Phase Retrieval in Coherent Diffractive Imaging

Albert Fannjiang

University of California, Davis

National Center for Theoretical Science, Taiwan, 2016

Collaborators: Peng-Wen Chen (NCHU), Gi-Ren Liu (NCKU)

Coherent diffractive imaging

- Linear propagation + intensity measurement : $b(j)^{2}=\left|a_{j}^{*} x_{0}\right|^{2}$
- Phase retrieval: Given $b=(b(j)) \in \mathbb{R}_{+}^{N}$ and $A^{*}=\left[a_{j}^{*}\right] \in \mathbb{C}^{N \times M}$, determine x_{0}.
- Geometry: Intersection of N-dim real torus of radii $\{b(j)\}$ and complex linear subspace $A^{*} \mathbb{C}^{M}(N>M)$.

Uniqueness for generic frames
 (Balan-Casazza-Edidin 06)

- Full-rank $A \in \mathbb{C}^{M \times N}, N>M:\{\operatorname{col}(A)\}=$ frame
- Frames form a metric space.
- Necessary condition for injectivity (left inverse exists): $N \geq 2 M$.
- Sufficient condition: If $N \geq 4 M-2$ then generic (i.e. an open dense set) frames are injective.

Fourier frame is exceptional!

Diffraction $=$ Fourier transform

Let $x_{0}(\mathbf{n})$ be a discrete object function with $\mathbf{n}=\left(n_{1}, n_{2}, \cdots, n_{d}\right) \in \mathbb{Z}^{d}$. We assume $d \geq 2$. $\mathcal{M}=\left\{0 \leq m_{1} \leq M_{1}, 0 \leq m_{2} \leq M_{2}, \cdots, 0 \leq m_{d} \leq M_{d}\right\}$

Diffraction pattern

$$
\begin{gathered}
\left|\sum_{\mathbf{m} \in \mathcal{M}} x_{0}(\mathbf{m}) e^{-\mathrm{i} 2 \pi \mathbf{m} \cdot \boldsymbol{\omega}}\right|^{2}=\sum_{\mathbf{n}=-\mathbf{M}}^{\mathbf{M}} \sum_{\mathbf{m} \in \mathcal{M}} x_{0}(\mathbf{m}+\mathbf{n}) \overline{x_{0}(\mathbf{m})} e^{-i 2 \pi \mathbf{n} \cdot \mathbf{w}} \\
\mathbf{w}=\left(w_{1}, \cdots, w_{d}\right) \in[0,1]^{d}, \quad \mathbf{M}=\left(M_{1}, \cdots, M_{d}\right)
\end{gathered}
$$

Autocorrelation

$$
R(\mathbf{n})=\sum_{\mathbf{m} \in \mathcal{M}} x_{0}(\mathbf{m}+\mathbf{n}) \overline{x_{0}(\mathbf{m})} .
$$

$$
\begin{gathered}
\widetilde{\mathcal{M}}=\left\{\left(m_{1}, \cdots, m_{d}\right) \in \mathbb{Z}^{d}:-M_{1} \leq m_{1} \leq M_{1}, \cdots,-M_{d} \leq m_{d} \leq M_{d}\right\} \\
\text { Oversampling ratio }=2^{\wedge} \mathrm{d}
\end{gathered}
$$

Ambiguities (Bruck-Sodin 1979, Hayes 1982)

- Oversampling: $N \geq 4 M-4 \sqrt{M}+1$.
- Global ambiguities for generic objects $x_{0} \in \mathbb{R}^{M}$

$$
\begin{aligned}
\text { (harmless) global phase } & x_{0}(\cdot) \longrightarrow e^{i \theta} x_{0}(\cdot) \\
\text { translation } & x_{0}(\cdot) \longrightarrow x_{0}(\cdot+\mathbf{n}), \forall \mathbf{n} \\
\text { conjugate inversion } & x_{0}(\cdot) \longrightarrow \overline{x_{0}}(-)
\end{aligned}
$$

- Generic objects = random vectors according to continuous prior distribution \Longrightarrow nongeneric objects \in a measure zero set.
- Problems:
\rightarrow You can not determine if a given object is generic or not since the "world ensemble" may not be absolutely continuous w.r.t. your prior distribution.
\rightarrow Global ambiguities may lead to poor reconstruction: bad algorithm or measurement scheme?

