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I Subspace methods: MUSIC, ESPRIT.

I General CS techniques with unresolved grids.
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I Extended targets.
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Fundamental equations
Helmholtz equation: monochromatic wave u

∆u(r) + ω2(1 + ν(r))u(r) = 0, r ∈ Rd , d = 2, 3

where ν describes the medium heterogeneities.
Data: the scattered field us = u − ui governed by

∆us + ω2us = −ω2νu.

Lippmann-Schwinger integral equation:

us(r) = ω2

∫
ν(r′)

(
ui(r′) + us(r′)

)
G (r, r′)dr′

where

G (r, r′) =

{
e iω|r−r′|

4π|r−r′| , d = 3
i
4H

(1)
0 (ω|r − r′|), d = 2.



Imaging geometry

Incident wave

object

Diffraction pattern

When the illumination field is only partially coherent and described by a mutual optical intensity
J , the di�raction pattern takes the form |F (ei2⇥!)|2 =

�
n J(n)Cf (n)e�i2⇥n·! where J is typically

a Gaussian function [101]. The presence of a mutual optical intensity does not a�ect the issue of
uniqueness of solution but can make the problem more susceptible to noise, especially when J is
narrowly concentrated, corresponding to highly incoherent illumination.

With the standard oversampling the phase problem amounts to recovering the object from its
autocorrelation. However, the autocorrelation function Cf does not uniquely determine the object
f .

First there are global, obvious ambiguities that yield the same di�raction pattern: global phase
(f(·) �⇤ ei�f(·)), spatial shift (f(·) �⇤ f(· + n)) and conjugate inversion (twin image: f(·) �⇤
f((N1, N2) � ·)) which are called the trivial associates. Then there are hidden, nontrivial ambi-
guities which involve conjugate inversion of some, but not all, of nontrivial (i.e. non-monomial in
z and z�1) irreducible factors of the z-transform F (z), the analytic continuation of the Fourier
transform defined on the unit torus to all z = (z1, z2) ⌅ C2. The twin image is the special case
where all factors undergo the conjugate inversion.

From the works of Bruck, Sodin [9], Bates [1, 2] and Hayes [64, 65] we know that the nontrivial
ambiguities are rare (“almost all” polynomials of two or more variables have no nontrivial factors)
but the trivial ones are inevitable. From Fienup’s pioneering works [54–58] we also learn that the
object can be recovered reasonably well by enforcing positivity and/or a “good” support (e.g. tight
support) constraint. The numerical problems (stagnation, erroneous reconstruction etc) due to
lack of a good support constraint are often attributed to the existence of many local minima due
to non-convexity of the Fourier intensity constraint.

Since a good support constraint may be unavailable, this project seeks an alternative approach.
We intend to work exclusively with the object value constraint such as positivity or the sector
condition which constrains the phases of {f(n)} to a proper sub-interval (called sector) of (�⇥,⇥]
(see extension in Section 5). For example, in the X-ray spectrum most object transmission functions
have positive real and imaginary parts [75] and hence satisfy the ⇥/2-sector constraint (the first
quadrant of the complex plane).

To fully utilize the object value constraint we introduce a random mask in the Fourier intensity
measurement (see Fig. 1).
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Mask e�ect is multiplicative and a masked measurement produces the di�raction pattern of a
masked object of the form

g(n) = f(n)µ(n)
2

(a) Full view: paraxial

scatterered wave

scatterers

incident wave

scattered wave

(b) Side view: scattering

I Paraxial geometry: With r = (x, z0), r′ = (x′, 0), we have

G (x, x′) = Ce iω|x|
2/(2z0)e−iωx·x′/z0e iω|x

′|2/(2z0)

us(r) = ω2e iω|x|
2/(2z0)

∫
ν(r′)u(r′)e iω|x

′|2/(2z0)

︸ ︷︷ ︸
masked object

Fourier︷ ︸︸ ︷
e−iωx·x′/z0 dr′



I Scattering geometry: incident direction d̂

us(r) =
e iω|r|

|r|(d−1)/2

(
A(r̂, d̂) +O

(
1

|r|

))
, r̂ =

r

|r|

where A is the scattering amplitude

A(r̂, d̂) =
ω2

4π

∫

Rd

ν(r′)
(
ui(r′) + us(r′)

)
︸ ︷︷ ︸

masked object

deficient︷ ︸︸ ︷
e−iωr′ ·̂r dr′.

