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Abstract

The Letter presents an analysis of the time reversal in independent-multipath Rayleigh-fading channels with N inputs (transmitters) and M

outputs (receivers). The main issues addressed are the condition of statistical stability, the rate of information transfer and the effect of pinholes.
The stability condition is proved to be MC � NeffB for broadband channels and M � Neff for narrowband channels where C is the symbol rate,
B is the bandwidth and Neff is the effective number (maybe less than 1) of transmitters. It is shown that when the number of screens, n − 1, is
relatively low compared to the logarithm of numbers of pinholes Neff is given by the harmonic (or inverse) sum of the number of transmitters
and the numbers of pinholes at all screens. The novel idea of the effective number of time reversal array (TRA) elements is introduced to derive
the stability condition and estimate the channel capacity in the presence of multi-screen pinholes. The information rate, under the constraints of
the noise power ν per unit frequency and the average total power P , attains the supremum P/ν in the regime M ∧ Neff � P/(νB). In particular,
when Neff � M � P/(Bν) the optimal information rate can be achieved with statistically stable, sharply focused signals.
 2006 Elsevier B.V. All rights reserved.

1. Introduction

Time reversal (TR) of waves has received great attention in recent years and been extensively studied for electromagnetic [1,
2] as well as acoustic propagation (see [3] and the references therein). A striking effect of time reversal in randomly inhomoge-
neous media is the super-resolution of refocal signals [4,5] which implies low probability of intercept and holds high potential in
technological applications such as communications [6–10].

An issue prior to super-resolution, however, is statistical stability, namely the question: How many antennas and how much
bandwidth does one need to achieve self-averaging in TR so that the received signals are nearly deterministic, independent of the
channel statistics? In this Letter we answer this question for independent-multipath Rayleigh-fading channels, with multiple inputs
and multiple outputs (MIMO), commonly used in wireless communication literature, see, e.g. [11]. We also introduce the novel
idea of effective number of transmitters to analyze the effect of multi-screen pinholes on stability and capacity.

In the MIMO-TR communication scheme as studied in [6,12], the M well-separated receivers first send a pilot signal to the N -
element time reversal array (TRA) which then uses the time-reversed version of the received signals to modulate the data symbols
and retransmit them back to the receivers. One of the main results obtained here is that the time reversal process is statistically
stable when

(1)MC � NeffB, for broadband channels,

(2)M � Neff, for narrowband channels,
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Fig. 1. MIMO broadcast channel.

where C(� 2B) is the symbol rate, B is the bandwidth and Neff is the effective number of transmitters (maybe less than one). In the
presence of (n − 1)-screen pinholes, we show that the effective number of transmitters is asymptotically the harmonic sum of the
number of transmitters and the number of pinholes of every screen when all these numbers are greater than 2n.

The LHS of (1) is the number of degrees of freedom per unit time in the constellation of input data-streams while the RHS
of (1) is roughly the number of degrees of freedom per unit time in the channel state information (CSI) received by TRA from
the pilot signals. The latter has to be larger than the former in order to reverse the random scrambling by the channel and achieve
deterministic outputs. The stability condition N � 1 for narrow-band channels or B � βc (the coherence bandwidth) for broadband
channels, when M is small and the pinholes are absent, have been previously discussed in [2,4,6,13,14].

In Sections 4 and 5.2, we analyze the information rate of the TR broadcast channel in the presence of noise. We show that the
optimal information rate R ∼ P/ν, under the power and noise constraints, can be achieved in the regime M ∧ Neff � P/(νB)

where ν is the magnitude of noise per unit frequency and P the average total power input. In particular, when Neff � M � P/(Bν)

the optimal information rate can be achieved with statistically stable, sharply focused signals.

