Phase Retrieval in Coherent Diffractive Imaging

Albert Fannjiang

University of California, Davis

National Center for Theoretical Science, Taiwan, 2016

Collaborators: Peng-Wen Chen (NCHU), Gi-Ren Liu (NCKU)

(日) (四) (문) (문) (문)

Coherent diffractive imaging

- Linear propagation + intensity measurement : $b(j)^2 = |a_i^* x_0|^2$
- ▶ Phase retrieval: Given $b = (b(j)) \in \mathbb{R}^N_+$ and $A^* = [a_i^*] \in \mathbb{C}^{N \times M}$, determine x_0 .
- ► Geometry: Intersection of N-dim real torus of radii {b(j)} and complex linear subspace A^{*}C^M (N > M).

Uniqueness for generic frames (Balan-Casazza-Edidin 06)

- ▶ Full-rank $A \in \mathbb{C}^{M \times N}$, N > M: $\{ col(A) \} =$ frame
- Frames form a metric space.
- ► Necessary condition for injectivity (left inverse exists): N ≥ 2M.
- Sufficient condition: If N ≥ 4M − 2 then generic (i.e. an open dense set) frames are injective.

Fourier frame is exceptional!

Diffraction = Fourier transform

Let $x_0(\mathbf{n})$ be a discrete object function with $\mathbf{n} = (n_1, n_2, \cdots, n_d) \in \mathbb{Z}^d$. We assume $d \ge 2$. $\mathcal{M} = \{0 \le m_1 \le M_1, 0 \le m_2 \le M_2, \cdots, 0 \le m_d \le M_d\}$

Diffraction pattern

$$\left|\sum_{\mathbf{m}\in\mathcal{M}}x_{0}(\mathbf{m})e^{-i2\pi\mathbf{m}\cdot\boldsymbol{\omega}}\right|^{2} = \sum_{\mathbf{n}=-\mathbf{M}}^{\mathbf{M}}\sum_{\mathbf{m}\in\mathcal{M}}x_{0}(\mathbf{m}+\mathbf{n})\overline{x_{0}(\mathbf{m})}e^{-i2\pi\mathbf{n}\cdot\mathbf{w}}$$

$$\mathbf{w} = (w_1, \cdots, w_d) \in [0, 1]^d, \quad \mathbf{M} = (M_1, \cdots, M_d)$$

Autocorrelation

$$R(\mathbf{n}) = \sum_{\mathbf{m} \in \mathcal{M}} x_0(\mathbf{m} + \mathbf{n}) \overline{x_0(\mathbf{m})}.$$

 $\widetilde{\mathcal{M}} = \{(m_1, \cdots, m_d) \in \mathbb{Z}^d : -M_1 \le m_1 \le M_1, \cdots, -M_d \le m_d \le M_d\}$ Oversampling ratio = 2^d

4 日 ト 4 日 ト 4 目 ト 4 目 ト 目 の 4 で
4 / 38

Ambiguities (Bruck-Sodin 1979, Hayes 1982)

- Oversampling: $N \ge 4M 4\sqrt{M} + 1$.
- Global ambiguities for generic objects $x_0 \in \mathbb{R}^M$

 $\begin{array}{ll} (\text{harmless}) \text{ global phase} & x_0(\cdot) \longrightarrow e^{i\theta} x_0(\cdot) \\ & \text{translation} & x_0(\cdot) \longrightarrow x_0(\cdot + \mathbf{n}), \forall \mathbf{n} \\ & \text{conjugate inversion} & x_0(\cdot) \longrightarrow \overline{x_0}(-\cdot) \end{array}$

- ► Generic objects = random vectors according to continuous prior distribution ⇒ nongeneric objects ∈ a measure zero set.
- Problems:
 - → You can not determine if a given object is generic or not since the "world ensemble" may not be absolutely continuous w.r.t. your prior distribution.
 - \rightarrow Global ambiguities may lead to poor reconstruction: bad algorithm or measurement scheme?

