hardy space H2 of L2(�(η,ρ)dξdk)-valued analytic
functions in the upper half ξ -space satisfying the normalization condition∫

|fj (ξ, k)|2�(η,ρ)(ξ, k)dξdk = 1, j = 1, 2.

There are various criteria for the decay rate of the linear correlation coefficients, see
[17].

Corollary 2. If Vz is a Gaussian random field and its linear correlation coefficient rη,ρ(t)

is integrable, then Ṽz is also Gaussian and hence possesses finite moments of all orders.

This follows from the fact that the mapping from Vz to Ṽz is a bounded linear operator
on the Gaussian space.
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The main property of Ṽz as a random function is that

AṼz = −Vz, a.s. z ∈ R. (55)

Since A commutes with the shift in x so the appearance of x in Eq. (55) is suppressed.
We have the following simple relation

lim
λ→∞

E

[
Ṽzλ(x)Vzλ(y)

]
= lim

λ→∞

∫
ei(x−y)·p

∫
1

iξ

(
eizλξ − 1

)
�(η,ρ)(ξ, p)dξdp

= π

∫
ei(x−y)·p�(η,ρ)(0, p)dp, ∀z. (56)

Define the covariance functions

B̃z(x − y) ≡ E

[
Ṽz(x)Ṽz(y)

]

and write

B̃z(x) =
∫

eik·x�̃z(k)dk,

where �̃z(k) is its spectral density function.
By the properties of the orthogonal projection Ez[·], we know that

E

[
Ez[V̂ (A)]Ez[V̂ (A)]

]
≤ E

[
V̂ (A)V̂ (A)

]
=
∫

A

�(η,ρ)(ξ, k)dξdk (57)

for every Borel set A ⊂ R
d+1.

Assumption 2. For any η > 0,

Rη = lim sup
ρ→∞

∫ ∞

0
rη,ρ(t)dt < ∞

such that

lim sup
η→0

ηRη < ∞.

For Gaussian fields with the generalized von Kármán spectrum (8), a straightforward
scaling argument with (54) shows that

rη,∞(t) = r1,∞(ηt),

hence

Rη = η−1R1.

This motivates Assumption 2.
Set

�̃ε
z(k) ≡ �̃ε−2z(ξ, k)

which is the spectral density of Ṽ ε
z (x) ≡ Ṽz/ε2(x).
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Define analogously to (22)

L̃ε
zθ(x, p) ≡ −iγ −1F2

[
δγ Ṽ ε

z (x, y)F−1
2 θ(x, y)

]
(58)

with

δγ Ṽ ε
z (x, y) ≡ Ṽ ε

z (x + γ y/2) − Ṽ ε
z (x − γ y/2).

Lemma 2 (Appendix B). For each z0 < ∞ there exists a positive constant C̃ < ∞ such
that

sup
|z|≤z0|y|≤L

E

[(
δγ V ε

z

)2]
(y) ≤ C̃γ 2

∣∣∣min (γ −1, ρ)

∣∣∣2−2H

,

sup
|z|≤z0

E

[
Ṽ ε

z (x)
]2 ≤ C̃η−2−2H ,

sup
|z|≤z0|y|≤L

E

[(
δγ Ṽ ε

z

)2
]

(y) ≤ C̃η−2γ 2| min (ρ, γ −1)|2−2H ,

sup
|z|≤z0|y|≤L

∣∣∣∣∇yE

[
δγ Ṽ ε

z

]2
(y)

∣∣∣∣ ≤ C̃η−2γ 2ρ1−H | min (ρ, γ −1)|1−H ,

sup
|z|≤z0

E‖p · ∇x(L̃ε
zθ)‖2

2 ≤ C̃η−2ρ4−2H , θ ∈ S

for all H ∈ (0, 1), ε, γ, η ≤ 1 ≤ ρ, x, y ∈ R
d , where the constant C̃ depends only on

z0, L and θ .

We also need to know the first few moments the random fields involved. The case
of Gaussian fields motivates the following assumption of the 6th order sub-Gaussian
property.

Assumption 3.

sup
|y|≤L

E
[
δγ V ε

z (y)
]4 ≤ C1 sup

|y|≤L

E
2 [δγ V ε

z

]2
(y), (59)

sup
|y|≤L

E

[
δγ Ṽ ε

z

]4
(y) ≤ C2 sup

|y|≤L

E
2
[
δγ Ṽ ε

z

]2
(y), (60)

sup
|y|≤L

E

[[
δγ V ε

z

]2 [
δγ Ṽ ε

z

]4
]

(y) ≤ C3

(
sup

|y|≤L

E
[
δγ V ε

z

]2
(y)

)

×
(

sup
|y|≤L

E
2
[
δγ Ṽ ε

z

]2
(y)

)
(61)

for all L < ∞, where the constants C1, C2 and C3 are independent of ε, η, ρ, γ .

From (22) and (58) we can form the iteration of operators Lε
zL̃ε

z ,

Lε
zL̃ε

zθ(x, p) = −γ −2F2

[
δγ V ε

z (x, y)δγ Ṽ ε
z (x, y)F−1

2 θ(x, y)
]
.
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The operator Lε
zL̃ε

zθ is well-defined if δγ V ε
z and δγ Ṽ ε

z are locally square-integrable.
Other iterations of Lε

z and L̃ε
z allowed by Assumption 3 can be similarly constructed.

The following estimates can be obtained from Lemma 2 and Assumption 3.

Corollary 3 (Appendix C).

E

[
‖Lε

zθ(x, p)L̃ε
zθ(y, q)‖2

2

]
≤ C

(
η−2| min (ρ, γ −1)|4−4H

)
,

E

[
‖Lε

zL̃ε
zθ‖2

2

]
≤ C

(
η−2| min (ρ, γ −1)|4−4H

)
,

E

[
‖L̃ε

zL̃ε
zθ‖2

2

]
≤ C

(
η−4| min (ρ, γ −1)|4−4H

)
,

E

∥∥∥Lε
zL̃ε

zL̃ε
zθ

∥∥∥2

2
≤ C

(
η−4| min (ρ, γ −1)|6−6H

)
,

where the constant C is independent of ρ, η, γ and L is the radius of the ball containing
the support of F−1

2 θ .