2. TR-MIMO communication

First let us review the MIMO-TR communication scheme as described in [12] which is an example of broadcast channel [11].
The M receivers located at yj , j = 1, . . . ,M first send a pilot signal

∫
eiωtg(B−1(ω − ω0)) dω δ(x − yj ) to the N -element TRA

located at xi , i = 1, . . . ,N which then uses the time-reversed version of the received signal
∫

eiωtg(B−1(ω − ω0))H(yj ,xi;ω)dω

to encode a stream of symbols and retransmit them back to the receivers. Here H is the transfer function of the propagation channel
at the frequency ω from point y to x and g2(ω) is the power density at ω. Let H(ω) = [Hij (ω)],Hij (ω) = H(xi ,yj ;ω), be the
transfer matrix between the transmitters and receivers. The reciprocity implies that H(yj ,xi;ω) = Hij (ω) and H∗(ω) = H(−ω)

where ∗ stands for complex conjugation. Let us assume that g is a smooth and rapidly decaying function such as the Gaussian
function. Naturally the relative bandwidth B/ω0 is less than unity so that ω0 � 1 if B � 1. In this Letter we will assume B/ω0 � 1
to simplify the frequency coherence structure below (Section 3). We have chosen the time unit such that the speed of propagation
is one and the wavenumber equals the frequency.

The signal vector S = (Sj ) arriving at the receivers with delay L + t is then given by [12] (see also [4,15])

(3)Sj (t) =
W∑
l=1

M∑
i=1

mi(τl)

∫
e−iω(t−τl)g

(
ω − ω0

B

) N∑
k=1

Hjk(ω)H ∗
ik(ω)dω,

where mj(τl), l = 1, . . . ,W � ∞ is a stream of symbols intended for the j th receiver transmitted at times τl = lτ , τ > 0. In
vector notation, we have S = ∑W

l=1

∫
e−iω(t−τl)g(B−1(ω − ω0))HH†(ω)m(τl) dω where H† is the conjugate transpose of H and

m(τl) = (mj (τl)). Let us note that while all the TRA-elements are coordinated and synchronized the receivers do not know the
channel and cannot coordinate in decoding the total signal vector received. As a consequence, the multi-user interference arises and
can be a serious impedance to communications. An advantage of the time reversal scheme is the possibility to use the (statistical)
stability property to achieve the following asymptotic

∫
e−iω(t−τl)g

(
ω − ω0

B

) N∑
k=1

Hjk(ω)H ∗
ik(ω)dω ∼ Bδij e

−iω0(t−τl )F−1[g](B(τl − t)
)
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so that Sj (t) ∼ B
∑W

l=1 mj(τl)e
−ω0(t−τl)F−1[g](B(τl − t)) and each receiver receives the input symbols with little interference.

Here and below F−1 stands for the inverse Fourier transform.

3. Statistical stability

One of the main goals of the present note is to characterize the stability regime for the independent-multipath Rayleigh fading
channel in which Hij (ω) are independent CN (0, σ ), the zero-mean, variance-σ circularly symmetric complex-Gaussian random
variables and {Hij (ω)}i,j,ω are a jointly Gaussian process. The independent-multipath Rayleigh fading is an idealized model for
richly scattering environment, after proper normalization, when the spacings within the transmitters and receivers are larger than
the coherence length �c of the channel. In general, the coherence length is inversely proportional to the angular spread [11] and
sometimes can be computed explicitly in terms of physical properties of the channel [12]. For diffuse waves the coherence length
is known to be on the scale of wavelength [16,17].

We set the variance σ = O(1/(N ∨ M)) so that the average input power is no less than the average output power. The value of
σ would not change the conditions of statistical stability but will affect the discussion of information transfer in the next section.

Let us calculate the mean and the variance of the signals with respect to the ensemble of the channel. Let E denote the channel
ensemble average. For simplicity, we assume that |mi(τl)| = µ, ∀i, l. By the Gaussian rule for the calculation of moments we have

(4)ES = BNσm
W∑
l=1

e−iω0(t−τl )F−1[g](B(t − τl)
)
.

