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» Two imaging geometries: paraxial and scattering.
» Theoretical benchmarks

» Subspace methods: MUSIC, ESPRIT.

» General CS techniques with unresolved grids.

» Coherence bounds for SIMO

» Nonlinear inversion with multiple-shot SIMO

» Extended targets.

» Conclusion



Fundamental equations

Helmholtz equation: monochromatic wave u
Au(r) +w?(1+v(r)u(r)=0, reRY d=2,3

where v describes the medium heterogeneities.
Data: the scattered field u® = v — u' governed by

AU+ DU = —wvu.

Lippmann-Schwinger integral equation:

uB(r) = w2/1/(r’) (' () + u3(r)) G(r,¥)dY

where

eiw|r7r/|

G(r,r’):{_ ol d=3
iHDWlr —v)), d=2.



Imaging geometry
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(a) Full view: paraxial (b) Side view: scattering

» Paraxial geometry: With r = (x, z), ¢ = (x/,0), we have

G(X, x/) _ Ceiw|x|2/(2zo)e—iwx~x’/zoeiw|x’\2/(2zo)
Fourier
—
(1) = wlel /(220)/ e/ (220) e /20 gyt

masked object
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» Scattering geometry: incident direction
eiw|r\

S _ A 1 ~ L
)= @ (A(”"”O (!I)) =

where A is the scattering amplitude

deficient
A A w? / i / —iwr’ gt
A(f,d) = el ) v(f) (u'(F) + u*(r)) e T dr

masked object

» Nonlinear inversion.

» Born approximation: drop u®.



Point objects and sensors

N : :
Sensors point objects

aperture= WlE location: p;
amplitude: ¢;

far field

» Point objects located at p; € [0,1],j =1, ..., s.
» Signal received at g, € [0, W], k=1,...,N
— S cie2Tiakp + e
Yk Z_/—l ] k

measurement noise

signal received by the kth sensor

> Resolution Length (RL) = (Aperture) ' = 1/W: Sidelobes of
two points (Abbe 1873, Rayleigh 1879)



Discrete signal model: y = ®x + e

v

v

v

Discretization of the continuum system: replace p; by the
closest point in {m/M : m=0,...,M —1}.

T A .

0 p1 p2 P3 2 1

Set xm = ¢j if m/M is the closest point to some p; and zero
otherwise.

Sensing matrix ® € CV*M with Ppm = e—2miqem/M

e = measurement noise +gridding (model) error

Sampling theorem for unit-bandlimited, M-periodic signals:

1.

2.

The discrete samples at gx = 0, .., M — 1 uniquely determine
the signal.

With noise/error, continuum sampling is not equivalent to
Nyquist sampling.



Resolution

No o s b=

Minimum separation

Noise stability

Number of objects

Number of measurement data
Computational complexity
Flexibility of measurement schemes

etc...



Resolution of optimal recovery (Donoho 1992)

» Minimax error

E=infsup||X — x|/, st. [®x—®%| <e.
X X

» No concrete algorithm.

» Full continuum Fourier measurement: t € [0, W].

» Fine grid spacing 1/F RL where F = # grid points per RL
(the refinement factor).

» Spike train but sparsity not explicit.

» Uniqueness requires minimum separation > 2 RL.

» Stability if minimum separation > 4 RL.

» Demanet & Nguyen 2015: For ||x|lo = s with minimum
separation = grid spacing 1/F RL
E ~eF?~1



Gridless L1-minimization

» Candes & Fernandez-Granda 2013, 2014:
min [|[X — x[]1, |ly — ®x|1 <e

Minimum separation > 4 RL

Full continuum Fourier measurement
. Sparsity not explicit.

. Stability: ||X — x||1 < ceF?.

> wN e

» Tang, Bhaskar, Shah & Recht 2013

1. Minimum separation > 4 RL.
Noiseless data € = 0.

O(s) partial Fourier measurement.
Uniqueness of L1-minimization.