Assumption 4. For every θ ∈ S, there exists a random constant C5 such that

sup
z<z0

‖δγ Ṽ ε
z F−1

2 θ‖4 ≤ C5√
ε

sup
z∈[0,z0]
|x|,|y|≤L

E
1/2|δγ Ṽ ε

z (x, y)|2, ∀θ ∈S, ε, η, γ ≤ 1 ≤ ρ (62)

with C5 possessing finite moments and depending only on θ, z0, where L is the radius
of the ball containing the support of F−1

2 θ , cf. Lemma 2 and (63).

For a Gaussian random field, Assumption 4 is readily satisfied by Lemma 2 and Borell’s
inequality [1]

sup
z<z0

‖δγ Ṽ ε
z F−1

2 θ‖4 ≤ ‖F−1
2 θ‖4 sup

z∈[0,z0]
|x|,|y|≤L

|δγ Ṽ ε
z (x, y)|

≤ C5 log
( z0

ε2

)
sup

z∈[0,z0]
|x|,|y|≤L

E
1/2|δγ Ṽ ε

z (x, y)|2, ∀η, γ ≤1≤ρ,(63)

where the random constant C5 has a Gaussian-like tail.
Note that with γ or ρ held fixed the first term on the right side of (62) is always

O(1). Compared to the corresponding condition (63) for the Gaussian field condition
(62) allows for a certain degree of intermittency in the refractive index field.

As we have seen above, most of the assumptions here are motivated by the Gauss-
ian case and we have formulated them in such a way as to allow a significant level of
non-Gaussian fluctuation.

3.2. Main theorems.

Theorem 1. Let V ε
z be a z-stationary, x-homogeneous, almost surely locally bounded

random process with the spectral density satisfying the bound (7) and Assumptions 1, 2,
3, 4. Let γ > 0 be fixed.
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(i) Let η be fixed and ρ be fixed or tend to ∞ as ε → 0 such that

lim
ε→0

ερ2−H = 0. (64)

Then the weak solution Wε of the Wigner-Moyal equation with the initial con-
dition W0 ∈ L2(R2d) converges in law in the space D([0, ∞); L2

w(R2d)) of
L2-valued right continuous processes with left limits endowed with the Sko-
rohod topology to that of the corresponding Gaussian white-noise model with
the covariance operators Q and Q0 as given by (33) and (32), respectively (see
also (42) and (43)). The statement holds true for any H ∈ (0, 1).

(ii) Suppose additionally that H < 1/2 and η = η(ε) → 0 such that

lim
ε→0

εη−1(η−1 + ρ2−H ) = 0. (65)

Then the same convergence holds true.

Here and below L2
w(R2d) is the space of square integrable functions on the phase space

R
2d endowed with the weak topology.

The next theorem concerns a similar convergence to the solution of a Gaussian white-
noise model for the Liouville equation.

Theorem 2. Let V ε
z be a z-stationary, x-homogeneous, almost surely smooth, locally

bounded random process with the spectral density satisfying the bound (7) and Assump-
tions 1, 2, 3, 4.

Let γ = γ (ε) → 0 as ε → 0. Then under any of the following three sets of conditions:
(i) ρ < ∞ and η > 0 held fixed;
(ii) H > 1/2, η > 0 fixed and ρ = ρ(ε) → ∞ as ε → 0 such that

lim
ε→0

ερ2−H = 0; (66)

(iii) H < 1/2, ρ < ∞ fixed and η = η(ε) → 0 such that

lim
ε→0

εη−2 = 0; (67)

the weak solutions Wε of the Wigner-Moyal equation (16) with the initial condition
W0 ∈ L2(R2d) converge in distribution in the space D([0, ∞); L2

w(R2d)) to the mar-
tingale solution of the Liouville equation of the Gaussian white-noise model with the
covariance operators Q and Q0 as given by (34) and (35), respectively (see also (42)
and (44)).

It is worthwhile to point out that the stochastic geometrical optics limit (Theorem 2)
puts restriction more on the aspect ratio ε2 of the wave beam than on the ratio

√
rρ

between the Fresnel length and the inner scale as commonly assumed in the literature
(see for example [22]).

Note also that the Kolmogorov value H = 1/3 is covered by the regimes of Theorem 1
and Theorem 2(i), (iii).

Remark 2. Both Theorem 1 and 2 can be viewed as a construction (and the convergence)
of approximate solutions (via Remark 1) to the Gaussian white-noise models which are
widely used in practical applications [24, 5].
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4. Proof of Theorem 1 and 2

4.1. Tightness. In the sequel we will adopt the following notation:

fz ≡f (
〈
Wε

z , θ
〉
), f ′

z ≡f ′(
〈
Wε

z , θ
〉
), f ′′

z ≡f ′′(
〈
Wε

z , θ
〉
), ∀f ∈ C∞(R). (68)

Namely, the prime stands for the differentiation w.r.t. the original argument (not z) of
f, f ′, etc. Let L denote the radius of the ball containing the support of F−1

2 θ . Let all the
constants c, c′, c1, c2, . . . etc. in the sequel be independent of ρ, η, γ and ε and depend
only on z0, θ, ‖W0‖2 and f .

First we note that since S is dense in L2(R2d) and ‖Wε
z ‖2 ≤ ‖W0‖2, ∀z > 0, the tight-

ness of the family of L2(R2d)-valued processes {Wε, 0 < ε < 1} in D([0, ∞); L2
w(R2d)

is equivalent to the tightness of the family in D([0, ∞); S ′) as distribution-valued pro-
cesses. According to [14], a family of processes {Wε, 0 < ε < 1} ⊂ D([0, ∞); S ′) is
tight if and only if for every test function θ ∈ S the family of processes {〈Wε, θ〉 , 0 <

ε < 1} ⊂ D([0, ∞); R) is tight. With this remark we can now use the tightness criterion
of [19] (Chap. 3, Theorem 4) for finite dimensional processes, namely, we will prove:
Firstly,

lim
N→∞

lim sup
ε→0

P{ sup
z<z0

| 〈Wε
z , θ
〉 | ≥ N} = 0, ∀z0 < ∞. (69)

Secondly, for each f ∈ C∞(R) there is a sequence f ε
z ∈ D(Aε) such that for each

z0 < ∞{Aεf ε
z , 0 < ε < 1, 0 < z < z0} is uniformly integrable and

lim
ε→0

P{ sup
z<z0

|f ε
z − f (

〈
Wε

z , θ
〉
)| ≥ δ} = 0, ∀δ > 0. (70)

Then it follows that the laws of {〈Wε, θ〉 , 0 < ε < 1} are tight in the space of
D([0, ∞); R) and hence {Wε

z } is tight in D([0, ∞); L2
w(R2d)).