I Nonlinear inversion.

I Born approximation: drop us.



Point objects and sensors

point objects
location: pj
amplitude: cj

far field

�

�
�

N sensors

aperture= W

I Point objects located at pj ∈ [0, 1], j = 1, ..., s.

I Signal received at qk ∈ [0,W ], k = 1, . . . ,N

yk =
∑s

j=1 cje
−2πiqkpj

︸ ︷︷ ︸
signal received by the kth sensor

+ ek︸︷︷︸
measurement noise

.

I Resolution Length (RL) = (Aperture)−1 = 1/W : Sidelobes of
two points (Abbe 1873, Rayleigh 1879)



Discrete signal model: y = Φx + e

I Discretization of the continuum system: replace pj by the
closest point in {m/M : m = 0, . . . ,M − 1}.

0 1p1 p2 p3 p4

1/M

I Set xm = cj if m/M is the closest point to some pj and zero
otherwise.

I Sensing matrix Φ ∈ CN×M with Φk,m = e−2πiqkm/M .

I e = measurement noise +gridding (model) error
I Sampling theorem for unit-bandlimited, M-periodic signals:

1. The discrete samples at qk = 0, ..,M − 1 uniquely determine
the signal.

2. With noise/error, continuum sampling is not equivalent to
Nyquist sampling.



Resolution

1. Minimum separation

2. Noise stability

3. Number of objects

4. Number of measurement data

5. Computational complexity

6. Flexibility of measurement schemes

7. etc...



Resolution of optimal recovery (Donoho 1992)

I Minimax error

E = inf
x̃

sup
x
‖x̃ − x‖, s.t. ‖Φx − Φx̃‖ < ε.

I No concrete algorithm.

I Full continuum Fourier measurement: t ∈ [0,W ].

I Fine grid spacing 1/F RL where F = # grid points per RL
(the refinement factor).

I Spike train but sparsity not explicit.

I Uniqueness requires minimum separation > 2 RL.

I Stability if minimum separation ≥ 4 RL.

I Demanet & Nguyen 2015: For ‖x‖0 = s with minimum
separation = grid spacing 1/F RL

E ∼ εF 2s−1



Gridless L1-minimization

I Candès & Fernandez-Granda 2013, 2014:

min ‖x̃ − x‖1, ‖y − Φx‖1 < ε

1. Minimum separation ≥ 4 RL
2. Full continuum Fourier measurement
3. Sparsity not explicit.
4. Stability: ‖x̃ − x‖1 ≤ cεF 2.

I Tang, Bhaskar, Shah & Recht 2013

1. Minimum separation ≥ 4 RL.
2. Noiseless data ε = 0.
3. O(s) partial Fourier measurement.
4. Uniqueness of L1-minimization.



Single-snapshot MUSIC (Schmidt 1981)
I Full discrete measurement: qk = (k − 1), k = 1, ...,N
I Hankel matrix

H =




y1 y2 . . . yN−L+1

y2 y3 . . . yN−L+2
...

...
...

...
yL yL+1 . . . yN


 = ΦLX (ΦN−L)T

X = diag(x1, . . . , xs)

with Vandermonde matrix

ΦL =




1 1 . . . 1
e−2πip1 e−2πip2 . . . e−2πips

(e−2πip1)2 (e−2πip2)2 . . . (e−2πips )2

...
...

...
...

(e−2πip1)L−1 (e−2πip2)L−1 . . . (e−2πips )L−1



.

I With L ≥ s + 1 and N − L + 1 ≥ s, Ran{H} = Ran{ΦL} are a
proper subspace (the signal space) of CL.



MUSIC (continued)

I Noise subspace = Orthogonal complement of the signal space.

I S̃ = the peaks of J(p) = (PφL(p))−1,
P = projection onto the noise space.

I SVD to identify the signal and noise subspaces.

I Perfect recovery with noiseless data N ≥ 2s and without
minimum separation constraint.

I Stability of support recovery with minimum separation > 2 RL
by MUSIC (Liao & F. 2016) and ESPRIT (F. 2015).