Let τ � (2B)−1 so that the summation in ES is B-uniformly bounded as W → ∞.
The statistical stability of the signals can be measured by the normalized variance of the signals at the receiver j

Vj (τn) = Vj (τn)

|ESj |2(τn)
, Vj (τn) ≡ E|Sj |2(τn) − ∣∣ESj (τn)

∣∣2
,

∀j, n and the time-reversed signals are stable when Vj (τn) → 0,∀j, n. Note that V−1
j (τl) is exactly the signal-to-interference ratio

(SIR) at receiver j .
Let βc be the coherence bandwidth of the channel such that

E
[
Hij (ω)H ∗

i′j ′(ω′)
] ≈ σf

(
ω0,

ω − ω′

βc

)
δii′δjj ′ ,

where f (ω0, ·) is a continuous, rapidly decaying function and f (ω0,0) = 1 (see [12,18] for a rigorous example). Here we have
used the fact that the relative bandwidth B/ω0 is small so that f is a function of ω0 and ω − ω′ only. Below we shall suppress the
argument ω0 in f . The coherence bandwidth βc is inversely proportional to the delay spread and hence the delay-spread-bandwidth
product (DSB) is roughly Bβ−1

c [11,12,18]. In the diffusion approximation βc is given by the Thouless frequency DBL−2 where
DB is the Boltzmann diffusion constant, equal to the energy transport velocity times the transport mean free path, and L the distance
of propagation [19,20].

The broadband, frequency-selective (BBFS) channel is naturally defined as having a large DSB, i.e. Bβ−1
c � 1. Since B < ω0,

ω ∈ [ω0 − B/2,ω0 + B/2] and −ω are separated by more than βc in a BBFS channel. On the other hand, B � βc corresponds to
the narrow-band, frequency-flat (NBFF) channel. For convenience in the subsequent analysis, we shall think of the NBFF channel
as the limit βc → ∞ and the BBFS channel as the limit βc → 0 while ω0,B are fixed. In either case, we have

(5)Vj (t) ≈ Nσ 2
M∑
i=1

W∑
l,l′=1

mi(τl)m
∗
i (τl′)e

iω0(τl−τl′ )
∫

dωdω′ e−i(ω−ω′)(t−τl )eiω′(τl−τl′ )g

(
ω

B

)
g∗

(
ω′

B

)
|f |2

(
ω − ω′

βc

)
.

Consider the NBFF channels first. We obtain by passing to the limit βc → ∞

Vj (t) ≈ Nσ 2B2|f |2(0)

M∑
i=1

∣∣∣∣∣
W∑
l=1

mi(τl)e
iω0τlF−1[g](B(t − τl)

)∣∣∣∣∣
2

.

In view of (4) the stability condition N � M for NBFF channels then follows easily. On the other hand, the BBFS channels
(βc → 0) yields

Vj (t) ≈ Nσ 2
M∑
i=1

W∑
l,l′=1

mi(τl)m
∗
i (τl′)e

iω0(τl−τl′ )
∫

dω′′ dω′ e−iω′′(t−τl )eiω′(τl−τl′ )g

(
ω′

B

)
g∗

(
ω′

B

)
|f |2

(
ω′′

βc

)

(6)≈ Nσ 2Bβc

M∑ W∑
mi(τl)F−1[|f |2](βc(τ l − t)

) W∑
′

m∗
i (τl′)e

iω0τ(l−l′)F−1[|g|2](Bτ(l − l′)
)
.

i=1 l=1 l =1
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Several observations are in order. First, due to τ � (2B)−1 the summation over l′ in (6) is convergent as W → ∞ uniformly in B .
Second, due to the term F−1[|f |2](βc(τ l − t)), there are effectively Cβ−1

c terms in the summation over l where C = τ−1 is the
number of symbols per unit time in each data-stream. As a result, the variance Vj ∼ Nσ 2BMCµ2 is independent of βc . It then
follows that Vj → 0 if and only if NB � MC for BBFS channels. The transition to the condition N � M for NBFF channels takes
place when B ∼ C, i.e. τ ∼ B−1.

