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Abstract - In this work, super-resolution by
4 compressive sensing methods (OMP, BP,
BLOOMP, BP-BLOT) with highly coherent par-
tial Fourier measurements is comparatively stud-
ied.

An alternative metric more suitable for gaug-
ing the quality of spike recovery is introduced and
based on the concept of filtration with a parame-
ter representing the level of tolerance for support
offset.

In terms of the filtered error norm only
BLOOMP and BP-BLOT can perform grid-
independent recovery of well separated spikes
of Rayleigh index 1 for arbitrarily large super-
resolution factor. Moreover both BLOOMP and
BP-BLOT can localize spike support within a few
percent of the Rayleigh length. This is a weak
form of super-resolution.

Only BP-BLOT can achieve this feat for

closely spaced spikes separated by a fraction of

the Rayleigh length, a strong form of super-

resolution.

I. INTRODUCTION

Superresolution as Fourier spectrum extrapola-
tion (i.e. uncovering high spatial frequency compo-
nents from low spatial frequency data) is typically an
ill-posed process and prone to extreme instability to
noise, unless additional prior knowledge and/or mul-
tiple data sets are available. Many techniques have
been proposed in the literature but few have robust
performances and rigorous foundation.

A basic result in super-resolution with Fourier
measurements is given by Ref. [3] (see also Ref.
[1]). In the present work we discuss the strengths
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and weaknesses of this result and give a numerical
assessment of the super-resolution capability of com-
pressive sensing (CS) algorithms.

First let us review the set-up of Fourier mea-
surements of grid-bound spikes. Consider the noisy
Fourier data y = Φx+ e of a grid-bound spike train

x(t) =

N−1∑
l=0

x(l)δ(t− l

N
) (1)

on a fine grid of spacing N−1 with the sensing matrix
element

Φkl = e−2πikl/N , k ∈ [0, N/F ). (2)

When F > 1, one is confronted with the prob-
lem of retrieving the fine scale structure of x from a
coarse scale information only. The Rayleigh resolu-
tion length ` associated with the Fourier data is the
reciprocal of the observed bandwidth in (2). The
ratio F of the Rayleigh length to the fine grid spac-
ing is the super-resolution factor Ref. [1, 3] or the
refinement factor Ref. [4, 5].

According to Ref. [3], any grid-bound spike train
of the form (1) that is consistent with the Fourier
data over the frequency band [0, N/F ) deviates from
the true solution by

Error ≤ Constant ·Fα· Noise, α ≤ 2R+ 1 (3)

where

R(S) = min

{
r : r ≥ sup

t
#(S ∩ [t, t+ 4`r))

}
(4)

is the Rayleigh index of the support set S of x. As
explained in Ref. [3], a set has Rayleigh index at
most R if in any interval of length 4` · R there are
at most R spikes.



To increase R, one can decrease the minimum dis-
tance and/or increase the number of spikes sepa-
rated below 4` on (local) average. The power α
measures the degree of noise amplification by super-
resolution.

Recently Ref. [1], an error bound like (3) with
α = 2 is established for reconstruction of spikes sep-
arated by at least 4` (thus R = 1) by convex pro-
gramming analogous to Basis Pursuit (BP) Ref. [2]
with Fourier data sampled at integers k of the band
[0, N/F ).

The above sensing set-up, however, has the
following two drawbacks.

II. GRID-INDEPENDENT CS

The first drawback is that when the prior infor-
mation of grid-bound spikes is not available, then
imposing such a model assumption can lead to poor
reconstruction.

To reduce the gridding error due to off-grid ob-
jects one can reduce the grid spacing. But to resolve
the finer grids, one must increase the received band-
width which in turn brings the gridding error back
to the original level and defeats the purpose of grid
refinement. The same problem arises in radar imag-
ing when the probe wavelengths are larger than the
sizes of the off-grid scatterers. Often brushed off
in literature Ref. [6, 7], this issue is particularly
pertinent to sparsity-based imaging schemes relying
on accurate and sparse representation of the objects
which, in view of the intrinsically discrete nature of
CS framework, may be utterly untenable for imaging
in continuum.