Coded diffraction pattern

Measurement matrix

- Mask function: $\mu(\mathbf{n})$.
- Masked object: $\tilde{x}_{0}(\mathbf{n})=\mu(\mathbf{n}) x_{0}(\mathbf{n})$
- Randomly phased mask: $\mu(\mathbf{n})=\exp (i \phi(\mathbf{n}))$ where $\phi(\mathbf{n})$ are random variables.
- Measurement matrix: $\Phi=$ discrete Fourier transform

$$
\begin{array}{cc}
(1 \text { mask }) & A^{*}=\Phi \operatorname{diag}(\mu) \\
(2 \text { masks }) & A^{*}=\left[\begin{array}{l}
\Phi \operatorname{diag}\left(\mu_{1}\right) \\
\Phi \operatorname{diag}\left(\mu_{2}\right)
\end{array}\right]
\end{array}
$$

Uniqueness with coded diffraction patterns

Theorem (F. 2012)
Suppose $x_{0} \in \mathbb{C}^{M}$ is rank ≥ 2 and $\arg \left(x_{0}\right)$ belongs in a proper sub-interval $[a, b] \subset[0,2 \pi)$. Then the object is determined by one coded diffraction pattern up to a constant phase factor with probability at least

$$
1-M\left|\frac{b-a}{2 \pi}\right|^{s / 2}
$$

where s is the number of nonzero pixels.
Corollary
Suppose $x_{0} \in \mathbb{R}^{M}$ and is rank ≥ 2. Then with probability one the object is determined by one coded diffraction pattern up to \pm sign.

Uniqueness (continued)

Theorem (F. 2012)
Suppose $x_{0} \in \mathbb{C}^{M}$ and is rank ≥ 2. Then the object is determined by two coded diffraction patterns up to a constant phase factor with probability one.
vs Candes-Li-Soltanolkotabi 2015:
\rightarrow PhaseLift: convex programming.
\rightarrow Large number of regularly sampled patterns.
\rightarrow Candes-Strohmer-Voroninski 2013: Gaussian random measurement.
\rightarrow Lifting \Longrightarrow huge increase of dimensionality \& unpractical computation

Nonconvex constraint

- Non-linear system:

$$
\begin{array}{lll}
& b=\left|A^{*} x\right|, & x \in \mathcal{X} \\
(1 \text { mask }) & \mathcal{X}=\mathbb{R}^{M}, & A^{*}=\Phi \operatorname{diag}(\mu) \\
(2 \text { masks }) & \mathcal{X}=\mathbb{C}^{M}, & A^{*}=\left[\begin{array}{l}
\Phi \operatorname{diag}\left(\mu_{1}\right) \\
\Phi \operatorname{diag}\left(\mu_{2}\right)
\end{array}\right]
\end{array}
$$

- Non-convex feasibility problem:

$$
\text { Find } \begin{aligned}
\hat{y} & \in A^{*} \mathcal{X} \cap \mathcal{Y} \\
\mathcal{Y} & :=\left\{y \in \mathbb{C}^{N}:|y|=b\right\} \\
\hat{x} & =\left(A^{*}\right)^{\dagger} \hat{y}
\end{aligned}
$$

- Geometry: Intersection of N-dim torus of radii $\left\{b_{j}\right\}$ and linear subspace $A^{*} \mathcal{X}$

Alternating projections: feasibility problem

Two constraints: Fourier magnitude data (N-dim torus of uneven radii) \cap oversampled Fourier matrix ($2 M$-dim subspace)
von Neuman 1933

Cheney-Goldstein 1959
Bregman 1965

Non convex: local convergence?

Experiments: plain diffraction pattern

Original images

Reconstruction with coded diffraction patterns

- Convex method converges surely but (extremely) slowly.
- Nonconvex methods converge fast (with good measurement) without guarantee.

1. Gradient descent algorithms: e.g. Wirtinger flow (Candes-Li-Soltanolkotabi 2015).
2. Iterative projection/fixed point algorithms.

- Initial guess is crucial for non-convex methods: How to put the initial guess in the basin of attraction of the global minimizer?