The stability condition can be interpreted as follows: NB is the number of degrees of freedom in the CSI collected at the TRA per
unit time; MC is the number of degrees of freedom in the ensemble of messages per unit time; the stability condition NB � MC

says that in order to recover the input messages, independent of the channel realization, and thus reverse the random scrambling
by the channel, the former must be much larger than the latter. In light of this interpretation, the stability condition derived above
appears to be sharp.

A detailed, rigorous analysis of the MIMO-TR channel modeled by a stochastic Schrödinger equation, in the parabolic approxi-
mation of scalar waves, with a random potential is given in [12].

4. Rate of information transfer

In this section we discuss the information rate for a memoryless channel which is constructed out of the time-invariant channel
model analyzed in Section 3. The temporal dependence is introduced by drawing an independent realization from the Rayleigh-
fading ensemble of transfer matrices after each use of the channel, i.e. after each delay spread (or two if the time for channel
estimation is included). This is obviously an idealization but widely used in communications literature [21,22]. The coherence time
of the resulting ergodic channel model is then much longer than one delay spread. We assume as in standard practice that in addition
to the random channel fluctuations additive-white-Gaussian-noise (AWGN) is present at each receiver, that the input signal vector
is multivariate Gaussian and that the channel, the noise and the input signal are mutually independent.

For the Rayleigh-fading channel prior to adding noise, each frequency component of the time reversed signal Sj in (3)

M∑
i=1

N∑
k=1

mi(τl)g

(
ω − ω0

B

)
Hjk(ω)H ∗

ik(ω)

=
N∑

k=1

mi(τl)g

(
ω − ω0

B

)
Hjk(ω)H ∗

jk(ω)

︸ ︷︷ ︸
N -degree central χ2 r.v.

+
∑
i �=j

N∑
k=1

mi(τl)g

(
ω − ω0

B

)
Hjk(ω)H ∗

ik(ω)

︸ ︷︷ ︸
N(M−1) i.i.d. zero-mean r.v.s

is a sum of a central χ2 random variable with N degrees of freedom and N(M − 1) i.i.d. mean-zero random variables. This is
due to the assumption that different entries of the transfer matrix are mutually independent zero-mean Gaussian random variables.
Therefore, for N � 1 the interference statistic is approximately Gaussian, by the Central Limit Theorem. More generally, after
synthesizing all the available frequencies, the interference statistic becomes approximately Gaussian if NBβ−1

c � 1 which is always
the case for the BBFS channels. In a BBFS (respectively, NBFF) channel, NBβ−1

c (respectively, N ) is the number of independent
subchannels from TRA to each receiver.

Moreover, each frequency component of Sj has the mean

(7)E

[
M∑
i=1

N∑
k=1

mi(τl)g

(
ω − ω0

B

)
Hjk(ω)H ∗

ik(ω)

]
= Nσg

(
ω − ω0

B

)
mj(τl),

which exhibits the simple input–output relation: The ω-component of the input signal for the j th receiver is mjg(ω) and the
received signal component is Nσmjg(ω) corrupted by the noise and interference which for N � 1 is approximately Gaussian.
Since the M receivers operate independently of one another, the total time-reversal broadcast channel consists of M independent
subchannels in parallel each of which has the above input–output relation. Thus the total information rate is the sum of those of
the M subchannels from TRA to individual receivers. And, in view of the simple input–output relation, each subchannel can be
viewed as a single-input–single-output (SISO) linear filter channel corrupted by (approximately) Gaussian noise/interference for
which Shannon’s theorem is applicable.