N



Single-snapshot MUSIC (Schmidt 1981)

» Full discrete measurement: g = (k—1),k=1,.... N
» Hankel matrix

y1 Y2 cee YN—L+1
Y2 ¥ s YN—L42

H = . . . . — ¢Lx(¢N—L)T
yo Ye+1r o o--. YN

X = diag(xy,...,xs)

with Vandermonde matrix

[ 1 1 ... 1 i
e—27rip1 e—27rip2 o e—27rip5
CDL _ (ef27rip1)2 (e727rip2)2 o (ef2ﬂips)2
(6727rl:p1)L71 (6727r/:p2)L71 ) ) (ef27ri.p5)Lfl

» With L>s+1and N—L+1>s, Ran{H} = Ran{®’} are a
proper subspace (the signal space) of CF.



MUSIC (continued)

v

Noise subspace = Orthogonal complement of the signal space.

S = the peaks of J(p) = (Pot(p)) 1,
P = projection onto the noise space.

v

v

SVD to identify the signal and noise subspaces.

v

Perfect recovery with noiseless data N > 2s and without
minimum separation constraint.

v

Stability of support recovery with minimum separation > 2 RL
by MUSIC (Liao & F. 2016) and ESPRIT (F. 2015).



Discrete Ingham inequality

Control the largest and least singular values

Theorem
If S satisfies the separation condition

, 1 27\~ 3
6= min d(pj, pr) > z(l - T>
then |®Lz|13 2 2 4
B L5 e~ 1)
and

[&t2]]3
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Noise stability

Corollary

For L = [%] and the separation condition

> 204 = (-

where c; < 3¢p.

Condition number of H < 3xmax/Xmin
if the minimum separation is slightly greater than 2 RL



Gridless recovery by MUSIC/ESPRIT

Reconstruction of 15 objects separated by 3-4 RL with 10% NSR.

ESPRIT: new algorithm with simple SYD MUsIC
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(a) ESPRIT: ux(S,S) =0.057RL  (b) MUSIC: ux(S,S) = 0.1RL.

Hausdorff metric of support error is often a small fraction of 1 RL



MUSIC/ESPRIT:

object separation

of 2-3 RL
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(a) Success rate versus NSR

Success if Hausdorff metric is less than 1 RL. Significant error can be tolerated by MUSIC/ESPRIT,

(b) Average HM (in the unit of RL) versus NSR



Superresolution: separation < 1 RL with noisy data
Log-relative error vs. NSR and separation
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» Recall: Noise ~ (minimum separation)?~! (Demanet &
Nguyen 2015)
» MUSIC: empirical power law with the following exponents
e(2) =36, e(3)=6, e(4) =84, eb)=11
which are slightly greater than 2s — 1.



Gridless compressed sensing

AN .

Gridless or unresolved fine grids.

Sparse measurement under sparsity constraint.
Versatility: random, non-Fourier measurements.
Noise Stability.

Resolution.



Gridding error vs mutual coherence

» Refinement factor

_ _1RL  _ . :
F= arid spacing — # grid points per 1 RL

> Pairwise coherence: the normalized scalar product of

(e 279, and (e 2rien)

coherence versus the radius of excluded band

e relatve gricing error in 100 trals

05 1 5 2 5 w0 95 a0 o
radius of excluded band (unitRayleigh Lengt)  relinementiaciorF

(a) Average pairwise coher- (b) Gridding error
ence versus |x; — x2|

> Relative griding error inversely proportional to F.
» Mutual coherence p =~ 0.996 for F = 20.







CS with F = 50

b

(a) OMP (b) L1-min

minimum se paration > 3 RL, SNR = 20



Post-processing of L1-min

(a) hard thresholding




MUSIC with joint sparsity CS (F. 2011)

scatterers scattered wave
incident wave

scallerered wave

General form: Y = dXVU*,

> ®: re-propagation matrix

v

v

V: columns represent different illuminations.

v

CS with joint sparsity.