Null vector method (Chen-F.-Liu 2015)

$$
\begin{gathered}
A^{*}=\left[a_{j}^{*}\right] \\
a_{j}^{*} x_{0}=0 \longmapsto b_{j}=\left|a_{j}^{*} x_{0}\right|=a_{j}^{*} x_{0} .
\end{gathered}
$$

If there are sufficiently many data that are small, then the unique null vector of the row sub-matrix may be a good bet.

$$
x_{\text {null }}:=\arg \min \left\{\sum_{i \in I}\left\|a_{i}^{*} x\right\|^{2}: x \in \mathcal{X},\|x\|=\left\|x_{0}\right\|\right\}
$$

$$
x_{\text {dual }}:=\arg \max \left\{\left\|A_{I_{c}}^{*} x\right\|^{2}: x \in \mathcal{X},\|x\|=\left\|x_{0}\right\|\right\}
$$

Isometry

$$
\left\|A_{I}^{*} x\right\|^{2}+\left\|A_{I_{c}}^{*} x\right\|^{2}=\|x\|^{2}
$$

$x_{\text {null }}=x_{\text {dual }} \quad$ power method

Null vector algorithm

Let $\mathbf{1}_{c}$ be the characteristic function of the complementary index I_{c} with $\left|I_{c}\right|=\gamma N$.

```
Algorithm 1: The null vector method
    Random initialization: \(x_{1}=x_{\text {rand }}\)
    2 Loop:
    3 for \(k=1: k_{\text {max }}-1\) do
    \begin{tabular}{l|l}
\(\mathbf{4}\) & \(\frac{x_{k}^{\prime} \leftarrow A\left(\mathbf{1}_{c} \odot A^{*} x_{k}\right) ;}{x_{k+1} \leftarrow\left[x_{k}^{\prime}\right]_{\mathcal{X}} / \|\left[x_{k}^{\prime}\right]_{\mathcal{X}}}{ }^{\mathbf{5}} \|\)
\end{tabular}
    6 end
    7 Output: \(x_{\text {null }}=x_{k_{\text {max }}}\).
```

```
Algorithm 2: The spectral vector method
    Random initialization: \(x_{1}=x_{\text {rand }}\)
    Loop:
    for \(k=1: k_{\text {max }}-1\) do
    \({ }_{5}^{4} \left\lvert\, \frac{x_{k}^{\prime} \leftarrow A\left(|b|^{2} \odot A^{*} x_{k}\right) ;}{x_{k+1} \leftarrow\left[x_{k}^{\prime}\right]_{\mathcal{X}} / \|\left[x_{k}^{\prime}\right]_{\mathcal{X}}}\right. \| ;\)
    6 end
    7 Output: \(x_{\text {spec }}=x_{k_{\max }}\).
```


Truncated spectral vector

$$
x_{\mathrm{t} \text {-spec }}=\underset{\|x\|=1}{\arg \max } \frac{\| A\left(\mathbf{1}_{\tau} \odot|b|^{2} \odot A^{*} x\right)}{\left\{i:\left|A^{*} x(i)\right| \leq \tau\|b\|\right\}}
$$

Experiments: Fourier case with two masks

(a) $\left|x_{\text {t-spec }}\right|\left(\tau^{2}=5\right)$

(a) $\left|\operatorname{Re}\left(x_{\text {t-spec }}\right)\right|\left(\tau^{2}=5\right)$

(d) $\left|\operatorname{Im}\left(x_{t \text {-spec }}\right)\right|\left(\tau^{2}=5\right)$

(b) $\left|x_{\text {null }}\right|(\gamma=0.5)$

(b) $\left|\operatorname{Re}\left(x_{\text {null }}\right)\right|(\gamma=0.5)$

(e) $\left|\operatorname{Im}\left(x_{\text {null }}\right)\right|(\gamma=0.5)$

(c) $\left|x_{\text {null }}\right|(\gamma=0.6)$

(c) $\left|\operatorname{Re}\left(x_{\text {null }}\right)\right|(\gamma=0.63)$

(f) $\left|\operatorname{Im}\left(x_{\underline{\text { null }}}\right)\right|(\gamma=0.63)$