Discrete Ingham inequality

Control the largest and least singular values

Theorem
If S satisfies the separation condition

δ = min
j 6=l

d(pj , pl) >
1

L

(
1− 2π

L

)− 1
2

then
‖ΦLz‖2

2

‖z‖2
2

≥ L
( 2

π
− 2

πL2δ2
− 4

L

)
.

and

‖ΦLz‖2
2

‖z‖2
2

≤ L
(4
√

2

π
+

√
2

πL2δ2
+

3
√

2

L

)



Noise stability

Corollary

For L =
[
N+1

2

]
and the separation condition

δ >
2

N

(
1− 4π

N

)− 1
2

=
(

1− 4π

N

)− 1
2
2RL

the singular values of H satisfy

σ1 ≤ c1Nxmax

σs ≥ c2Nxmin

where c1 ≤ 3c2.

Condition number of H ≤ 3xmax/xmin

if the minimum separation is slightly greater than 2 RL



Gridless recovery by MUSIC/ESPRIT

Reconstruction of 15 objects separated by 3-4 RL with 10% NSR.

(a) ESPRIT: µH(S̃ ,S) = 0.057RL (b) MUSIC: µH(S̃ , S) = 0.1RL.

Hausdorff metric of support error is often a small fraction of 1 RL



MUSIC/ESPRIT: object separation of 2-3 RL

(b) Average HM (in the unit of RL) versus NSR(a) Success rate versus NSR

Thursday, July 17, 2014

Success if Hausdorff metric is less than 1 RL. Significant error can be tolerated by MUSIC/ESPRIT,



Superresolution: separation < 1 RL with noisy data
Log-relative error vs. NSR and separation
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(a) Two-point resolution

Separation
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(b) Three-point resolution

I Recall: Noise ∼ (minimum separation)2s−1 (Demanet &
Nguyen 2015)

I MUSIC: empirical power law with the following exponents

e(2) = 3.6, e(3) = 6, e(4) = 8.4, e(5) = 11

which are slightly greater than 2s − 1.



Gridless compressed sensing

1. Gridless or unresolved fine grids.

2. Sparse measurement under sparsity constraint.

3. Versatility: random, non-Fourier measurements.

4. Noise Stability.

5. Resolution.



Gridding error vs mutual coherence

I Refinement factor

F = 1 RL
grid spacing = # grid points per 1 RL

I Pairwise coherence: the normalized scalar product of
(e−2πiqkx1)Nk=1 and (e−2πiqkx2)Nk=1.
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(a) Average pairwise coher-
ence versus |x1 − x2|
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(b) Gridding error

I Relative griding error inversely proportional to F .

I Mutual coherence µ ≈ 0.996 for F = 20.



CS with F = 1
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minimum separation ≥ 3 RL, noise-free



CS with F = 50
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minimum separation ≥ 3 RL, SNR = 20



Post-processing of L1-min
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MUSIC with joint sparsity CS (F. 2011)

scatterered wave

scatterers

incident wave

scattered wave

I General form: Y = ΦXΨ∗.
I Φ: re-propagation matrix

I Ψ: columns represent different illuminations.

I CS with joint sparsity.



CS MUSIC (continued)

I Support-indexed RIP: for all z supported on the set S

(1− δ−S )‖z‖2
2 ≤ ‖Φz‖2

2 ≤ (1 + δ+
S )‖z‖2

2

I For any set K , |K | ≤ k , we have the trivial bound

δ±K ≤ (k − 1)µ(ΦK ).

I For ` = tolerance of support error and S`=`-neighborhood of
S . define

δ±S ′ = sup
p 6∈S`

δ±S∪{p}.

I δ±S , δ
±
S ′ determine the noise stability of support recovery of

accuracy `.



CS MUSIC (continued)

Theorem (F. 2011)

For some explicitly defined algebraic functions f and g ,

ε

xmin
< g

(
xmax

xmin
, δ±S , δ

±
S ′

)

implies the thresholding rule Θ is accurate up to `:

S ⊆ Θ :=

{
J > f

(
ε

xmin

)}
⊆ S`.

I Minimum separation > 2` = O(1) RL =⇒ stability.

I O(s2) noisy incoherent measurement

I Advantages: simple, versatility, stability, resolution.

I Disadvantages: Need (s times) more data than CS theory.



Coherence band

Coherence band: Let η ∈ (0, 1). Define the η-coherence band of
Column k to be the set

Bη(k) = {i | µ(i , k) > η},

and the η-coherence band of the column set S to be the set

Bη(S) = ∪k∈SBη(k).