How to get out this conundrum? Recently we have
developed a solution method based on the techniques
of coherence Band exclusion and Local Optimization
(acronym: BLO) Ref. [5] which introduces a more
refined notion of local coherence bands.

Roughly speaking the idea is this: Let the stan-
dard grid spacing be the Rayleigh resolution length
` and the refined grid spacing be `′ < `. When the
super-resolution factor F = `/`′ is large, the nearby
columns are nearly parallel, forming the coherence
bands. The size of the coherence band is approxi-
mately twice the Rayleigh length. Due to the pres-
ence of coherence bands, the mutual coherence of the
sensing matrix is close to one, leading to a poor con-
dition number of even small column sub-matrices.
As expected standard CS methods break down in
this situation.

If, however, the spikes are separated by at least

` then spikes do not fall into the coherence band
of one another. So if one searches the next object
outside the coherence bands of the previously iden-
tified objects by a greedy algorithm, say Orthogonal
Matching Pursuit (OMP), then the coherence bands
would not get in the way of reconstruction. This is
the technique of coherence band exclusion.

To improve the accuracy of reconstruction, one
can further zoom in within coherence bands of the
recovered objects one at a time by locally minimiz-
ing the residual which is inexpensive computation-
ally. This is the technique of local optimization (see
Algorithm 1).

Algorithm 1. Local Optimization (LO)
Input:Φ, y, S0 = {i1, . . . , ik}.
Iteration: For n = 1, 2, ..., k.
1) xn = arg minz ‖Φz − y‖,

supp(z) = (Sn−1\{in}) ∪ {jn},
jn ∈ Band({in}).

2) Sn = supp(xn).
Output: Sk.

Remark 1. For spikes separated by at least `, the
“Band({jn})” in Algorithm 1 is the set of indices
within the distance ` from {jn}. For spikes separated
by less than `, “Band({jn})” is the set of indices
within half the minimum separation of spikes. In
the latter situation, the algorithm requires the prior
knowledge of the minimum separation of spikes.

The same remark applies to Algorithms 2 and 3
below.

In Ref. [5] we have obtained performance guaran-
tee for the BLO-based greedy algorithm, BLOOMP
(standing for BLO-based OMP), which can recover
the support of spikes separated by at least 3` within
the accuracy of one ` (as measured by the Bottleneck
distance) independent of the super-resolution factor.
In reality, the accuracy of the support estimate is
just a few percent of the Rayleigh length ` (see be-
low). Note that spikes separated by at least 3` can
comprise a set of arbitrarily large Rayleigh index.

Moreover, this grid-independent performance can
be achieved with sparse measurements, leading to
grid-independent CS. The numerical performances
of BLOOMP and other variants have been thor-
oughly and systematically tested in Ref. [5].



Algorithm 2. BLOOMP
Input: Φ, y, s = sparsity (number of spikes)
Initialization: x0 = 0, r0 = y and S0 = ∅
Iteration: For n = 1, ..., s

1) imax = arg maxi |Φ∗i rn−1|, i /∈ Band(Sn−1)
2) Sn = LO(Sn−1 ∪ {imax})

where LO is the output of Algorithm 2.
3) xn = arg minz ‖Φz − y‖ s.t. supp(z) ∈ Sn
4) rn = y − Φxn

Output: xs.

When the BLO technique is combined with
thresholding we have the Band-excluded, Locally
Optimized Thresholding (BLOT) which can be used
to enhance the performance of BP. The BLOT-
enhanced BP is called BP-BLOT (see Algorithm 3).

Algorithm 3. BLOT
Input: x, Φ, y, s = sparsity (number of spikes).
Initialization: S0 = ∅.
Iteration: For n = 1, 2, ..., s.

