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A new adaptive technique for the simulation of unsteady incompressible flows is pre-
sented. The initial mesh is generated based on a Cartesian grid with spatial decomposition
and a simple optimization step to define the boundaries of the domain. This technique
is fast and produces a quad-dominant mesh, while preserving the quality of the elements.
Adaptive mesh refinement is performed based on the gradient of the vorticity from the
previous time step. The time step is controlled and hence adapted using error estimation
of the flow variables with respect to time. A Galerkin finite-element discretization is used
to generate the nonlinear system corresponding to the Navier-Stokes equations. The solu-
tion of the linearized system is carried out using the GMRES method with a least-squares
commutator as a preconditioner. Numerical experiments for various test cases illustrate
the strength of this new approach.

Nomenclature
q Vector-valued function representing the dimensionless velocity of the fluid
f Vector-valued function representing the dimensionless body forces acting on the fluid
P Scalar function representing the dimensionless pressure
Re Reynolds number
Q Two-dimensional domain used in the simulation of the problem
oY) Boundary of €2
op Part of 92 with a Drichlet condition
0N Part of 992 with a Neumann condition
z,Yy Cartesian coordinates in €2
L2(9) Space of square-integrable Lebesgue functions: Lo(Q) :={u:Q—R | [ju* <oco}
HY(Q) Sobolev space HY(Q) :={u: Q — R | u, %, g—;‘ € Ly(R2)}

I. Introduction

Over the last two decades, adaptive methods have stirred much interest in the engineering community.
For compressible flow applications, such methods are crucial because of the pressing need for accurate
computation of shock waves' 3. Adaptive methods offer a means of tackling complex flow problems at a
reasonable cost and of controlling the accuracy of numerical simulations. Although spectacular results have
been achieved for compressible flow problems, less has been accomplished for unsteady viscous incompressible
flows. For unsteady problems, we need a fast remeshing algorithm. Mapping of variables from one mesh to
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another should be done in an efficient way, otherwise the vorticity generated during the simulation will be
dissipated and the solution quality will deteriorate.

This paper presents an adaptive spatial /temporal finite-element method for unsteady viscous incompress-
ible flow problems. Such flows present special challenges for adaptive methods. Because of the elliptic nature
of the Navier-Stokes equations a fully coupled approach is used.

The paper is organized as follows. In the section about governing equations, we describe the approxima-
tion of the standard weak formulation using mixed finite elements and Picard’s nonlinear iteration. Next,
we discuss various ways to deal with the sparse convection tensor, the solution of the linearized system using
a suitably preconditioned GMRES algorithm, and the adaptive strategy in space and time. The methodol-
ogy is then validated by solving problems with experimental data to clearly quantify improvements due to
adaptivity. Finally, the method is applied to various flow problems for which experimental data is available.

II. Governing Equations

In this section, we recall the governing equations and the approximation of the standard weak formulation
using mixed finite elements. For more details, we refer the reader to Elman et al.* and Gresho and Sani®.

A. Unsteady Incompressible Navier-Stokes Equations
The unsteady incompressible Navier-Stokes equations in their non-dimensional form can be written as follows:

dq

1
— +q-Vq— —=V3q+Vp=f
o T4 VAT R VAT VP =

(1)
V.-q=0.

Here, the relative contributions of convection and diffusion are defined by the Reynolds number,

UL
Re = —,
v
where L denotes a characteristic length scale for the domain €2, U is a reference value for the velocity, and
v > 0 is the kinematic viscosity of the fluid. If L and U are suitably chosen, then the condition Re < 1 means
that Eq. (1) is diffusion-dominated and the flow solution can be shown to be uniquely defined. In contrast,
if Re > 1, then the flow problem is convection-dominated. In this case, the convection term, q-Vq, because
of its nonlinearity, makes the problem much more complicated.
Eq. (1) is posed on €, together with boundary conditions on 99 = 9Qp U 00y given by
1 0q
= o0 d ——— =0 OQN. 2
q=w on p and oos—mp on N (2)
Here, n denotes the outward-pointing normal to the boundary. In view of Eq. (2), we need to specify the
pressure only on 9 y. If 0Qp = 0, then the pressure solution of the Navier-Stokes problem described by
Egs. (1) and (2) is only unique up to a hydrostatic constant.