Coded diffraction pattern

Measurement matrix

- Mask function: µ(n).
- Masked object: $\tilde{x}_0(\mathbf{n}) = \mu(\mathbf{n})x_0(\mathbf{n})$
- Randomly phased mask: μ(n) = exp(iφ(n)) where φ(n) are random variables.
- Measurement matrix: $\Phi = \text{discrete Fourier transform}$

(1 mask)
$$A^* = \Phi \operatorname{diag}(\mu)$$

(2 masks) $A^* = \begin{bmatrix} \Phi \operatorname{diag}(\mu_1) \\ \Phi \operatorname{diag}(\mu_2) \end{bmatrix}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Uniqueness with coded diffraction patterns

Theorem (F. 2012)

Suppose $x_0 \in \mathbb{C}^M$ is rank ≥ 2 and $\arg(x_0)$ belongs in a proper sub-interval $[a, b] \subset [0, 2\pi)$. Then the object is determined by one coded diffraction pattern up to a constant phase factor with probability at least

$$1 - M \left| \frac{b-a}{2\pi} \right|^{s/2}$$

where s is the number of nonzero pixels.

Corollary

Suppose $x_0 \in \mathbb{R}^M$ and is rank ≥ 2 . Then with probability one the object is determined by one coded diffraction pattern up to \pm sign.

Uniqueness (continued)

Theorem (F. 2012)

Suppose $x_0 \in \mathbb{C}^M$ and is rank ≥ 2 . Then the object is determined by two coded diffraction patterns up to a constant phase factor with probability one.

vs Candes-Li-Soltanolkotabi 2015:

- $\rightarrow\,$ PhaseLift: convex programming.
- $\rightarrow\,$ Large number of regularly sampled patterns.
- $\rightarrow\,$ Candes-Strohmer-Voroninski 2013: Gaussian random measurement.
- \rightarrow Lifting \Longrightarrow huge increase of dimensionality & unpractical computation

Nonconvex constraint

Non-linear system:

$$b = |A^*x|, \quad x \in \mathcal{X}$$

(1 mask) $\mathcal{X} = \mathbb{R}^M, \quad A^* = \Phi \operatorname{diag}(\mu)$
(2 masks) $\mathcal{X} = \mathbb{C}^M, \quad A^* = \begin{bmatrix} \Phi \operatorname{diag}(\mu_1) \\ \Phi \operatorname{diag}(\mu_2) \end{bmatrix}$

Non-convex feasibility problem:

$$\begin{array}{rcl} \mathrm{Find} & \hat{y} & \in & A^* \mathcal{X} \cap \mathcal{Y} \\ & \mathcal{Y} & := & \{ y \in \mathbb{C}^N : |y| = b \} \\ & \hat{x} & = & (A^*)^{\dagger} \hat{y} \end{array}$$

▶ Geometry: Intersection of *N*-dim torus of radii {*b_j*} and linear subspace *A*^{*}*X*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Alternating projections: feasibility problem

Two constraints: Fourier magnitude data (*N*-dim torus of uneven radii) \cap oversampled Fourier matrix (2*M*-dim subspace)

Non convex: local convergence?

Experiments: plain diffraction pattern

HIO (Fienup 1982)

A ∰ ▶ A ∃

୍ ୬୯୯

12/38

Original images

AP

Reconstruction with coded diffraction patterns

- Convex method converges surely but (extremely) slowly.
- Nonconvex methods converge fast (with good measurement) without guarantee.
 - 1. Gradient descent algorithms: e.g. Wirtinger flow (Candes-Li-Soltanolkotabi 2015).
 - 2. Iterative projection/fixed point algorithms.
- Initial guess is crucial for non-convex methods: How to put the initial guess in the basin of attraction of the global minimizer?