Experiments: Fourier case with one mask

(a) $x_{\text {spec }}$

(a) $x_{\text {spec }}$

(b) $x_{\mathrm{t} \text {-spec }}\left(\tau^{2}=4.6\right)$

(b) $x_{\mathrm{t}-\mathrm{spec}}\left(\tau^{2}=4.1\right)$

(c) $x_{\text {null }}(\gamma=0.5)$

(c) $x_{\text {null }}(\gamma=0.5)$

(d) $x_{\text {null }}(\gamma=0.74)$

(d) $x_{\text {null }}(\gamma=0.7)$

Error metrics often poorly reflect the quality of initialization

Performance guarantee: Gaussian case

Theorem (Chen-F.-Liu 2016)
Let A be drawn from the $M \times N$ standard complex Gaussian ensemble. Let

$$
\sigma:=|I| / N<1, \quad \nu=M /|I|<1
$$

Then for any $x_{0} \in \mathbb{C}^{n}$ the following error bound

$$
\left\|x_{0} x_{0}^{*}-x_{\text {null }} x_{\text {null }}^{*}\right\|^{2} \leq c_{0} \sigma\left\|x_{0}\right\|^{4}
$$

holds with probability at least

$$
1-5 \exp \left(-c_{1}|I|^{2} / N\right)-4 \exp \left(-c_{2} M\right)
$$

- Nonasymptotic estimate
- Asymptotic regime: $|I| / N \ll 1, \quad|I|^{2} / N \gg 1$

$$
\Longrightarrow|I|=N^{\alpha}, \text { error } \sim N^{(\alpha-1) / 2}, \alpha \in(1 / 2,1)
$$

Experiments: Gaussian case

(a) White noise

(b) Low-pass noise

(c) Randomly phased Phantom

- Empirical scaling law: Relative error $\sim L^{-\beta}$ where $L=N / M$ and $\beta \approx 1 / 2$.
- Theoretical bound: RE $\sim \sqrt{|I| / N}=L^{(\alpha-1) / 2}$ where $1 / 2<\alpha<1$.

Alternating projectons

- Non-convex feasibility problem:

$$
\text { Find } \begin{aligned}
\hat{y} & \in A^{*} \mathcal{X} \cap \mathcal{Y} \\
\mathcal{Y} & :=\left\{y \in \mathbb{C}^{N}:|y|=b\right\} \\
\hat{x} & =\left(A^{*}\right)^{\dagger} \hat{y}
\end{aligned}
$$

- Let P_{1} and P_{2} be projections onto $A^{*} \mathcal{X}$ and \mathcal{Y}, respectively.

$$
(\mathrm{AP}) \quad P_{1} P_{2} y=\left[\left(A^{*}\right)^{\dagger}\left(b \odot \frac{y}{|y|}\right)\right]_{\mathcal{X}}
$$

with initial guess $y^{(1)}=A^{*} x^{(1)}, x^{(1)} \in \mathcal{X}$.

- Nonconvex optimization: $U=\left\{u \in \mathbb{C}^{N}:|u(j)|=1\right\} N$-torus.

$$
\begin{array}{rlrl}
f(x, u) & =\frac{1}{2}\left\|A^{*} x-u \odot b\right\|^{2} & \\
u^{(k)} & =\arg \min _{u \in U} f\left(x^{(k)}, u\right) & & \text { (non-convex) } \\
x^{(k+1)} & =\arg \min _{x \in \mathcal{X}} f\left(x, u^{(k)}\right) & & \text { (non-smooth) }
\end{array}
$$

Parallel AP (PAP)

$$
\begin{gathered}
x^{(k+1)}=\mathcal{F}\left(x^{(k)}\right) \\
\mathcal{F}(x)=\left[\left(A^{*}\right)^{\dagger}\left(b \odot \frac{A^{*} x}{\left|A^{*} x\right|}\right)\right]_{\mathcal{X}} \quad\left(A^{*}\right)^{\dagger}=\left(A A^{*}\right)^{-1} A \\
\text { (2-mask case) } \quad A^{*}=c\left[\begin{array}{c}
\Phi \operatorname{diag}\left\{\mu_{1}\right\} \\
\Phi \operatorname{diag}\left\{\mu_{2}\right\}
\end{array}\right]
\end{gathered}
$$

Fact every limit point of $\left\{x^{(k)}\right\}$ is a fixed point of the map \mathcal{F}
Proposition A fixed point preserves the total signal strength, iff it is the true solution up to a global phase.

$$
\left\|A^{*} x_{*}\right\|=\|b\| \quad \text { iff } \quad x_{*}=\alpha x_{0} \text { with }|\alpha|=1
$$

Otherwise $\left\|A^{*} x_{*}\right\|<\|b\|$.