Condition (69) is satisfied because the L2-norm is preserved.
We shall construct a test function of the form f ε

z = fz + f ε
1,z + f ε

2,z + f ε
3,z. First we

construct the first perturbation f ε
1,z. Let

Ṽ ε
z = Ṽz/ε2 .

Recall that

AεṼ ε
z = −ε−2V ε

z .

Let

f ε
1,z ≡ k̃

ε

∫ ∞

z

f ′
z

〈
Wε

z , E
ε
zLε

s θ
〉
ds

= k̃εf ′
z

〈
F−1

2 Wε
z , γ −1δγ

∫ ∞

z

Ez[V ε
s ]dsF−1

2 θ

〉

= k̃εf ′
z

〈
F−1

2 Wε
z , γ −1δγ Ṽ ε

z F−1
2 θ

〉

= k̃εf ′
z

〈
Wε

z , L̃ε
zθ
〉

(71)

be the 1st perturbation of fz.
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Proposition 1.

lim
ε→0

sup
z<z0

E|f ε
1,z| = 0, lim

ε→0
sup
z<z0

|f ε
1,z| = 0 in probability .

Proof. First

E[|f ε
1,z|] ≤ ε‖f ′‖∞‖W0‖2E‖L̃ε

zθ‖2 (72)

≤ cε‖f ′‖∞‖W0‖2 sup
|x|,|y|≤L

E
1/2
[
γ −1δγ Ṽ ε

z (x, y)
]2

= O
(
εη−1| min (ρ, γ −1)|1−H

)
(73)

which is of the following order of magnitude:



ε, if η, ρ held fixed
ε, if γ, η held fixed
εη−1, if γ or ρ held fixed
ε| min (ρ, γ −1)|1−H , if η is held fixed,

(74)

and vanishes in the respective regimes. Secondly, we have

sup
z<z0

|f ε
1,z| ≤ ε‖f ′‖∞‖W0‖2 sup

z<z0

γ −1‖δγ Ṽ ε
z F−1

2 θ‖2

≤ cε1/2 sup
|x|,|y|≤L

E
1/2|γ −1δγ Ṽ ε

z (x, y)|2

= c′ε1/2η−1| min (ρ, γ −1)|1−H (75)

by Assumption 4, with a random constant c′ possessing finite moments. The right side
of (75) is of the following order of magnitude:




ε1/2, if η, ρ held fixed
ε1/2, if γ, η held fixed
ε1/2η−1, if ρ or γ held fixed
ε1/2| min (ρ, γ −1)|1−H , if η is held fixed,

(76)

which vanishes in the respective regimes. The right side of (75) now converges to zero
in probability by a simple application of Chebyshev’s inequality and (65). ��

A straightforward calculation yields

Aεf ε
1 = −k̃εf ′

z

〈
Wε

z ,

[
p

k̃
· ∇ + k̃

ε
Lε

z

]
L̃ε

zθ

〉

− k̃

ε
f ′

z

〈
Wε

z , Lε
zθ
〉+ k̃εf ′′

z

〈
Wε

z , Aεθ
〉 〈

Wε
z , L̃ε

zθ
〉
,

where Aεθ denotes

Aεθ = −1

k̃
p · ∇xθ − k̃

ε
Lε

zθ
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cf. (28). Hence

Aε
[
fz + f ε

1,z

] = 1

k̃
f ′

z

〈
Wε

z , p · ∇xθ
〉+k̃2f ′

z

〈
Wε

z , Lε
zL̃ε

zθ
〉
+k̃2f ′′

z

〈
Wε

z , Lε
zθ
〉 〈

Wε
z , L̃ε

zθ
〉

+ε
[
f ′

z

〈
Wε

z , p · ∇xL̃ε
zθ
〉
+ f ′′

z

〈
Wε

z , p · ∇xθ
〉 〈

Wε
z , L̃ε

zθ
〉]

= Aε
1(z) + Aε

2(z) + Aε
3(z) + Rε

1(z),

where Aε
2(z) and Aε

3(z) are the coupling terms.

Proposition 2.
lim
ε→0

sup
z<z0

E|Rε
1(z)| = 0.

Proof. By Lemma 2 we have

|Rε
1| ≤ ε‖f ′′‖∞‖W0‖2

2

[
‖p · ∇xθ‖2‖L̃ε

zθ‖2 + ‖p · ∇x(L̃ε
zθ)‖2

]

= O
(
η−1(| min (ρ, γ −1)|1−H + ρ2−H )

)
, (77)

which is of the following order of magnitude:



ε, if η, ρ held fixed
ερ2−H , if η, γ held fixed
εη−1, if ρ is held fixed
εη−1ρ2−H , if γ held fixed
ε(| min (ρ, γ −1)|1−H + ρ2−H ), if η held fixed

(78)

and vanishes in the respective regimes. ��
We introduce the next perturbations f ε

2,z, f
ε
3,z. Let

A
(1)
2 (φ) ≡

∫
φ(x, p)Q1(θ ⊗ θ)(x, p, y, q)φ(y, q) dxdp dydq, (79)

A
(1)
1 (φ) ≡

∫
Q′

1θ(x, p)φ(x, p) dxdp, (80)

where

Q1(θ ⊗ θ)(x, p, y, q) = E

[
Lε

zθ(x, p)L̃ε
zθ(y, q)

]
, (81)

and

Q′
1θ(x, p) = E

[
Lε

zL̃ε
zθ(x, p)

]
,

where the operator L̃ε
z is defined as in (58). Note that Q1θ and Q′

1θ are O(1) terms
because of (56).