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Null vector method (Chen-F.-Liu 2015)

$$A^* = [a_j^*]$$

$$a_j^* x_0 = 0 \qquad \qquad b_j = |a_j^* x_0| = a_j^* x_0.$$

If there are sufficiently many data that are small, then the **unique** null vector of the **row** sub-matrix may be a good bet.

$$x_{\text{null}} := \arg\min\left\{\sum_{i \in I} \|a_i^* x\|^2 : x \in \mathcal{X}, \|x\| = \|x_0\|\right\}$$

$$x_{\text{dual}} := \arg \max \left\{ \|A_{I_c}^* x\|^2 : x \in \mathcal{X}, \|x\| = \|x_0\| \right\}$$

Isometry $\|A_I^* x\|^2 + \|A_{I_c}^* x\|^2 = \|x\|^2$
 $x_{\text{null}} = x_{\text{dual}}$ power method $\frac{2}{14/36}$

Null vector algorithm

Let $\mathbf{1}_c$ be the characteristic function of the complementary index I_c with $|I_c| = \gamma N$.

Algorithm 1: The null vector method
1 Random initialization:
$$x_1 = x_{rand}$$

2 Loop:
3 for $k = 1 : k_{max} - 1$ do
4 $\left| \begin{array}{c} x'_k \leftarrow A(\mathbf{1}_c \odot A^* x_k); \\ \hline x_{k+1} \leftarrow \left[x'_k \right]_{\mathcal{X}} / \| \left[x'_k \right]_{\mathcal{X}} \| \\ 6 \text{ end} \\ 7 \text{ Output: } x_{null} = x_{k_{max}}. \end{array} \right.$

Algorithm 2: The spectral vector method 1 Random initialization: $x_1 = x_{rand}$ 2 Loop: 3 for $k = 1: k_{max} - 1$ do 4 $\begin{vmatrix} x'_k \leftarrow A(|b|^2 \odot A^*x_k); \\ x_{k+1} \leftarrow \begin{vmatrix} x'_k \end{vmatrix}_{\mathcal{X}} / || \begin{vmatrix} x'_k \end{vmatrix}_{\mathcal{X}} ||;$ 6 end 7 Output: $x_{spec} = x_{k_{max}}.$ **Truncated spectral vector**

$$\begin{split} x_{\text{t-spec}} &= \arg \max_{\|x\|=1} \|\underline{A\left(\mathbf{1}_{\tau} \odot |b|^2 \odot A^* x\right)} \| \\ & \{i: |A^* x(i)| \leq \tau \|b\|\} \end{split}$$

Netrapalli-Jain-Sanghavi 2015

Candes-Chen 2015

Experiments: Fourier case with two masks

Experiments: Fourier case with one mask

Error metrics often poorly reflect the quality of initialization

Performance guarantee: Gaussian case

Theorem (Chen-F.-Liu 2016)

Let A be drawn from the $M \times N$ standard complex Gaussian ensemble. Let

 $\sigma := |I|/N < 1, \quad \nu = M/|I| < 1.$

Then for any $x_0 \in \mathbb{C}^n$ the following error bound

$$||x_0x_0^* - x_{\text{null}}x_{\text{null}}^*||^2 \le c_0\sigma ||x_0||^4$$

holds with probability at least

$$1 - 5 \exp\left(-c_1 |I|^2 / N\right) - 4 \exp(-c_2 M).$$

- Nonasymptotic estimate
- ► Asymptotic regime: $|I|/N \ll 1$, $|I|^2/N \gg 1$ $\implies |I| = N^{\alpha}$, error $\sim N^{(\alpha-1)/2}$, $\alpha \in (1/2, 1)$

Experiments: Gaussian case

Empirical scaling law: Relative error ~ L^{−β} where L = N/M and β ≈ 1/2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

19/38

• Theoretical bound: RE $\sim \sqrt{|I|/N} = L^{(\alpha-1)/2}$ where $1/2 < \alpha < 1$.

Alternating projectons

Non-convex feasibility problem:

Find
$$\hat{y} \in A^* \mathcal{X} \cap \mathcal{Y}$$

 $\mathcal{Y} := \{y \in \mathbb{C}^N : |y| = b\}$
 $\hat{x} = (A^*)^{\dagger} \hat{y}$

• Let P_1 and P_2 be projections onto $A^*\mathcal{X}$ and \mathcal{Y} , respectively.

(AP)
$$P_1P_2y = \left[(A^*)^{\dagger} \left(b \odot \frac{y}{|y|} \right) \right]_{\mathcal{X}}$$

with initial guess $y^{(1)} = A^* x^{(1)}, x^{(1)} \in \mathcal{X}$.