According to Shannon’s theorem [23] the ergodic capacity (in nats per unit time and frequency) of a SISO linear filter channel is
ln (1 + SINR) where SINR, the signal-to-interference-and-noise ratio at each receiver, is given by the harmonic sum of the SIR, the
signal-to-interference ratio and SNR, the signal-to-noise ratio, i.e. SINR = (SIR−1 + SNR−1)−1. For extension of Shannon’s result
to the MIMO setting, see [21,22].

Analogous to the NBFF channels in Section 3, SIR(ω) = V−1
j ∼ N/M , independent of µ and ω. Let ν be the noise power,

per unit frequency, at each receiver. Suppose the average transmission power is constrained to P and all the transmit and receive
antennas are identical.

Since the value of σ would affect SNR (but not SIR) we discuss the two cases N � M and N < M separately.
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Case 1. N � M . In this case, σ = N−1 and in view of (7), SNR(ω) = µ2/ν where µ = |mj | can be related to the total power
constraint P as µ2M ∼ P/B since the average input power per unit frequency is

N∑
k=1

M∑
i=1

∣∣mi(τl)
∣∣2|g|2(B−1(ω − ω0)

)
E

∣∣Hik(ω)
∣∣2 ∼ MNσµ2 = Mµ2.

Thus SNR(ω) ∼ P/(νBM). Therefore the total channel capacity (in nats per unit time) is roughly given by

(8)BM ln

[
1 + 1

M

(
1

N
+ νB

P

)−1]
.

Now we ask the question: What is the maximal rate at which a TRA, with fixed number of elements N , fixed average
total power P and fixed noise level (per frequency) ν, can transfer information if there is no limitation to the number of
receivers M and the bandwidth B?

Expression (8) can be optimized at the limit M � P/(νB) to yield the optimal information rate of P/ν which is linearly
proportional to the power. We see that the simplest strategy for optimizing the information rate of a given TRA under the
power and noise constraints is to enlarge the bandwidth B as much as possible. And if we can satisfy N � M � P/(νB)

then we can achieve stability as well as the optimal information rate.
Consider the thermal noise power ν = kBT where kB is the Boltzmann’s constant and T the temperature. Then the

above result implies that the energy cost per nat is P/R ∼ kBT which is consistent with the classical result of minimum
energy kBT requirement for transmitting one nat information at temperature T [24,25].

Case 2. N � M . In this case, σ = M−1 and (7) implies that SNR ∼ N2µ2/(M2ν) where µ is related to P by µ2 = P/(NB).
Hence SNR ∼ NP/(M2νB). With SIR ∼ N/M and Shannon’s theorem, the channel capacity is roughly

(9)BM ln

(
1 + N

M

(
1 + MBν

P

)−1)
,

which achieves the optimal rate P/ν in the regime N = M � P/(Bν). On the other hand, for M � P/(Bν), the informa-
tion rate becomes BM ln(1 + N/M) � BN which is much smaller than P/ν.

Therefore we conclude that under the power and noise constraints the condition for the optimal information rate P/ν

is N � M � P/(Bν), which can be achieved by sufficiently large bandwidth, whereas the additional condition N � M ,
which, sufficient for the Gaussian approximation to the interference statistic, would also guarantee stability.

Before ending this section, let us compare the capacity in the conventional, non-TR MIMO channel as calculated in
[21,22,26,27]. Consider the non-TR single-user channel with the M transmit antennas (on the right of Fig. 1) which have
no channel knowledge and the N(� M) receive antennas (on the left of Fig. 1) as the single user which has perfect CSI.
This is, of course, the reciprocal case of the TR broadcast channel. In this case, SNR ∼ P/(MBν) and it is shown in [22]
and [21] that the ergodic capacity of the single-user narrowband Rayleigh-fading channel scales like BM ln SNR at high
SNR which can be recovered from (8) by imposing the additional constraint M � P/(νB) � N . And as we learn from the
discussion of case 1 above, this is not the regime for achieving the optimal information rate P/ν.

The same results as discussed in this section are obtained for the parabolic Markovian channel model in [12].