1) in = arg maxj |xj |, j 6∈ Band(Sn−1).
2) Sn = Sn−1 ∪ {in}.

Output:
x̂ = arg min ‖Φz − y‖2, supp(z) ⊆ LO(Ss),
where LO is the output of Algorithm 1.

Note that BLOOMP and BP-BLOT require the
prior information of the sparsity.

III. FILTERED ERROR METRIC

The second drawback of (3) is that the discrete
norm used in (3) does not take into account of the
degree of separation between the estimated support
and the true support as measured by the Hausdorff
distance or the Bottleneck distance. The discrete
norm treats any amount of support offset equally.

An easy remedy to the injudicious treatment of
support offset is to use instead the filtered error
norm ‖x̂η − xη‖, where xη and x̂η are, respectively,
x and x̂ convoluted with an approximate delta-
function of width 2η.

If every spike of x̂ is within η distance from
a spike of x and if the amplitude differences are
small, then the η-filtered error is small. The filter
parameter η represents the level of tolerance for
the support off-set in a specific context. The
filtered error plot, as η and noise level vary, will
give a more accurate and complete picture of
the super-resolution effect. We will demonstrate
the utility of the filtered norm in the numerical tests.
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Figure 1: Reconstructions of the real part of 20 ran-
domly phased spikes with R = 1 (minimum distance
4`), F = 50,SNR = 20.

IV. NUMERICAL TESTS

In all our tests, we use 150 × N partial Fourier
matrices (2) where N = 150F for various F and
k = 0, 1, 2, · · · , 149. In this setting, ` = 1/150.

For a demonstration of grid-independent recovery,
Fig.1 shows reconstructions of 20 spikes separated by
at least 4` ( R = 1) by using OMP, BP, BLOOMP
and BP-BLOT with noisy (5%) Fourier data. For
this simulation, F = 50. We use the open-source
code YALL1 (http://yall1.blogs.rice.edu/) to
find the BP solution.

In this test, OMP tends to miss small spikes.
BLOOMP, however, approximately recover the sup-
port and magnitudes of the spikes. While the BP re-
construction tends to cluster around the true spikes,
BP-BLOT dramatically improves the performance.
BLOOMP and BP-BLOT have a similarly superior
performance which is essentially independent of F .
BLOOMP and BP-BLOT also perform much bet-
ter than other existing schemes (see Ref. [5, 4] for
systematic comparison).

More quantitatively, the BLO technique reduces
the unfiltered error 144% and 0.1-filtered error 45%
for OMP to 39% and 6%, respectively, for BLOOMP.
The BLOT technique reduces the unfiltered error
159% and 0.1-filtered error 29% for BP to 39% and
6%, respectively, for BP-BLOT.

Fig.2 shows the filtered error with η = 0&0.05`
versus F for 20 well separated spikes with 1, 5, 10%
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(a) SNR=100, η = 0
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(b) SNR=100, η = 0.05`
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(c) SNR=20, η = 0
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(d) SNR=20, η = 0.05`
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(e) SNR=10, η = 0
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(f) SNR=10, η = 0.05`

Figure 2: Relative errors in reconstruction by OMP,
BLOOMP, BP and BP-BLOT versus the super-
resolution factor.

Gaussian noises. It is noteworthy that the error
curves for OMP and BP are essentially independent
of SNR when F ≥ 15. This may be due to the sen-
sitivity of the algorithms to the round-off error for
large F .

Also, the power-law amplification (PLA) regimes
for OMP and BP are not affected by the filtration
with η = 0.05`. The PLA regime for BP is about
F < 20 (F < 5 for OMP) while the PLA regimes
for BLOOMP and BP-BLOT are much milder and
slower growing.

If we set the relative error equal to, say thrice the
noise level as the threshold of successful recovery,
then in terms of either the unfiltered or filtered er-
ror OMP and BPDN fail for F > 10 while BLOOMP
and BP-BLOT succeed for all F in terms of the
filtered error, achieving grid-independent recovery.
This remains true for a lower error threshold if the
filtration parameter η is increased.