▶ Nonconvex optimization: $U = \{u \in \mathbb{C}^N : |u(j)| = 1\}$ *N*-torus.

$$f(x, u) = \frac{1}{2} ||A^*x - u \odot b||^2$$

$$u^{(k)} = \arg\min_{u \in U} f(x^{(k)}, u) \qquad \text{(non-convex)}$$

$$x^{(k+1)} = \arg\min_{x \in \mathcal{X}} f(x, u^{(k)}) \qquad \text{(non-smooth)}$$

$$20 / 38$$

Parallel AP (PAP)

$$\begin{aligned} x^{(k+1)} &= \mathcal{F}(x^{(k)}) \\ \mathcal{F}(x) &= \left[(A^*)^{\dagger} (b \odot \frac{A^* x}{|A^* x|}) \right]_{\mathcal{X}} \quad {}^{(A^*)^{\dagger} = (AA^*)^{-1}A} \\ \end{aligned}$$

$$(2\text{-mask case}) \quad A^* = c \begin{bmatrix} \Phi \operatorname{diag}\{\mu_1\} \\ \Phi \operatorname{diag}\{\mu_2\} \end{bmatrix}$$

21/38

Fact every limit point of $\{x^{(k)}\}$ is a fixed point of the map \mathcal{F}

Proposition A fixed point preserves the **total signal strength**, iff it is the true solution up to a global phase. $||A^*x_*|| = ||b||$ iff $x_* = \alpha x_0$ with $|\alpha| = 1$.

Otherwise $||A^*x_*|| < ||b||$.

Serial AP (SAP)

Find $\hat{y} \in \bigcap_{l=1}^{2} \left(A_{l}^{*} \mathcal{X} \cap \mathcal{Y}_{l} \right), \quad \mathcal{Y}_{l} := \{ y_{l} \in \mathbb{C}^{N/2} : |y_{l}| = b_{l} \}$

SAP $\mathcal{F}_2 \mathcal{F}_1(x)$ $\mathcal{F}_l(x) = A_l \left(b_l \odot \frac{A_l^* x}{|A_l^* x|} \right), \quad l = 1, 2,$ PAP $\mathcal{F}(x) = A \left(b \odot \frac{A^* x}{|A^* x|} \right) = \boxed{\frac{1}{2} (\mathcal{F}_1(x) + \mathcal{F}_2(x))}$

Gradient map

$$B := A \operatorname{diag} \left\{ \frac{A^* x_0}{|A^* x_0|} \right\} \qquad \mathcal{B} := \begin{bmatrix} \Re[B] \\ \Im[B] \end{bmatrix} \in \mathbb{R}^{2n,N}$$

$$G(-id\mathcal{F}\xi) = \mathcal{B}\mathcal{B}^{\mathsf{T}}G(-i\xi), \quad \forall \xi \in \mathbb{C}^{n}$$

Isomorphism
$$G(-iv) := \begin{bmatrix} \Im(v) \\ -\Re(v) \end{bmatrix}, \quad \forall v \in \mathbb{C}^{n}$$

Let $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_{2n} \geq \lambda_{2n+1} = \cdots = \lambda_N = 0$ be the singular values of \mathcal{B} with the corresponding right singular vectors $\{\eta_k \in \mathbb{R}^N\}_{k=1}^N$ and left singular vectors $\{\xi_k \in \mathbb{R}^{2n}\}_{k=1}^{2n}$.

Proposition

We have
$$\xi_1 = G(x_0)$$
, $\xi_{2n} = G(-ix_0)$, $\lambda_1 = 1$, $\lambda_{2n} = 0$ and $\eta_1 = |A^*x_0|$.

$$u^{(k)} := -i(\alpha^{(k)}x^{(k)} - x_0) \longrightarrow \xi_1 \perp G(u^{(k)}), \quad \forall k$$

Spectral gap

$$\lambda_2 = \max\{\|\Im[B^*u]\| : u \in \mathbb{C}^n, iu \perp x_0, \|u\| = 1\} \\ = \max\{\|\mathcal{B}^\top u\| : u \in \mathbb{R}^{2n}, u \perp \xi_1, \|u\| = 1\}.$$

Proposition

Suppose $x_0 \in \mathbb{C}^n$ is rank-2. Then $\lambda_2 < 1$ with probability one.