CS MUSIC (continued)

v

Support-indexed RIP: for all z supported on the set S

(1= 05)lzl3 < ll*z]3 < (1 +65)]1213

v

For any set K, |K| < k, we have the trivial bound

5 < (k= 1)u(®k).

v

For ¢ = tolerance of support error and S;=/¢-neighborhood of
S. define

%5 = 9 05

6?, 5;5 determine the noise stability of support recovery of
accuracy /.

v



CS MUSIC (continued)

Theorem (F. 2011)

For some explicitly defined algebraic functions f and g,

XIH X
C<g (a,aﬁ,a_ij)

Xmin Xmin

implies the thresholding rule © is accurate up to ¢:

5g@:{J>f< € )}gsg.
Xmin

Minimum separation > 2¢ = O(1) RL = stability.

O(s?) noisy incoherent measurement

v

v

v

Advantages: simple, versatility, stability, resolution.

v

Disadvantages: Need (s times) more data than CS theory.



Coherence band

Coherence band: Let 1 € (0,1). Define the 7-coherence band of
Column k to be the set

By(k) = {i | u(i, k) > n},
and the n-coherence band of the column set S to be the set
By(S) = UkesBy(k).
Double coherence band:

By, (By(k)) = Yjes, k) By ()
By(By(S)) = Ukes B (k)

B (k) :

BY(S) =



Coherence band

coherence versus the radius of excluded band
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Localized coherence band has a simple physical interpretation.



Technique |: Band exclusion

Idea: exclude the double coherence band of recovered objects

Example:

exact
recovered \

X
2RL
e
* @

2RL




Band-excluding OMP (BOMP)

Algorithm 1. BOMP

Input: ®,y, 5,7 >0
Initialization: X =0,r° =y and S° =0
Iteration: Forn=1,...,s
1) imax = argmax; |[(r"=1, &(:, )|, ¢ B (S"1)
2) $" = S" 1 U {imax}
3) x" = argmin, |[®z — y||2 s.t. supp(z) € S”
4) r" =y — ox"
Output: x°.




Theorem (F. & Liao 2012)
Let x be s-sparse and 11 > 0 be fixed. Suppose that

B,() N BAG) = 0. i) € supplx),
)Xrnax 5||e||2
Xmin 2Xmin

n(5s — 4 <1

where Xmax = Maxy |Xk|,  Xmin = Ming |xk|. Let X be the BOMP
reconstruction. Then every nonzero component of X is in the
n-coherence band of a unique nonzero component of x.

recove

exact

» compression N ~ s2x

aX/ mlIl

» minimum separation < 3 RL N

» support accuracy < 1 RL




Technique Il: Local optimization (LO)

Algorithm 2. Local Optimization (LO)

Input:®,y,n > 0,5% = {ir,..., i}
Iteration: Forn=1,2,.... k
1) x" = arg min, |[|[®z — y||2
supp(2) = (5™ "\ {in}) U Link o € By({in})
2) §" = supp(x")
Output: Sk

» Residual reduction

» Efficient, local computation

» Performance guarantee: does not ruin
N the support recovery.




Locally Optimized BOMP (BLOOMP)

Algorithm 3. BLOOMP

Input: ®,y, 5,7 >0
Initialization: X =0,r° =y and S° =0
Iteration: Forn=1,....s
1) iinax = argmax; |(r"~1, a7y, i ¢ B (571
2) S" = LO(S" 1 U {imax})
3) x" = argmin, |[®z — y||2 s.t. supp(z) € S”
4) r" =y — ox"
Output: x°.







BLO-based CS algorithms

> Greedy
BLO Subspace Pursuit
BLO CoSaMP
BLO lIterative Hard Thresholding
> L1-min
BP-BLOT constrained L; minimization
Lasso-BLOT L, regularization
» BLOOMP outperforms in noise stability and dynamic range.

v

L1-BLOT outperforms in sparsity of measurement (no proof).



Performamce comparison with sparse measurement

success probability versus SNR when dynamic range = 1 success probability verus dynamic range when SNR = 33
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Figure: Success probability versus (left) SNR for dynamic range 1 and

(right) dynamic range for SNR = 33.



Performance comparison with full
discrete/continuum Fourier measurement
Objects separated between 4 RL and 5 RL.