5. Pinhole effect

Pinholes are degenerate channels that can occur in a wide family of channels, outdoor as well as indoor, see Figs. 2 and 3. While
preserving the co-channel decorrelation, pinholes have been shown to severely limit the degrees of freedom and reduce the channel
capacity [28–30]. In this section, we introduce the notion of effective number of TRA elements to analyze the multi-screen pinhole
effect on TR in Rayleigh fading.

Let us begin with the simplest case of single-screen pinholes as illustrated in Fig. 2. Let h(1)(ω) be the N ×K transfer matrix from
the TRA to the pinholes and h(2)(ω) the K × M transfer matrix from the pinhole to the M receivers at frequency ω. The combined
channel can be described by H(ω) = h(2)(ω)h(1)(ω) = [∑K

k=1 h
(2)
ik (ω)h

(1)
kj (ω)] in which h

(1)
kj (ω) and h

(2)
ij (ω) are assumed to be

independent CN (0, σ1) and CN (0, σ2), respectively, and {h(1)
ij (ω),h

(2)
ij (ω)}i,j,ω, are jointly Gaussian processes. To prevent the

average input power from being less than the average output power we set E|Hij |2 = Kσ1σ2 = (N ∨ M)−1, ∀i, j . Note that the
entries of H are in general not independent r.v.s.

As before we assume the frequency coherence structure

(10)E
[
h

(k)
ij (ω)h

(k)∗
i′j ′ (ω′)

] ≈ σkf

(
ω − ω′

βc

)
δii′δjj ′ , ∀k,
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Fig. 2. Single-screen pinholes. Fig. 3. Multi-screen pinholes.

where, for simplicity, f and βc are taken to be independent of the screens. Straightforward calculations with the Gaussian rule show
that the mean signal is

E
[
Sj (t)

] = BNKσ1σ2

W∑
l=1

mj(τl)F−1[g](B(τl − t)
)

and its variance is

Vj (t) = σ 2
1 σ 2

2 NK

W∑
l,l′=1

eiω0(τl−τl′ )
∫

dωdω′ e−iω(t−τl)eiω′(t−τl′ )g

(
ω

B

)
g∗

(
ω′

B

)
|f |2

(
ω − ω′

βc

)

(11)×
(

mj(τl)m
∗
j (τl′) + N

M∑
i=1

mi(τl)m
∗
i (τl′) + K|f |2

(
ω − ω′

βc

) M∑
i=1

mi(τl)m
∗
i (τl′)

)
.

In view of the observations following Eq. (6) we have the estimate Vj (t) ∼ B2KN(MN + MK + 1)σ 2
1 σ 2

2 |µ|2 for the NBFF
channels and Vj (t) ∼ BCKN(MN + MK + 1)σ 2

1 σ 2
2 |µ|2 for the BBFS channels. As in (6) the variance does not depend on the

coherence bandwidth βc . Therefore we obtain the normalized variance of the signal to the leading order (N,K � 1)

Vj ≈
{

M(N−1 + K−1), for the NBFF channels,

MCB−1(N−1 + K−1), for the BBFS channels.

The result suggests the notion of effective number of TRA elements given by Neff = NK(N + K)−1, namely the harmonic sum of
N and K , so that Vj ≈ MCB−1N−1

eff for the BBFS channels and Vj ≈ MN−1
eff for the NBFF channels. For N,K � 1 the number

of statistically independent paths is roughly Neff × M .
The previous case without pinholes corresponds to the limiting case K � N . For a fixed K , however, the previous benefit of

stability with large number of TRA elements (N � 1) disappears. The multiple antennas in TRA are essentially screened out by
the pinholes and the effective number of TRA elements becomes K .