Clearly, we have

A
(1)
2 (φ) = E

[〈
φ, Lε

zθ
〉 〈

φ, L̃ε
zθ
〉]

. (82)
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Define

f ε
2,z ≡ k̃2f ′′

z

∫ ∞

z

E
ε
z

[〈
Wε

z , Lε
s θ
〉 〈

Wε
z , L̃ε

s θ
〉
− A

(1)
2 (Wε

z )
]

ds,

f ε
3,z ≡ k̃2f ′

z

∫ ∞

z

E
ε
z

[〈
Wε

z , Lε
s L̃ε

s θ
〉
− A

(1)
3 (Wε

z )
]

ds.

Let

Q2(θ ⊗ θ)(x, p, y, q) ≡ E

[
L̃ε

zθ(x, p)L̃ε
zθ(y, q)

]

and

Q′
2θ(x, p) = E

[
L̃ε

zL̃ε
zθ(x, p)

]
.

Let

A
(2)
2 (φ) ≡

∫
φ(x, p)Q2(θ ⊗ θ)(x, p, y, q)φ(y, q) dxdp dydq, (83)

A
(2)
1 (φ) ≡

∫
Q′

2θ(x, p)φ(x, p) dx dp, (84)

we then have

f ε
2,z = ε2k̃2

2
f ′′

z

[〈
Wε

z , L̃ε
zθ
〉2 − A

(2)
2 (Wε

z )

]
, (85)

f ε
3,z = ε2k̃2

2
f ′

z

[〈
Wε

z , L̃ε
zL̃ε

zθ
〉
− A

(2)
3 (Wε

z )
]
. (86)

Proposition 3.

lim
ε→0

sup
z<z0

E|f ε
j,z| = 0, lim

ε→0
sup
z<z0

|f ε
j,z| = 0, j = 2, 3.

Proof. We have the bounds

sup
z<z0

E|f ε
2,z| ≤ sup

z<z0

ε2k̃2‖f ′′‖∞
[
‖W0‖2

2E‖L̃ε
zθ‖2

2 + E[A(2)
2 (Wε

z )]
]
,

sup
z<z0

E|f ε
3,z| ≤ sup

z<z0

ε2k̃2‖f ′‖∞
[
‖W0‖2E‖L̃ε

zL̃ε
zθ‖2 + E[A(2)

1 (Wε
z )]
]
.

The first term can be estimated as in (74); the second term can be estimated as in (74)
by using (62).

As for estimating supz<z0
|f ε

j,z|, j = 2, 3, we have

sup
z<z0

|f ε
2,z| ≤ sup

z<z0

ε2k̃2‖f ′′‖∞
[
‖W0‖2

2‖L̃ε
zθ‖2

2 + A
(2)
2 (Wε

z )
]
,

sup
z<z0

|f ε
3,z| ≤ sup

z<z0

ε2k̃2‖f ′‖∞
[
‖W0‖2‖L̃ε

zL̃ε
zθ‖2 + A

(2)
1 (Wε

z )
]
.

Using the assumption (62) we can estimate the right side of the above as in (76). ��
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We have

Aεf ε
2,z = k̃2f ′′

z

[
− 〈Wε

z , Lε
zθ
〉 〈

Wε
z , L̃ε

zθ
〉
+ A

(1)
2 (Wε

z )
]

+ Rε
2(z),

Aεf ε
3,z = k̃2f ′

z

[
−
〈
Wε

z , Lε
zL̃ε

zθ
〉
+ A

(1)
3 (Wε

z )
]

+ Rε
3(z),

with

Rε
2(z) = ε2 k̃2

2
f ′′′

z

[
1

k̃

〈
Wε

z , p · ∇xθ
〉+ k̃

ε

〈
Wε

z , Lε
zθ
〉] [〈

Wε
z , L̃ε

zθ
〉2 − A

(2)
2 (Wε

z )

]

+ε2k̃2f ′′
z

〈
Wε

z , L̃ε
zθ
〉 [1

k̃

〈
Wε

z , p · ∇x(L̃ε
zθ)
〉
+ k̃

ε

〈
Wε

z , Lε
zL̃ε

zθ
〉]

−ε2k̃2f ′
z

[
1

k̃

〈
Wε

z , p · ∇x(G
(2)
θ Wε

z )
〉
+ k̃

ε

〈
Wε

z , Lε
zG

(2)
θ Wε

z

〉]
, (87)

where G
(2)
θ denotes the operator

G
(2)
θ φ ≡

∫
Q2(θ ⊗ θ)(x, p, y, q)φ(y, q) dydq.

Similarly

Rε
3(z) = ε2k̃2f ′

z

[
1

k̃

〈
Wε

z , p · ∇x(L̃ε
zL̃ε

zθ)
〉
+ k̃

ε

〈
Wε

z , Lε
zL̃ε

zL̃ε
zθ
〉]

+ε2 k̃2

2
f ′′

z

[
1

k̃

〈
Wε

z , p · ∇xθ
〉+ k̃

ε

〈
Wε

z , Lε
zθ
〉] [〈

Wε
z , L̃ε

zL̃ε
zθ
〉
− A

(2)
1 (Wε

z )
]

−ε2k̃2f ′
z

[
1

k̃

〈
Wε

z , p · ∇x(Q′
2θ)
〉+ k̃

ε

〈
Wε

z , Lε
zQ′

2θ
〉]

. (88)

Proposition 4.

lim
ε→0

sup
z<z0

E|Rε
2(z)| = 0, lim

ε→0
sup
z<z0

E|Rε
3(z)| = 0.

Proof. Part of the argument is analogous to that given for Proposition 3. The additional
estimates that we need to consider are the following:

In Rε
2 (87):

sup
z<z0

ε2
E

∣∣∣
〈
Wε

z , p · ∇x(G
(2)
θ Wε

z )
〉∣∣∣

≤ cε2γ −2‖W0‖2E

{∥∥∥∇y · ∇xF−1
2 θ(x, y)

×
∫

E

[
δγ Ṽ ε

z (x, y)δγ Ṽ ε
z (x′, y′)