Uniqueness theorem for magnitude retrieval If

$$\measuredangle A^* \hat{x} = \pm \measuredangle A^* x_0$$

where the \pm sign may be pixel-dependent, then almost surely $\hat{x} = cx_0$ for some constant $c \in \mathbb{R}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

24 / 38

One random mask suffices !

Local geometric convergence

Theorem (Chen-F.-Liu 2015)

For any given $0 < \epsilon < 1 - \lambda_2^2$, if $x^{(1)}$ is sufficiently close to x_0 , then with probability one PAP converges to x_0 geometrically after global phase adjustment

$$\|\alpha^{(k+1)}x^{(k+1)} - x_0\| \le (\lambda_2^2 + \epsilon) \|\alpha^{(k)}x^{(k)} - x_0\|$$

where $\alpha^{(k)} = x^{(k)*} x_0 / |x^{(k)*} x_0|$.

Theorem (Chen-F.-Liu 2015)

For any given $0 < \epsilon < 1 - (\lambda_2^{(2)}\lambda_2^{(1)})^2$, if $x^{(1)}$ is sufficiently close to x_0 then with probability one SAP converges to x_0 geometrically after global phase adjustment,

$$\|\alpha^{(k+1)}x^{(k+1)} - x_0\| \le ((\lambda_2^{(2)}\lambda_2^{(1)})^2 + \epsilon)\|\alpha^{(k)}x^{(k)} - x_0\|.$$

Experiments: with null initialization

Experiments: null vector with noisy data

Experiments: noise stability

Douglas-Rachford splitting

- ► Feasibility: $\mathcal{Y} \cap \mathcal{Z} \Longrightarrow \min_{y \in \mathcal{Y}, z \in \mathcal{Z}} \frac{1}{2} \|y z\|^2$, y = z.
- ADMM (alternating direction method of multiplier)

$$\max_{\lambda} \min_{y \in \mathcal{Y}, z \in \mathcal{Z}} \mathcal{L} := \frac{1}{2} \|y - z\|^2 + \langle \lambda, (y - z) \rangle$$
$$= \max_{\lambda} \min_{y \in \mathcal{Y}, z \in \mathcal{Z}} \mathcal{L} := \frac{1}{2} \|y - z + \lambda\|^2 - \frac{1}{2} \|\lambda\|^2$$

$$\begin{cases} y^{t+1} = \arg\min_{y \in \mathcal{Y}} \frac{1}{2} \|y - z^t + \lambda^t\|^2 &= P_{\mathcal{Y}}(z^t - \lambda^t) \\ z^{t+1} = \arg\min_{z \in \mathcal{Z}} \frac{1}{2} \|y^{t+1} - z + \lambda^t\|^2 &= P_{\mathcal{Z}}(y^{t+1} + \lambda^t) \\ \lambda^{t+1} = \lambda^t + \nabla_{\lambda} \mathcal{L}(y^{t+1}, z^{t+1}) &= \lambda^t + y^{t+1} - z^{t+1} \end{cases}$$

• **DR:** $x^t := y^{t+1} + \lambda^t \Longrightarrow$

 $x^{t+1} = x^t + P_{\mathcal{Y}}(2P_{\mathcal{Z}} - I)x^t - P_{\mathcal{Z}}x^t$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fourier domain Douglas-Rachford

$$\mathcal{Y} = \{ y \in \mathbb{C}^{N} : |y| = b \}, \quad \mathcal{Z} = A^{*} \mathcal{X}$$
$$\implies \qquad P_{\mathcal{Y}}(y) = b \odot \frac{y}{|y|}, \quad P_{\mathcal{Z}}(y) = A^{*} A y$$

$$S_{\mathrm{f}}(y) = y + A^* \left[A \left(2b \odot \frac{y}{|y|} - y \right) \right]_{\mathcal{X}} - b \odot \frac{y}{|y|}$$