5.1. Multi-screen pinholes

The same analysis can be applied to channels with (n − 1) screens of pinholes such as illustrated in Fig. 3. Let Kk , k =
1, . . . , n − 1 be the number of kth screen pinholes. Let h(k) be the transfer matrix for the kth stage channel whose entries are
independent CN (0, σk) and let the transfer matrices of different stages be mutually independent. Again, in order for the average
input power to be no less than the average output power we set

(12)E|Hij |2 = K1 · · ·Kn−1σ1 · · ·σn = (N ∨ M)−1.

The condition of statistical stability, however, is independent of the values of σk , k = 1, . . . , n.
As noted previously the normalized variance does not depend on βc and its order of magnitude is determined solely by the

same-frequency moments which will be the focus of the subsequent calculation. The calculation of the mean is straightforward:
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Fig. 4. Separable diagram: ∗ means complex conjugation; the top indices are unprimed and the bottom indices are primed.

E(HH†m)j = NK1 · · ·Kn−1σ1 · · ·σnmj . Let us analyze the second moment of entry a

E
(
HH†m

)
a

(
HH†m

)∗
a

= E

{ ∑
i1,...,in

j2,...,jn+1

h
(n)
ain

h
(n−1)
in,in−1

· · ·h(2)
i3,i2

h
(1)
i2,i1

h
(1)∗
j2,i1

h
(2)∗
j3,j2

· · ·h(n−1)∗
jn,jn−1

h
(n)∗
jn+1,jn

mjn+1

×
∑

i′1,...,i′n
j ′

2,...,j
′
n+1

h
(n)∗
ai′n

h
(n−1)∗
i′n,i′n−1

· · ·h(2)∗
i′3,i′2

h
(1)∗
i′2,i′1

h
(1)

j ′
2,i

′
1
h

(2)

j ′
3,j

′
2
· · ·h(n−1)

j ′
n,j ′

n−1
h

(n)

j ′
n+1,jn

m∗
j ′
n+1

}
.

According to the Gaussian rule for computing moments, the above expression can be represented by 2n diagrams of 4n vertexes
and 2n edges. We distinguish two types of edges: the arcs, connecting (un)primed indices to (un)primed indices, and the ladders,
connecting unprimed indices to primed indices, see Fig. 4.

When a new screen of pinholes, represented by h(n+1), is added, the number of diagrams is doubled: One half of them contain the
ladders connecting h

(n+1)
ain+1

to h
(n+1)∗
ai′n+1

and h
(n+1)∗
jn+2,jn+1

to h
(n+1)

j ′
n+2,j

′
n+1

while the other half contain the arcs connecting h
(n+1)
ain+1

to h
(n+1)∗
jn+2,jn+1

and h
(n+1)∗
ai′n+1

to h
(n+1)

j ′
n+2,j

′
n+1

. Straightforward calculation with (10) yields the following rule: A new pair of arcs add to diagrams with

outermost arcs the K2
n (multiplicative) factor and diagrams with outermost ladders the Kn/M factor; on the other hand, a new pair

of ladders add to diagrams with outermost ladders the K2
n factor and diagrams with outermost arcs the KnM factor.

That is, the diagrams that correspond to the highest power in K1,K2, . . . , have the least number of edge-type alternating.
Hence for K1, . . . ,Kn−1 � 2n � N the leading order term in the variance corresponds to the diagram with all ladders and is of
order K2

1 · · ·K2
n−1NM while the square of the mean corresponds to the diagram with all arcs and is of order K2

1 · · ·K2
n−1N

2. The
stability condition thus remains the same as in the case without pinholes.

Let us consider the more interesting regime in which N,K1, . . . ,Kn−1 � 2n. We claim that to the leading order the normalized
variance of the signal is given by Vj ≈ MCB−1N−1

eff where the effective number of TRA-element Neff is given by

Neff = (
N−1 + N−1

p

)−1
, Np =

(
n−1∑
j=1

K−1
j

)−1

,

namely the harmonic sum of N,K1, . . . ,Kn−1. We sketch the proof here. The leading order terms in the variance after expectation
correspond to the separable diagrams in which the arcs are nested and are flanked by the ladders, Fig. 4. Except for the diagram
with all ladders, the separable diagrams all have the innermost arcs connecting h