]
F−1

2 θ(x′, y′)F−1
2 Wε

z (x′, y′)dx′dy′
∥∥∥∥

2

}

≤ cε2γ −2‖W0‖2E

{∥∥∥∥∇y · ∇xF−1
2 θ(x, y)E

[
δγ Ṽ ε

z (x, y)
]2

×
∫ ∣∣∣F−1

2 θ(x′, y′)F−1
2 Wε

z (x′, y′)
∣∣∣ dx′dy′

∥∥∥∥
2

}
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≤ cε2γ −2‖W0‖2

∥∥∥∥∇y · ∇xF−1
2 θE

[
δγ Ṽ ε

z

]2
∥∥∥∥

2
E

∥∥∥F−1
2 θF−1

2 Wε
z

∥∥∥
2

≤ cε2γ −2‖θ‖2‖W0‖2
2

∥∥∥∥∇y · ∇xF−1
2 θE

[
δγ Ṽ ε

z

]2
∥∥∥∥

2

≤ c‖θ‖2‖W0‖2
2ε

2γ −1
∥∥∥∥[F−1

2 ∇x · ∇xθ ](x, y)E
[
δγ Ṽ ε

z

]2
(y)

∥∥∥∥
2

+ac‖θ‖2‖W0‖2
2ε

2γ −2
∥∥∥∥[F−1

2 ∇xθ ](x, y) · ∇yE

[
δγ Ṽ ε

z

]2
(y)

∥∥∥∥
2

≤ c‖θ‖2‖W0‖2
2ε

2γ −1 sup
|y|≤L

E

[
δγ Ṽ ε

z

]2
(y)

+c‖θ‖2‖W0‖2
2ε

2γ −2 sup
|y|≤L

∣∣∣∣∇yE

[
δγ Ṽ ε

z

]2
(y)

∣∣∣∣
≤ O

(
ε2η−2γ | min (ρ, γ −1)|2−2H + ε2η−2ρ1−H | min (ρ, γ −1)|1−H

)

by Lemma 2 where L is the radius of the ball containing the support of θ . Further
delineation yields the following order-of-magnitude estimates:




ε2 if η, ρ held fixed
ε2ρ1−H if η, γ held fixed
ε2η−2ρ1−H if γ held fixed
ε2η−2 if ρ held fixed
ε2ρ1−H | min (ρ, γ −1)|1−H if η held fixed.

Consider the next term:

sup
z<z0

εE

∣∣∣
〈
Wε

z , Lε
zG

(2)
θ Wε

z

〉∣∣∣
≤ cε2γ −3‖W0‖2E

{∥∥∥δγ V ε
z (x, y)F−1

2 θ(x, y)

×
∫

E

[
δγ Ṽ ε

z (x, y)δγ Ṽ ε
z (x′, y′)

]
F−1

2 θ(x′, y′)F−1
2 Wε

z (x′, y′)dx′dy′
∥∥∥∥

2

}

≤ cε2γ −3‖W0‖2E

{∥∥∥∥δγ V ε
z (x, y)F−1

2 θ(x, y)E
[
δγ Ṽ ε

z (x, y)
]2

×
∫ ∣∣∣F−1

2 θ(x′, y′)F−1
2 Wε

z (x′, y′)
∣∣∣ dx′dy′

∥∥∥∥
2

}

≤ cε2γ −3‖θ‖2‖W0‖2
2E

∥∥∥∥δγ V ε
z (x, y)F−1

2 θE

[
δγ Ṽ ε

z

]2
∥∥∥∥

2

≤ O
(
ε2η−2| min (ρ, γ −1)|3−3H

)

by Corollary 3.
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In Rε
3 (88):

sup
z<z0

εE

∣∣∣
〈
Wε

z , Lε
zL̃ε

zL̃ε
zθ
〉∣∣∣ ≤ ε‖W0‖2 sup

z<z0

√
E

∥∥∥Lε
zL̃ε

zL̃ε
zθ

∥∥∥2

2

= O

(
εγ −3 sup

|y|≤L

E

∣∣∣δγ Ṽ ε
z

∣∣∣2 (y)E1/2
∣∣δγ V ε

z

∣∣2 (y)

)

= O
(
εη−2| min (ρ, γ −1)|3−3H

)
,

by (62) and Lemma 2. The preceding two terms can be estimated from above by the
following order of magnitude:




ε if ρ and η held fixed
ε if γ and η held fixed
εη−2 if γ or ρ held fixed
ε| min (ρ, γ −1)|3−3H if η held fixed;

ε2
E
∣∣〈Wε

z , p · ∇x(Q′
2θ)
〉∣∣ ≤ ε2

√
E
∣∣〈Wε

z , p · ∇x(Q′
2θ)
〉∣∣2

≤ cε2γ −2‖W0‖2

∥∥∥∥∇y · ∇xE

[
δγ Ṽ ε

z (x, y)
]2 F−1

2 θ(x, y)

∥∥∥∥
2

= O

(
ε2γ −2

E|y|≤L

∣∣∣∣∇yE

[
δγ Ṽ ε

z

]2
(y)

∣∣∣∣
)

= O
(
ε2η−2ρ1−H | min (ρ, γ −1)|1−H

)
(89)

which in the various regimes has the following order of magnitude:




ε2 if ρ and η held fixed
ε2ρ1−H if γ and η held fixed
ε2η−2ρ1−H if γ held fixed
ε2η−2 if ρ held fixed
ε2ρ1−H | min (ρ, γ −1)|1−H if η held fixed;

εE
∣∣〈Wε

z , Lε
zQ′

2θ
〉∣∣ ≤ ε

√
E
∣∣〈Wε

z , Lε
zQ′

2θ
〉∣∣2

≤ cε2γ −3‖W0‖2E

∥∥∥∥δγ V ε
z (x, y)E

[
δγ Ṽ ε

z (x, y)
]2 F−1

2 θ(x, y)

∥∥∥∥
2

= O

(
ε2γ −3 sup

|y|≤L

E

∣∣∣δγ Ṽ ε
z

∣∣∣2 (y)E1/2
∣∣δγ V ε

z

∣∣2 (y)

)

= O
(
ε2η−2| min (ρ, γ −1)|3−3H

)
(90)

by Lemma 2. ��



White-Noise and Geometrical Optics Limits of Wigner-Moyal Equation 315

Consider the test function f ε
z = fz + f ε

1,z + f ε
2,z + f ε

3,z. We have

Aεf ε
z = 1

k̃
f ′

z

〈
Wε

z , p · ∇xθ
〉+ k̃2f ′′

z A
(1)
2 (Wε

z ) + k̃2f ′A(1)
1 (Wε

z )

+Rε
2(z) + Rε

3(z) + Rε
1(z). (91)

Set

Rε(z) = Rε
1(z) + Rε

2(z) + Rε
3(z). (92)

It follows from Propositions 2 and 4 that

lim
ε→0

sup
z<z0

E|Rε(z)| = 0.