Double coherence band:

B(2)
η (k) := Bη(Bη(k)) = ∪j∈Bη(k)Bη(j)

B(2)
η (S) := Bη(Bη(S)) = ∪k∈SB(2)

η (k)



Coherence band

0 0.5 1 1.5 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
coherence versus the radius of excluded band

radius of excluded band (unit:Rayleigh Length)

a
v
e

ra
g

e
 b

a
n

d
 e

x
c
lu

d
e

d
 c

o
h

e
re

n
c
e

 i
n

 1
0

0
 t

ri
a

ls

Radius of Bη ≤ 1 RL

Localized coherence band has a simple physical interpretation.



Technique I: Band exclusion

Idea: exclude the double coherence band of recovered objects

Example:

?

exact
recovered

2RL

?
2RL



Band-excluding OMP (BOMP)

Algorithm 1. BOMP

Input: Φ, y , s, η > 0
Initialization: x0 = 0, r0 = y and S0 = ∅
Iteration: For n = 1, ..., s

1) imax = arg maxi |〈rn−1,Φ(:, i)〉|, i /∈ B
(2)
η (Sn−1)

2) Sn = Sn−1 ∪ {imax}
3) xn = arg minz ‖Φz − y‖2 s.t. supp(z) ∈ Sn

4) rn = y − Φxn

Output: x s .



Theorem (F. & Liao 2012)

Let x be s-sparse and η > 0 be fixed. Suppose that

Bη(i) ∩ B(2)
η (j) = ∅, ∀i , j ∈ supp(x),

η(5s − 4)
xmax

xmin
+

5‖e‖2

2xmin
< 1

where xmax = maxk |xk |, xmin = mink |xk |. Let x̃ be the BOMP
reconstruction. Then every nonzero component of x̃ is in the
η-coherence band of a unique nonzero component of x .

I compression N ∼ s2x2
max/x

2
min.

I minimum separation ≤ 3 RL

I support accuracy ≤ 1 RL

?

exactrecovered

?

?
?



Technique II: Local optimization (LO)

Algorithm 2. Local Optimization (LO)

Input:Φ, y , η > 0, S0 = {i1, . . . , ik}
Iteration: For n = 1, 2, ..., k

1) xn = arg minz ‖Φz − y‖2

supp(z) = (Sn−1\{in}) ∪ {jn}, jn ∈ Bη({in})
2) Sn = supp(xn)

Output: Sk

? ?

?
?

I Residual reduction

I Efficient, local computation

I Performance guarantee: does not ruin
the support recovery.



Locally Optimized BOMP (BLOOMP)

Algorithm 3. BLOOMP

Input: Φ, y , s, η > 0
Initialization: x0 = 0, r0 = y and S0 = ∅
Iteration: For n = 1, ..., s

1) imax = arg maxi |〈rn−1, ai 〉|, i /∈ B
(2)
η (Sn−1)

2) Sn = LO(Sn−1 ∪ {imax})
3) xn = arg minz ‖Φz − y‖2 s.t. supp(z) ∈ Sn

4) rn = y − Φxn

Output: x s .



CS with BLO: F=50, SNR = 20
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BLO-based CS algorithms

I Greedy
BLO Subspace Pursuit
BLO CoSaMP
BLO Iterative Hard Thresholding

I L1-min
BP-BLOT constrained L1 minimization
Lasso-BLOT L1 regularization

I BLOOMP outperforms in noise stability and dynamic range.

I L1-BLOT outperforms in sparsity of measurement (no proof).



Performamce comparison with sparse measurement
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success probability versus SNR when dynamic range = 1
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Figure: Success probability versus (left) SNR for dynamic range 1 and
(right) dynamic range for SNR = 33.



Performance comparison with full
discrete/continuum Fourier measurement

Objects separated between 4 RL and 5 RL.

0 10 20 30 40 50 60

0.5

1

1.5

2

2.5

3

3.5

NSR

A
v
e
ra

g
e
 d

is
ta

n
c
e
 (

u
n

it
:R

L
) 

in
 1

0
0
 t

ri
a
ls

Distance (unit:RL) versus NSR
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(a) Dynamic range = 1. Average running time for

SDP and MUSIC is 20.3583s and 0.3627s, respec-
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(b) Dynamic range = 10. Average running time

for SDP and MUSIC is 20.5913s and 0.3661s, respec-

tively, while the average running time for BLOOMP is

6.2623s (F = 20).