Serial AP (SAP)

Find $\quad \hat{y} \in \cap_{l=1}^{2}\left(A_{l}^{*} \mathcal{X} \cap \mathcal{Y}_{l}\right), \quad \mathcal{Y}_{l}:=\left\{y_{l} \in \mathbb{C}^{N / 2}:\left|y_{l}\right|=b_{l}\right\}$
SAP $\quad \mathcal{F}_{2} \mathcal{F}_{1}(x)$

$$
\mathcal{F}_{l}(x)=A_{l}\left(b_{l} \odot \frac{A_{l}^{*} x}{\left|A_{l}^{*} x\right|}\right), \quad l=1,2,
$$

PAP $\quad \mathcal{F}(x)=A\left(b \odot \frac{A^{*} x}{\left|A^{*} x\right|}\right)=\frac{1}{2}\left(\mathcal{F}_{1}(x)+\mathcal{F}_{2}(x)\right)$

Gradient map

$$
B:=A \operatorname{diag}\left\{\frac{A^{*} x_{0}}{\left|A^{*} x_{0}\right|}\right\} \quad \mathcal{B}:=\left[\begin{array}{c}
\Re[B] \\
\Im[B]
\end{array}\right] \in \mathbb{R}^{2 n, N}
$$

$$
G(-i d \mathcal{F} \xi)=\mathcal{B B}^{\top} G(-i \xi), \quad \forall \xi \in \mathbb{C}^{n}
$$

Isomorphism $\quad G(-i v):=\left[\begin{array}{c}\Im(v) \\ -\Re(v)\end{array}\right], \quad \forall v \in \mathbb{C}^{n}$
Let $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{2 n} \geq \lambda_{2 n+1}=\cdots=\lambda_{N}=0$ be the singular values of \mathcal{B} with the corresponding right singular vectors $\left\{\eta_{k} \in \mathbb{R}^{N}\right\}_{k=1}^{N}$ and left singular vectors $\left\{\xi_{k} \in \mathbb{R}^{2 n}\right\}_{k=1}^{2 n}$.

Proposition

We have $\xi_{1}=G\left(x_{0}\right), \xi_{2 n}=G\left(-i x_{0}\right), \lambda_{1}=1, \lambda_{2 n}=0$ and $\eta_{1}=\left|A^{*} x_{0}\right|$.

$$
u^{(k)}:=-i\left(\alpha^{(k)} x^{(k)}-x_{0}\right) \longrightarrow \xi_{1} \perp G\left(u^{(k)}\right), \quad \forall k
$$

Spectral gap

$$
\begin{aligned}
\lambda_{2} & =\max \left\{\left\|\Im\left[B^{*} u\right]\right\|: u \in \mathbb{C}^{n}, i u \perp x_{0},\|u\|=1\right\} \\
& =\max \left\{\left\|\mathcal{B}^{\top} u\right\|: u \in \mathbb{R}^{2 n}, u \perp \xi_{1},\|u\|=1\right\} .
\end{aligned}
$$

Proposition

Suppose $x_{0} \in \mathbb{C}^{n}$ is rank-2. Then $\lambda_{2}<1$ with probability one.

Uniqueness theorem for magnitude retrieval If

$$
\measuredangle A^{*} \widehat{x}= \pm \measuredangle A^{*} x_{0}
$$

where the \pm sign may be pixel-dependent, then almost surely $\widehat{x}=c x_{0}$ for some constant $c \in \mathbb{R}$.

One random mask suffices !

Local geometric convergence

Theorem (Chen-F.-Liu 2015)
For any given $0<\epsilon<1-\lambda_{2}^{2}$, if $x^{(1)}$ is sufficiently close to x_{0}, then with probability one PAP converges to x_{0} geometrically after global phase adjustment

$$
\left\|\alpha^{(k+1)} x^{(k+1)}-x_{0}\right\| \leq\left(\lambda_{2}^{2}+\epsilon\right)\left\|\alpha^{(k)} x^{(k)}-x_{0}\right\|
$$

where $\alpha^{(k)}=x^{(k) *} x_{0} /\left|x^{(k) *} x_{0}\right|$.