For the tightness it remains to show

Proposition 5. {Aεf ε
z } are uniformly integrable.

Proof. Indeed, each term in the expression (91) is uniformly integrable. We only need to
be concerned with terms in Rε(z) since other terms are obviously uniformly integrable
because Wε

z is uniformly bounded in the square norm. But since the previous estimates
establish the uniform boundedness of the second moments of the corresponding terms,
the uniform integrability of the terms follow. ��

4.2. Identification of the limit. Our strategy is to show directly that in passing to the
weak limit the limiting process solves the martingale problem formulated in Sect. 2.1.
The uniqueness of the martingale solution mentioned in Sect. 2.4 then identifies the
limiting process as the unique L2(R2d)-valued solution to the initial value problem of
the stochastic PDE (38).

Recall that for any C2-function f ,

Mε
z (θ) = f ε

z −
∫ z

0
Aεf ε

s ds

= fz + f ε
1 (z) + f ε

2 (z) + f ε
3 (z) −

∫ z

0

1

k̃
f ′

z

〈
Wε

z , p · ∇xθ
〉
ds

−
∫ z

0
k̃2
[
f ′′

s A
(1)
2 (Wε

s ) + f ′
sA

(1)
1 (Wε

s )
]

ds −
∫ z

0
Rε(s) ds (93)

is a martingale. The martingale property implies that for any finite sequence 0 < z1 <

z2 < z3 < ... < zn ≤ z, C2-function f and bounded continuous function h with
compact support, we have

E
{
h
(〈
Wε

z1
, θ
〉
,
〈
Wε

z2
, θ
〉
, ...,

〈
Wε

zn
, θ
〉) [

Mε
z+s(θ) − Mε

z (θ)
]} = 0,

∀s > 0, z1 ≤ z2 ≤ · · · ≤ zn ≤ z. (94)

Let

Āfz ≡ f ′
s

[
1

k̃
〈Wz, p · ∇xθ〉 + k̃2Ā1(Wz)

]
+ k̃2f ′′

z Ā2(Wz),
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where

Ā2(φ)= lim
ρ→∞ A

(1)
2 (φ)=

∫
Q(θ ⊗ θ)(x, p, y, q)φ(x, p)φ(y, q)dxdpdydq, (95)

Ā1(φ) = lim
ρ→∞ A

(1)
1 (θ) =

∫
Q0(θ)(x, p)φ(x, p)dxdp, (96)

where Q(θ ⊗θ) and Q0(θ) are given by (33) and (32), respectively. For ρ → ∞, γ → 0
as ε → 0 the limits in (95) are not well-defined unless H ∈ (0, 1/2) in the worst case
scenario allowed by (7). Likewise, the convergence does not hold for H ∈ [1/2, 1) when
η → 0 in the worst case scenario allowed by (7).

For each possible limit process in D([0, ∞); L2
w(R2d)) there is at most a countable

set of discontinuous points with a positive probability and we consider all the finite set
{z1, ..., zn} in (94) to be outside of the set of discontinuity.

In view of the results of Propositions 1, 2, 3, 4 we see that f ε
z and Aεf ε

z in (93) can
be replaced by fz and Āfz, respectively, modulo an error that vanishes as ε → 0. With
this and the tightness of {Wε

z } we can pass to the limit ε → 0 in (94). We see that the
limiting process satisfies the martingale property that

E
{
h
(〈
Wz1 , θ

〉
,
〈
Wz2 , θ

〉
, ...,

〈
Wzn, θ

〉) [
Mz+s(θ) − Mz(θ)

]} = 0, ∀s > 0,

where

Mz(θ) = fz −
∫ z

0
Āfs ds. (97)

Then it follows that

E
[
Mz+s(θ) − Mz(θ)|Wu, u ≤ z

] = 0, ∀z, s > 0

which proves that Mz(θ) is a martingale.
Note that

〈
Wε

z , θ
〉

is uniformly bounded:

∣∣〈Wε
z , θ
〉∣∣ ≤ ‖W0‖2‖θ‖2

so we have the convergence of the second moment

lim
ε→0

E

{〈
Wε

z , θ
〉2} = E

{
〈Wz, θ〉2

}
.

Using f (r) = r and r2 in (97) we see that

M(1)
z (θ) = 〈Wz, θ〉 −

∫ z

0

[
1

k̃
〈Ws, p · ∇xθ〉 − k̃2Ā3(Ws)

]
ds

is a martingale with the quadratic variation

[
M(1)(θ), M(1)(θ)

]
z

= k̃2
∫ z

0
Ā2(Ws) ds = k̃2

∫ z

0

〈
Ws, KθWs

〉
ds,

where Kθ is defined as in (31).
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Appendix A. Mixing Coefficients and Moment Estimates for Ṽz

Let Fz and F+
z be the sigma-algebras generated by {Vs : ∀s ≤ z} and {Vs : ∀s ≥ z},

respectively.
Consider the strong mixing coefficient

α(t) = sup
A∈F+

z+t

sup
B∈Fz

|P(AB) − P(A)P (B)|

= 1

2
sup

A∈F+
z+t

E
[|P(A|Fz) − P(A)|]

which can be used to bound the first order moment:

E
[|E [Vs |Fz

] |] ≤ 8α(s − z)1/p
[
E|Vs |q

]1/q
, ∀s > z, p−1 + q−1 = 1

([9], Cor. 2.4). Hence the integrability of α(t) implies that Ṽz has a finite first order
moment.

To bound the higher order moments of Ṽz one can consider, for example, the general
Lp-mixing coefficients

φp(t) = sup
A∈Fz+t

E
1/p
[|P(A|Fz) − P(A)|p] , p ∈ [1, ∞)

= sup
h∈Lp(P,F+

z+t )

sup
g∈Lq (P,Fz)

Egq=1,Eg=0

E[hg], p−1 + q−1 = 1, p ∈ [1, ∞).