Gradient $J_{f}v = (I - B^*B)\Re(v) + iB^*B\Im(v)$ J_{f} is a real, but not complex, linear map

$$S(x) = x + \left[\tilde{A}\left(2b \odot \frac{\tilde{A}^*x}{|\tilde{A}^*x|}\right) - x\right]_{\mathcal{X}} - \tilde{A}\left(b \odot \frac{\tilde{A}^*x}{|\tilde{A}^*x|}\right)$$

Fixed point with two masks

$$S_{\rm f}(y_\infty) = y_\infty, \quad x_\infty = Ay_\infty.$$

Theorem (Chen-F. 2016)

The projected fixed point is unique, i.e. $x_{\infty} = e^{i\theta}x_0$ almost surely.

FDR locally converges geometrically

Theorem (Chen-F. 2016)

For $0 < \epsilon < 1 - \lambda_2$, if $\alpha^{(1)}x^{(1)}$ is sufficient close to x_0 , then FDR converges geometrically to the solution

$$\|\alpha^{(k)}x^{(k)} - x_0\| \le (\lambda_2 + \epsilon)^{k-1} \|\alpha^{(1)}x^{(1)} - x_0\|.$$

- Explicit measurement schemes.
- Explicit characterization of $\lambda_2 < 1$.
- No hard-to-verify assumptions.
- Convex setting (He-Yuan 2012, 2015): k-th error = O(1/k).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

Experiments: Two patterns

33 / 38

0.3 0.35

Fourier domain vs. object domain DR

(FDR)
$$S_f(x) = y + A^*A\left(2b \odot \frac{y}{|y|} - y\right) - b \odot \frac{y}{|y|}$$

(ODR) $S(x) = x + \tilde{A}\left(2b \odot \frac{\tilde{A}^*x}{|\tilde{A}^*x|}\right) - x - \tilde{A}\left(b \odot \frac{\tilde{A}^*x}{|\tilde{A}^*x|}\right)$

Conclusion

- Two globally convergent schemes in practice:
 - 1. AP+null initialization
 - 2. FDR
- Open problem: proof of global convergence.

References

- 1. R. Balan, P. Casazza and D. Edidin, "On signal reconstruction without phase," Appl. Comput. Harmon. Anal. 20, 345-356 (2006).
- E. J. Candes, X. Li and M. Soltanolkotabi, "Phase retrieval via Wirtinger flow: theory and algorithms," IEEE Trans Inform. Th. 61(4), 1985–2007 (2015).
- E.J. Candès, T. Strohmer, and V. Voroninski, "Phaselift: exact and stable signal recovery from magnitude measurements via convex programming," Comm. Pure Appl. Math. 66, 1241-1274 (2013).
- P. Chen and A. Fannjiang, "Phase retrieval with a single mask by Douglas-Rachford algorithms," Appl. Comput. Harmon. Anal. (2016), http://dx.doi.org/10.1016/j.acha.2016.07.003.
- P. Chen, A. Fannjiang and G. Liu, "Phase retrieval with one or two coded diffraction patterns by alternating projection with the null initialization," arxiv:1510.07379.
- A. Fannjiang, "Absolute uniqueness of phase retrieval with random illumination," Inverse Problems 28, 075008 (2012).
- A. Fannjiang and W. Liao, "Phase retrieval with random phase illumination," J. Opt. Soc. A 29, 1847-1859 (2012).
- A. Fannjiang and W. Liao, "Fourier phasing with phase-uncertain mask," *Inverse Problems* 29 125001 (2013).
- 9. J. R. Fienup, "Phase retrieval algorithms: a comparison," Appl. Opt. 21, 2758-2769 (1982).
- M. Hayes, "The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform," IEEE Trans. Acoust. Speech Sign. Proc. 30 140- 154 (1982).
- B.S. He and X.M. Yuan," On the O(1/n) convergence rate of Douglas-Rachford alternating direction method." SIAM J. Numer. Anal. 50, 700709 (2012)