Theorem (Chen-F.-Liu 2015)

For any given $0<\epsilon<1-\left(\lambda_{2}^{(2)} \lambda_{2}^{(1)}\right)^{2}$, if $x^{(1)}$ is sufficiently close to x_{0} then with probability one SAP converges to x_{0} geometrically after global phase adjustment,

$$
\left\|\alpha^{(k+1)} x^{(k+1)}-x_{0}\right\| \leq\left(\left(\lambda_{2}^{(2)} \lambda_{2}^{(1)}\right)^{2}+\epsilon\right)\left\|\alpha^{(k)} x^{(k)}-x_{0}\right\|
$$

Experiments: with null initialization

(a) RSCB

(b) RPP

Experiments: null vector with noisy data

(a) One pattern

(b) Two patterns

- Case 1: $\left\|x_{\text {null }}\right\|=\|b\|$.
- Case 2: $\left\|x_{\text {null }}\right\|=\left\|x_{0}\right\|$.

Experiments: noise stability

(a) Cameraman

(c) RSCB

(b) Phantom

(d) RPP

Douglas-Rachford splitting

- Feasibility: $\mathcal{Y} \cap \mathcal{Z} \Longrightarrow \min _{y \in \mathcal{Y}, z \in \mathcal{Z}} \frac{1}{2}\|y-z\|^{2}, \quad y=z$.
- ADMM (alternating direction method of multiplier)

$$
\begin{aligned}
& \max _{\lambda} \min _{y \in \mathcal{Y}, z \in \mathcal{Z}} \mathcal{L}:=\frac{1}{2}\|y-z\|^{2}+\langle\lambda,(y-z)\rangle \\
& =\max _{\lambda} \min _{y \in \mathcal{Y}, z \in \mathcal{Z}} \mathcal{L}:=\frac{1}{2}\|y-z+\lambda\|^{2}-\frac{1}{2}\|\lambda\|^{2} \\
& \begin{cases}y^{t+1}=\arg \min _{y \in \mathcal{Y}} \frac{1}{2}\left\|y-z^{t}+\lambda^{t}\right\|^{2} & =P_{\mathcal{Y}}\left(z^{t}-\lambda^{t}\right) \\
z^{t+1}=\arg \min _{z \in \mathcal{Z}} \frac{1}{2}\left\|y^{t+1}-z+\lambda^{t}\right\|^{2} & =P_{\mathcal{Z}}\left(y^{t+1}+\lambda^{t}\right) \\
\lambda^{t+1}=\lambda^{t}+\nabla_{\lambda} \mathcal{L}\left(y^{t+1}, z^{t+1}\right) & =\lambda^{t}+y^{t+1}-z^{t+1}\end{cases}
\end{aligned}
$$

- DR: $x^{t}:=y^{t+1}+\lambda^{t} \Longrightarrow$

$$
x^{t+1}=x^{t}+P_{\mathcal{Y}}\left(2 P_{\mathcal{Z}}-I\right) x^{t}-P_{\mathcal{Z}} x^{t}
$$

Fourier domain Douglas-Rachford

$$
\begin{aligned}
& \mathcal{Y}=\left\{y \in \mathbb{C}^{N}:|y|=b\right\}, \quad \mathcal{Z}=A^{*} \mathcal{X} \\
\Longrightarrow \quad & P_{\mathcal{Y}}(y)=b \odot \frac{y}{|y|}, \quad P_{\mathcal{Z}}(y)=A^{*} A y
\end{aligned}
$$

$$
S_{\mathrm{f}}(y)=y+A^{*}\left[A\left(2 b \odot \frac{y}{|y|}-y\right)\right]_{\mathcal{X}}-b \odot \frac{y}{|y|}
$$