(1)
i2,i1

to h
(1)∗
j2,i1

and h
(1)∗
i′2,i′1

to h
(1)

j ′
2,i

′
1
, which give rise to

the factors N2 (an extra N than otherwise), and, except for the diagrams with all ladders or all arcs, the separable diagrams change
the edge-type exactly once (from arc to ladder). When N is comparable to K1, . . . ,Kn−1, the contributions from the separable
diagrams are comparable to that from the diagram of all edges.

Collecting the terms corresponding to the separable diagrams we have

µ2NM

n∏
i=1

σ 2
i

n−1∏
j=1

Kj

(
n−1∏
k=1

Kk + N

n−1∑
i=1

K1 · · · K̂i · · ·Kn−1

)
,

where K̂i means that Ki is absent in the product. Dividing it by N2 ∏n−1
i=1 K2

i and accounting for the temporal aspect of transmission
as in the observations following Eq. (6) we obtain the claimed result.

5.2. Information rate with pinholes

The notion of the effective number of TRA elements is useful in estimating the channel capacity as well as the stability condition
in the presence of pinholes since SIR is given by Neff/M with C = 2B .
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As the (spatial) subchannel from TRA to each receiver is the sum of NK1K2 · · ·Kn−1 paths which are not necessarily indepen-
dent, the simplest way for realizing Gaussian interference statistic is to assume large degrees of freedom in frequency Bβ−1

c � 1 so
that each spatial subchannel gives rise to a sum of Bβ−1

c roughly i.i.d. r.v.s. This works only for the BBFS channels. For the NBFF
channels, we assume the worst-case scenario Kmin = min [N,K − 1, . . . ,Kn−1] � 1 because each subchannel can be regrouped
into a sum of NK1K2 · · ·Kn−1/Kmin terms each of which is a sum of Kmin i.i.d. r.v.s.

Due to the normalization (12) the input–output relation in (7) and the discussion in Section 4 (cases 1 and 2) remain valid if N

is replaced by Neff. In particular, the same optimal information rate P/ν is achieved in the regime Neff ∧ M � P/(Bν).
As analyzed before, when the condition N,K1, . . . ,Kn−1 � 2n is satisfied, Neff is the harmonic sum of N,K1, . . . ,Kn−1

and therefore we have the estimates: Kmin/n � Neff � Kmax/n where Kmin and Kmax are the minimum and maximum of
N,K1, . . . ,Kn−1, respectively. On the other hand, when N,K1, . . . ,Kn−1 � 2n, diagrammatic analysis shows that Neff dimin-
ishes exponentially with the number of screens, making the alternative regime Neff � P/(Bν) much more likely and resulting in
low information rate BNeff (cf. case 2, Section 4). In other words, a long chain of independently fluctuating media separated by a
series of screens of sparse pinholes is detrimental to time reversal (and perhaps any) communication systems.

6. Conclusions

We have analyzed the time reversal propagation in independent-multipath Rayleigh-fading MIMO-channels with or without
pinholes. The focus of the analysis is the stability condition, the multiplexing gain and the multi-screen pinholes effect. The main
results are (i) that the stability holds when MC � NeffB for the BBFS channels and M � Neff for the NBFF channels where
Neff is the effective number of TRA-elements, (ii) that the optimal information rate P/ν under the power and noise constraints is
achieved in the regime Neff ∧ M � P/(Bν) and (iii) that the effective number of TRA-elements is asymptotically the harmonic
sum of TRA-elements and the numbers of pinholes on all n − 1 screens when the numbers of TRA-elements and the pinholes of
each screen are greater than 2n. The notion of the effective number of TRA elements is introduced for the first time and shown to
be useful in analyzing stability and capacity in the presence of pinholes.
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