We note that α(t) = φ1(t) and for p = ∞,

φ∞(t) = sup
A∈F+

t+z

sup
B∈Fz

P (B)>0

|P(A|B) − P(A)|, ∀t ≥ 0

= sup
A∈F+

t+z

ess-supω|P(A|Fz) − P(A)|

≡ φ(t)

is called the uniform mixing coefficient [9]. In terms of φp one has the following estimate

|E [h1h2] − E[h1]E[h2]| ≤ 2min (q,2)φp(t)1/u
E

1/(vp)[hvp
2 ]E1/q [hq

1] (98)

for u, v, p, q ∈ [1, ∞], u−1 + v−1 = 1, p−1 + q−1 = 1 and real-valued h1 ∈
Lq(�, Fz, P ), h2 ∈ Lvp(�, F+

z+t , P ) (see [9], Prop. 2.2). In particular, for q > 2, v =
q/p,

|E [h1h2]−E[h1]E[h2]|≤4φp(t)(q−p)/q
E

1/q [hq
2]E1/q [hq

1], p−1 + q−1 =1 (99)

by which, along with the Hölder inequality, we can bound the second moment of Ṽz as
follows: First we observe that for s, τ ≥ z and h1 = Ez(Vs), h2 = Vτ ,

E
[
Ez[Vs(x)]Ez[Vτ (x)]

]
= E

[
Ez[Vs(x)]Vτ (x)

] ≤ 4φp(τ − z)(q−p)/q
E

1/q [V q
z ]E1/q [Eq

z [Vs]].
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By setting s = τ first and the Cauchy-Schwartz inequality we have

E

[
E

2
z[Vs]

]
≤ 4φp(s − z)(q−p)/q

E
2/q [V q

z ],

E
[
Ez[Vs(x)]Ez[Vτ (x)]

] ≤ 4φp(s − z)(q−p)/(2q)φp

×(τ − z)(q−p)/(2q)
E

2/q [V q
z ], s,τ≥z.

Hence

E[Ṽ 2
z ] ≤ 2

∫ ∞

z

∫ ∞

z

E
[
Ez[Vτ ]Ez [Vs]

]
dsdτ + 2

∫ ∞

0

∫ ∞

0
E [E0[Vτ ]E0 [Vs]] dsdτ

≤ 8E
2/q [V q

z ]

(∫ ∞

0
φp(t)(q−p)/(2q)dt

)2

≤ 8E
1/3[V 6

z ]

(∫ ∞

0
φ

2/5
6/5(t)dt

)2

which is finite if φ
2/5
6/5(t) is integrable (if Vz is assumed to have a finite 6th order moment).

When Vz is almost surely bounded, the preceding calculation with p = 1, q = ∞
becomes

E[Ṽ 2
z ] ≤ 8 lim

q→∞ E
1/q [V q

z ]

(∫ ∞

0
φ

1/2
1 (t)dt

)2

which is finite when φ
1/2
1 (t) is integrable.

In order to bound higher order moments in the non-Gaussian case, one can assume
the integrability of the uniform mixing coefficient φ(t) ≡ φ∞(t). Then we have

|P(A|Fz) − P(A)| ≤ φ(s − z), ∀A ∈ Fs , s ≥ z,

and for p ∈ [1, ∞), p−1 + q−1 = 1,

∣∣E [Vs |Fz

]∣∣ ≤ 21/pφ1/p(s − z)
[
E
[
V

q
s |Fz

]+ E
[
V

q
s

]]1/q
(100)

(cf. [9], Prop. 2.6). Using (100) and the Hölder inequality repeatedly we obtain

E

{∫ ∞

z

E
[
Vs |Fz

]
ds

}p

≤ c

[∫ ∞

0
φ(s)ds

]p

E[V p
s ]. (101)

Hence the integrability of φ(t) implies that Ṽz given by (51) has a finite moment of any
order p < ∞ if Vz has a finite moment of order p.

In summary we have

Proposition 1. (i) Assume that E[V p
z ] < ∞, p ∈ [1, ∞). If the uniform (L∞-) mixing

coefficient φ∞(t) of Vz is integrable then Ṽz has finite moments of order p.
(ii) Assume that E[V 6

z ] < ∞. If the 2/5-power of the L6/5-mixing coefficient φ6/5(t) is
integrable, then Ṽz has finite second moment.

(iii) Assume Vz is almost surely bounded. If the square-root of the alpha- (L1-) mixing
coefficient φ1(t) is integrable then Ṽz has finite second moment.
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Appendix B. Proof of Lemma 2

(i) Estimation of sup |z|≤z0|y|≤L

E

[(
δγ V ε

z

)2]
(y) : We have that for γρ ≤ 1,

sup
|z|≤z0

E

[(
δγ V ε

z (x, y)
)2]

= sup
|z|≤z0

∫
4| sin (γ y · k/2)|2�(η,ρ)(ξ, k)dξdk

≤ sup
|z|≤z0

∫
|γ y · k|2 �(η,ρ)(ξ, k)dξdk

≤ c0γ
2|y|2 sup

|z|≤z0

∫
|ξ |≤ρ

∫
|k|≤ρ

(η2 + |k|2 + |ξ |2)−H−(d+1)/2|k|d+1d|k|dξ

≤ c1γ
2|y|2 sup

|z|≤z0

∫
|ξ |≤ρ

(η2 + |ξ |2)−H+1/2dξ

≤ c2γ
2|y|2

∫
|ξ |∈(η,ρ)

|ξ |−2H+1dξ

≤ c3γ
2|y|2

(
η2−2H + ρ2−2H

)
.

For ργ ≥ 1 we divide the domain of integration into I0 = {|k| ≤ γ −1} and I1 = {|k| ≥
γ −1} and estimate their contributions separately. For I0 the upper bound is similar to the
above, namely, we have

sup
|z|≤z0

∫
I0

4| sin (γ y · k/2)|2�(η,ρ)(ξ, k)dξdk ≤ c4γ
2|y|2

(
η2−2H + γ −2+2H

)
.

For I1 we have instead that

sup
|z|≤z0

∫
I1

4| sin (γ y · k/2)|2�(η,ρ)(ξ, k)dξdk

≤ 4 sup
|z|≤z0

∫
I1

�(η,ρ)(ξ, k)dξdk

≤ c5 sup
|z|≤z0

∫
|ξ |∈(γ −1,ρ)

(η2 + |ξ |2)−H−1/2dξ

≤ c6

∫
|ξ |∈(γ −1,ρ)

|ξ |−2H−1dξ

≤ c7

(
γ 2H + ρ−2H

)
.