Gradient $\quad J_{\mathrm{f}} v=\left(I-B^{*} B\right) \Re(v)+i B^{*} B \Im(v)$
J_{f} is a real, but not complex, linear map

$$
S(x)=x+\left[\tilde{A}\left(2 b \odot \frac{\tilde{A}^{*} x}{\left|\tilde{A}^{*} x\right|}\right)-x\right]_{\mathcal{X}}-\tilde{A}\left(b \odot \frac{\tilde{A}^{*} x}{\left|\tilde{A}^{*} x\right|}\right)
$$

Fixed point with two masks

$$
S_{\mathrm{f}}\left(y_{\infty}\right)=y_{\infty}, \quad x_{\infty}=A y_{\infty}
$$

$$
\begin{gathered}
y_{\infty}=e^{i \theta}\left(\left|y_{0}\right|+v\right) \odot \frac{y_{0}}{\left|y_{0}\right|} \\
\left|y_{0}\right|+v \text { has all nonnegative components } \\
\quad v \in \operatorname{null}_{\mathbb{R}}(\mathcal{B}) \subset \mathbb{R}^{N}
\end{gathered}
$$

Theorem (Chen-F. 2016)
The projected fixed point is unique, i.e. $x_{\infty}=e^{i \theta} x_{0}$ almost surely.

FDR locally converges geometrically

Theorem (Chen-F. 2016)
For $0<\epsilon<1-\lambda_{2}$, if $\alpha^{(1)} X^{(1)}$ is sufficient close to x_{0}, then FDR converges geometrically to the solution

$$
\left\|\alpha^{(k)} x^{(k)}-x_{0}\right\| \leq\left(\lambda_{2}+\epsilon\right)^{k-1}\left\|\alpha^{(1)} x^{(1)}-x_{0}\right\| .
$$

- Explicit measurement schemes.
- Explicit characterization of $\lambda_{2}<1$.
- No hard-to-verify assumptions.
- Convex setting (He-Yuan 2012, 2015): k-th error $=\mathcal{O}(1 / k)$.

Experiments: Two patterns

(a) RPP

(a) RPP

(b) TCB

(b) TCB

Fourier domain vs. object domain DR

\tilde{A} : various extensions of A

Conclusion

- Two globally convergent schemes in practice:

1. $A P+$ null initialization
2. FDR

- Open problem: proof of global convergence.

References

1. R. Balan, P. Casazza and D. Edidin, "On signal reconstruction without phase," Appl. Comput. Harmon. Anal. 20, 345-356 (2006).
2. E. J. Candes, X. Li and M. Soltanolkotabi, "Phase retrieval via Wirtinger flow: theory and algorithms," IEEE Trans Inform. Th. 61(4), 1985-2007 (2015).
3. E.J. Candès, T. Strohmer, and V. Voroninski, " Phaselift: exact and stable signal recovery from magnitude measurements via convex programming," Comm. Pure Appl. Math. 66, 1241-1274 (2013).
4. P. Chen and A. Fannjiang, "Phase retrieval with a single mask by Douglas-Rachford algorithms," Appl. Comput. Harmon. Anal. (2016), http://dx.doi.org/10.1016/j.acha.2016.07.003.
5. P. Chen, A. Fannjiang and G. Liu, "Phase retrieval with one or two coded diffraction patterns by alternating projection with the null initialization," arxiv:1510.07379.
6. A. Fannjiang, "Absolute uniqueness of phase retrieval with random illumination," Inverse Problems 28, 075008 (2012).
7. A. Fannjiang and W. Liao, "Phase retrieval with random phase illumination," J. Opt. Soc. A 29, 1847-1859 (2012).
8. A. Fannjiang and W. Liao, "Fourier phasing with phase-uncertain mask," Inverse Problems 29125001 (2013).
9. J. R. Fienup, "Phase retrieval algorithms: a comparison," Appl. Opt. 21, 2758-2769 (1982).
10. M. Hayes, "The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform," IEEE Trans. Acoust. Speech Sign. Proc. 30 140- 154 (1982).
11. B.S. He and X.M. Yuan, " On the $\mathcal{O}(1 / n)$ convergence rate of Douglas-Rachford alternating direction method." SIAM J. Numer. Anal. 50, 700709 (2012)
12. P. Netrapalli, P. Jain, S. Sanghavi, "Phase retrieval using alternating minimization," IEEE Trans. Signal Proc. 63 (2015), pp. 4814-4826.