Next we test the strong form of super-resolution
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(b) BLOOMP
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(c) BP
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(d) BP-BLOT

Figure 3: Reconstructions of 5 randomly phased
spikes located at 76, 76.5, 79, 80, 81` (R = 5) with
F = 50,SNR = 20.

with spikes separated by sub-Rayleigh length. As
mentioned before, in this case the spikes can fall into
one another’s coherence band, thus confusing the re-
covery. In this case the excluded zones in Algorithms
1, 2 and 3 are not coherence bands of previously de-
tected spikes but smaller zones whose size is set to
be half the least separation of spikes (Remark 1).
Again we set F = 50 and SNR=20.

Fig.3 shows the reconstructions of 5 ran-
domly phased spikes (S = {76, 76.5, 79, 80, 81`})
while Fig.4 shows the reconstructions of 6
complex spikes of positive real parts (S =
{10, 10.3, 15, 20, 25, 25.3`}) by OMP, BP, BLOOMP
and BP-BLOT. According to the definition (4) the
former set has Rayleigh index 5 and the latter set has
Rayleigh index 6. Clearly, only BP-BLOT performs
reasonably well in both cases.

Several observations are in order. First, when
some spikes are separated by less than `, the BLO
technique may not improve on the OMP reconstruc-
tions. Second, the BLOT technique improves on
the BP reconstructions, especially for the Bottleneck
distance of support offset, achieving the accuracy of
0.04` in both Fig.3 and Fig.4. Third, the filtered er-
rors for BP-BLOT (15% with η = 0.25` in Fig.3(d)
and 18% with η = 0.1` in Fig.4(d)) are much smaller
than the unfiltered errors (199% in Fig.3(d) and 75%
in Fig.4(d)). Fig.3 (d) most clearly demonstrates the
inadequacy of the unfiltered norm as the error metric
for spike recovery.
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(b) BLOOMP
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Figure 4: Reconstructions of the real parts of 5
complex spikes located at 10, 10.3, 15, 20, 25, 25.3`
(R = 6) with F = 50,SNR = 20.

Zooming in on the two pairs of closely spaced
spikes in Fig.4(c) will give us a better sense of
how the BLOT technique achieves the feat of super-
resolution (see Fig.5). BLOT capitalizes on the ten-
dency of BP spikes to mushroom around the true
spikes and use the extra prior information (sparsity
and minimum separation) to prune and grow the re-
construction.

Finally, unlike the case of Rayleigh index 1 in
Fig.1, the BLOT technique slightly increases the
residuals (from 4.97% to 4.98% in Fig.3 and 4.99%
to 5.13% in Fig.4) to achieve the super-resolution
effect. In contrast, the BLO technique always
reduces the residuals which may not help recovery
of spikes separated by sub-Rayleigh length.

V. CONCLUSION

We have argued that the discrete unfiltered norm
is not a proper error metric for spike recovery since
the offset of the support recovery is not accounted for
and that a filtered error norm may be used instead.

We have demonstrated that both BLOOMP and
BP-BLOT can recover well separated spikes in terms
of the filtered error norm as well as localize the spikes
within a few percent of the Rayleigh length, indepen-
dent of the super-resolution factor. This is a weak
form of super-resolution.

When some spikes are closely spaced below the
Rayleigh length, only BP-BLOT can localize the
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(b) spikes at 25, 25.3`

Figure 5: Zoom-ins of the closely spaced spikes in
Fig.4(c).

spikes within a few percent of `. The performance
can be further enhanced by increasing the number
of Fourier data within the same bandwidth, moving
from the under-sampling to the full and even over-
sampling regimes (not shown).

Our numerical tests show that the super-
resolution factor and the Rayleigh index are not the
only factors at play. The minimum separation, the
range of spike values and overall configuration also
affect super-resolution results.
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