MUSIC outperforms BLOOMP when separation drops below 3 RL.



Resolution in scattering geometry

scatterered wave

scatterers

incident wave

scattered wave

I Data: scattering amplitude

A(r̂, d̂) =
ω2

4π

∫

Rd

masked object︷ ︸︸ ︷
ν(r′)

(
ui(r′) + us(r′)

)
e−iωr′ ·̂r
︸ ︷︷ ︸
deficient

dr′

I Single frequency with r̂ ∈ Sd−1 : deficient in dimension.
I Longitudinal resolution vs transverse resolution
I Shadowing



2D Single-Input-Multiple-Output (SIMO)

I SIMO: One transmission and N receptions =⇒ {r̂j}.
I Discretize the domain into a unresolvable fine grid {r′k}.
I Φ = [e−iωr′k ·̂rj ]: dimensionally deficient Fourier measurement.

Let `� 1 RL be the fine-grid spacing and f s the density function
of reception.

Theorem (F. 2010)

µp,q <
c1√
N

+
c2 supθ

{
|f s(θ)|,

∣∣ d
dθ f

s(θ)
∣∣}

√
1 + ω`|p− q|

with high probability.

I Resolution = O(ω−1); decay power 1/2.

I Recall: η(5s − 4) xmax
xmin

+ 5
2

ε
xmin

< 1



3D SIMO

Theorem (F. 2010)

µp,q <
c1√
N

+
c2 supθ

{
|f s(θ)|,

∣∣ d
dθ f

s(θ)
∣∣}

1 + ω`|p− q|

with high probability.

I Resolution = O(ω−1); decay power =1 .

I Recall: η(5s − 4) xmax
xmin

+ 5
2

ε
xmin

< 1



Nonlinear inversion with point objects

I Masked object ν(r′)
(
ui(r′) + us(r′)

)
shares the same support.

I Multiple shots: masked objects F = [f1, ..., fn] of joint sparsity

G = ΦF + E

where G = [g1, ..., gn] is the data vector and E represents
noise.



BLOOMP with joint sparsity

Algorithm BLOOMP with joint sparsity
Input: Φ1, ...,Φn,G, η > 0
Initialization: F0 = 0,R0 = G and S0 = ∅
Iteration: For k = 1, ..., s

1) imax = arg maxi
∑J

j=1|Φ
†
j,i r

k−1
j |, i /∈ B

(2)
η (Sk−1).

2) Sk = JLO(Sk−1 ∪ {imax}).
3) [fk1 , ..., f

k
n ] = arg minH ‖[Φ1h1, ...,Φnhn]− G‖F s.t. ∪jsupp(hj) ⊆Sk

4) [rk1 , ..., r
k
n ] = G− [Φ1fk1 , ...,Φnfkn ]

Output: F∗ = [fs1 , ..., f
s
n].

I Masked object =⇒ object:

ν∗ = argmin
v

n∑

j=1

‖(ω2Γfsj + ui
j)v − fsj ‖2

2.

where Γ = [(1− δjl)G (rj , rl)]



Inverse Born scattering with Zernike basis (F. 2015)

I For m ∈ Z, n ∈ N, n ≥ |m| and n − |m| even,

Vm
n (x , y) = Rm

n (ρ)e imθ, x2 + y2 ≤ 1

where

Rm
n (ρ) =

1

(n−|m|2 )ρ|m|

[
d

d(ρ2)

] n−|m|
2 [

(ρ2)
n+|m|

2 (ρ2 − 1)
n−|m|

2

]

are n-th degree Zernike polynimials, Rm
n (1) = 1 for all

permissible values of m, n.

I Sparser than Bessel-Fourier or Chebyshev-Fourier expansion
(Boyd and Yu 2011, Boyd and Petschek 2014).

I Born approximation with plane-wave incidence: s = r̂ − d̂.
Resolution = O(ω−1); decay power = 1

.



Conclusion

I Compressive imaging in the continuum.

I Resolution w.r.t. noise, number/complexity of objects and
measurement data.

I Versatility of reconstruction schemes w.r.t. measurement
schemes: MUSIC, BLO-based techniques etc.

I Point vs. extended objects.

I Multiple vs. Born scattering.
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