Put together, the upper bound becomes

sup
|z|≤z0|x|,|y|≤L

E

[(
δγ V ε

z (x, y)
)2] ≤ c8γ

2
∣∣∣min (γ −1, ρ)

∣∣∣2−2H

, γ, η ≤ 1 ≤ ρ.
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(ii) Estimation of sup|z|≤z0
E

[
Ṽ ε

z (x)
]2

: It follows from the argument for Corollary 1

and Assumption 2 that

E

[
Ṽ ε

z (x)
]2 ≤

(∫ ∞

0
rη,ρ(t)dt

)2

E[V ε
z ]2

≤ cη−2η−2H .

(iii) Estimation of sup |z|≤z0|y|≤L

E

[(
δγ Ṽ ε

z

)2
]

(y): First note that the correlation coefficient

for δγ Ṽ ε
z is bounded from above by crη,ρ(t) for some constant c > 0. Then we have as

in (i), (ii) that

E

[
δγ Ṽ ε

z (x)
]2 ≤ c1

(∫ ∞

0
rη,ρ(t)dt

)2

E[δγ V ε
z ]2

≤ c2η
−2γ 2

∣∣∣min (γ −1, ρ)

∣∣∣2−2H

.

(iv) Estimation of sup |z|≤z0|y|≤L

∣∣∣∣∇yE

[
δγ Ṽ ε

z

]2
(y)

∣∣∣∣: By the Cauchy-Schwartz inequality and

the preceding calculation we have

sup
|z|≤z0|y|≤L

∣∣∣∣∇yE

[
δγ Ṽ ε

z

]2
(y)

∣∣∣∣

≤ c1

√
γ 2E

[
∇xṼ ε(x + γ y/2) + ∇xṼ ε(x − γ y/2)

]2
√

E

[
δγ Ṽ ε(x, y)

]2

≤ c3

(∫ ∞

0
rη,ρ(t)dt

)2

γ E
1/2 [∇xV

ε
]2

E
1/2 [δγ V ε

z (x, y)
]2

≤ c4η
−2γ 2ρ1−H | min (ρ, γ −1)|1−H .

(v) Estimation of sup|z|≤z0
E‖p · ∇x(L̃ε

zθ)‖2
2: A similar line of reasoning and a straight-

forward spectral calculation yield that

E‖p · ∇x(L̃ε
zθ)‖2

2 = E‖∇y · ∇xγ
−1δγ Ṽ ε

z F−1
2 θ‖2

2

≤ c1E‖∇2
x Ṽ ε

z F−1
2 θ‖2

2

≤ c2η
−2

E

[
∇2

xV ε
z

]2

≤ c3η
−2ρ4−2H .

Appendix C. Proof of Corollary 3

By the Cauchy-Schwartz inequality we have the following calculation:

E

[
‖Lε

zθ(x, p)L̃ε
zθ(y, q)‖2

2

]

≤ C1

{∥∥∥E
[
Lε

zθ(x, p)L̃ε
zθ(y, q)

]∥∥∥2

2
+ E

[∥∥Lε
zθ(x, p)

∥∥2
2

]
E

[∥∥∥L̃ε
zθ(y, q)

∥∥∥2

2

]}

= C1γ
−4
{∥∥∥E

[
δγ V ε

z (x, x′)δγ Ṽ ε
z (y, y′)

]
F−1

2 θ(x, x′)F−1
2 θ(y, y′)

∥∥∥2

2
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+
∥∥∥E
[∣∣δγ V ε

z

∣∣2]F−1
2 θ

∥∥∥2

2

∥∥∥∥E
[∣∣∣δγ Ṽ ε

z

∣∣∣2
]

F−1
2 θ

∥∥∥∥
2

2

}

= O

(
sup

|y|≤L

E
∣∣δγ V ε

z

∣∣2 (y)E

∣∣∣δγ Ṽ ε
z

∣∣∣2 (y)

)

and

E

[
‖Lε

zL̃ε
zθ‖2

2

]

≤ C′
1

{
γ −4

∫
E
[
δγ V ε

z

]2
E

[
δγ Ṽ ε

z

]2 (F−1
2 θ

)2
dxdy +

∥∥∥E
[
Lε

zL̃ε
zθ(x, p)

]∥∥∥2

2

}

= C′
1γ

−4
{∫

E
[
δγ V ε

z

]2
E

[
δγ Ṽ ε

z

]2 (F−1
2 θ

)2
dxdy

+
∥∥∥E
[
δγ V ε

z δγ Ṽ ε
z

]
F−1

2 θ(x, y)

∥∥∥2

2

}

= O

(
sup

|y|≤L

E
∣∣δγ V ε

z

∣∣2 (y)E

∣∣∣δγ Ṽ ε
z

∣∣∣2 (y)

)

and

E

[
‖L̃ε

zL̃ε
zθ‖2

2

]

≤ C2

{
γ −4

∫
E

[
δγ Ṽ ε

z

]2
E

[
δγ Ṽ ε

z

]2 (F−1
2 θ

)2
dxdy +

∥∥∥E
[
L̃ε

zL̃ε
zθ(x, p)

]∥∥∥2

2

}

= C2γ
−4

{∫ (
E

[
δγ Ṽ ε

z

]2
)2 (

F−1
2 θ

)2
dxdy +

∥∥∥E
[
δγ Ṽ ε

z δγ Ṽ ε
z

]
F−1

2 θ(x, y)

∥∥∥2

2

}

= O

(
sup

|y|≤L

E
2
∣∣∣δγ Ṽ ε

z

∣∣∣2 (y)

)
,

where C1, C
′
1, C2 are constants independent of ρ, η, γ and L is the radius of the ball

containing the support of F−1
2 θ . Similarly we have that

E

∥∥∥Lε
zL̃ε

zL̃ε
zθ

∥∥∥2

2
= O

(
sup

|y|≤L

E
2
∣∣∣δγ Ṽ ε

z

∣∣∣2 E
∣∣δγ V ε

z

∣∣2
)

.
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