Distance (unit:RL) versus NSR Distance (unit:RL) versus NSR
o 3.5[ ——SDP a —e—SDP
s —=— SDP with BET S 35/| —=— SDP with BET
b4 3~ BLOOMP o —+—BLOOMP
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(a) Dynamic range = 1. Average running time for (b) Dynamic range = 10. Average running time
SDP and MUSIC is 20.3583s and 0.3627s, respec- for SDP and MUSIC is 20.5913s and 0.3661s, respec-
tively, while the average running time for BLOOMP tively, while the average running time for BLOOMP is
is 6.3420s (F = 20). 6.2623s (F = 20).

MUSIC outperforms BLOOMP when separation drops below 3 RL.



Resolution in scattering geometry

scatterers scattered wave
incident wave

scatterered wave

v

Data: scattering amplitude

masked object

w2

A(f,d) = 2 /. () (u'(F) + u3(r)) e dr’

deficient

Single frequency with ¥ € S~ : deficient in dimension.

v

v

Longitudinal resolution vs transverse resolution

v

Shadowing



2D Single-Input-Multiple-Output (SIMO)

» SIMO: One transmission and N receptions = {¥;}.
» Discretize the domain into a unresolvable fine grid {r} }.
» & = [e~™"¥]: dimensionally deficient Fourier measurement.

Let / < 1 RL be the fine-grid spacing and f® the density function
of reception.

Theorem (F. 2010)

a . csupy {|F(0)],]|5(0)]}

tpg < +
P4 VN V1+wlp—q

with high probability.

» Resolution = O(w™1); decay power 1/2.
> Recall: n(5s — 4)Xmax 3 € <]

Xmin Xmin




3D SIMO

Theorem (F. 2010)

c1 n C25Up9{‘fs(9)’a %fs(ﬁ)l}

<
ea S N 1+wiip—q
with high probability.
» Resolution = O(w™1!); decay power =1 .

» Recall: 17(55—4)%_%5 € 1

2 Xmin




Nonlinear inversion with point objects

> Masked object v(¢') (u'(¢') + u®(r)) shares the same support.
» Multiple shots: masked objects F = [fy, ..., f,] of joint sparsity

G=0¢F+E

where G = [g1, ..., 8n] is the data vector and E represents
noise.



BLOOMP with joint sparsity

Algorithm BLOOMP with joint sparsity

Input: ®41,....9,,G,n >0
Initialization: F® =0, RO =Gand S°=10
Iteration: For k =1,.
1) imax = arg max; ZJ 1 JT,Jk Y,i¢ Bf,z)(S"—l).
2) Sk = JLO(S* 1 U {imax})-
3) [ff, ..., F5] = arg miny [|[®1hy, ..., ®,h,] — G|[F s.t. Ujsupp(h;) CS¥
4) [ri(a ) rf;] =G - [q)lffa ) (anll:]
Output: F, = [f;,...,f3

> Masked object = object:

n
— ; 2res iy, _ £5]2
V. = argmin El [(w=Tf; + uj)v — F715.
J:

where T =[(1—6;)G(rj,r)]



Inverse Born scattering with Zernike basis (F. 2015)
» FormeZ,neN, n>|m| and n— |m| even,
V' (x,y) = R (p)e™, x®+y* <1

where

m B 1 d 2 ntlml oy oolm
Ri'(p) = (i {d([ﬂ)} (A (- 1)

are n-th degree Zernike polynimials, R7"(1) = 1 for all
permissible values of m, n.

> Sparser than Bessel-Fourier or Chebyshev-Fourier expansion
(Boyd and Yu 2011, Boyd and Petschek 2014).

» Born approximation with plane-wave incidence: s = ¥ — d
Resolution = O(w™1); decay power = 1



Conclusion

» Compressive imaging in the continuum.

» Resolution w.r.t. noise, number/complexity of objects and
measurement data.

> Versatility of reconstruction schemes w.r.t. measurement
schemes: MUSIC, BLO-based techniques etc.

» Point vs. extended objects.

> Multiple vs. Born scattering.
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