B. Weak Formulation

Let
H}, ::{ueHl(Q)Q‘uzwonaﬂD} and Hp, :z{veHl(Q)2‘v:00naﬂD}

denote the usual solution space and test space, respectively. Then, the standard weak formulation of Egs. (1)
and (2) is to find u € Hi, and p € L2(Q) such that

@-v—i—/(u-Vu)-v—i—i/Vu:Vv—i—/p(V-v)z/f-v forall ve€ Hp ,
Q Re Jq Q Q ’

q Ot
3)
/ q(V-u)=0 forall g¢e La(f).
Q
Here Vu : Vv denotes the component-wise scalar product, which in two dimensions is given by

Vu:Vv:=Vu, Vv, +Vu, - Vv,.
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Note that the nonlinear convection term is represented by the trilinear form ¢ : Hy x Hp x Hp — R
defined as follows:

c(z,u,v) := /Q(z -Vu) - v.

The remaining terms are described by bilinear forms; for example, the diffusion term is represented by
a: Hy x Hp — R defined as follows:

1
a(u,v) = e /o Vu: Vv.

C. Mixed Finite-Element Approximation

A discrete weak formulation is defined using finite-dimensional subspaces X' ¢ Hy, and M" C Ly(€2). The
discrete problem then is to find uj, € Xg and py € M" such that
(?uh

1
—-v+/(uh~Vuh)-v+— Vuh:Vv—i-/ph(V-v):fo-v for all v e X},
o Ot Q Re Jq Q

(4)
/q(V-uh):() for all q € M"(Q).
Q

Implementation entails defining appropriate bases for the finite-element spaces, leading to a nonlinear system
of algebraic equations. Using a set of vector-valued basis functions {qu}, so that

N Ny +Nng Ny
up = Zuj¢j + Z uj¢j and Zuj¢j S Xél
j=1 j=nu+1 j=1
We fix the coefficients u;, j = ny, + 1,1, +2,...,n, + ny, so that the second term interpolates the boundary

data on 9Qp. We also introduce a set of pressure basis functions {t;} and set

p
Ph = Zpki/uc-
k=1

Using the backward Euler method for the time derivative and substituting into Eq. (4), one obtains the
following system of nonlinear equations in tensor notation:

gij (uf —uf ™) + crufui + aiguf + baq = sij f, )

blju;? =0.

Here, n represents discretized time, 4,5 = 1,2,...,ny, and I = 1,2,...,n,. The operators ¢;;, a;j, bjs,
represent sparse matrices defined as follows:

¢ij € R™*™ = mass matrix = é /Q D, P
a;; € R™*™ = diffusion operator = / Vo, :Vao,,
Q

bi; € R = divergence operator = [ (V- ¢;).

Q
The operator c;;i; is a sparse three-dimensional tensor defined as follows:
Ciji, € RMeX XM — convection operator = / (b1 V,)- ;.

Q

Solution of the nonlinear system of equations, Eq. (5), can be carried out efficiently using Picard’s method
or Newton’s method, both of which require iteration. The operators defined above are independent of the
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solution variables, and they only depend on the test functions and the mesh. If we can store these operators
during the nonlinear iteration, then we would be able to save discretization time. The sparse matrices usually
do not represent a problem. The sparse tensor is the one that might consume a lot of memory, although it
is also sparse. To illustrate this fact, let ns be the number of points that live in the stencil of any internal
point ¢. We have to store a dense square matrix of size ngs X ng, while for the other operators we need to
store a sparse row vector with only n, nonzero entries. We have run simulations using up to 10° grid points
using a personal computer with 2 Gigabyte RAM without facing a problem with storing all the operators.
For larger problems, this remains an issue that we will discuss in the following section.

For the finite-element basis functions, we chose to work with stable rectangular elements (Q2 —Q1), where
we use biquadratic approximation for the velocity components, bilinear approximation for the pressure, and
stable triangular elements (P» — P;), where we use quadratic approximation for the velocity components and
linear approximation for the pressure.

D. Nonlinear Iteration

Picard’s method is a classical linearization procedure where we start with an ‘initial guess’ (u™?, p™°) and

construct a sequence of iterates {(u™™, p™™)} ‘hoping’ it converges to the solution of the weak formulation.
In this approach we approximate the nonlinear convection term as follows:

m n,m-+1
3

c(u™,u",v) = c(u™™, u v).

We then define the operator

mo__ . n,m

Cij = CZJkuk s
which is a sparse matrix that we can store easily. However, in order to construct it, we have either to discretize
the convection operator using u™™ at the beginning of every nonlinear iterate m + 1, or we can store the
tensor ¢;;; and get the matrix ¢} by a tensor-vector product operation. The first approach consumes time
and the second one consumes memory. In order to resolve this issue, we chose to approximate the convection
operator as follows:

c;’; ~ u?’m . /Q(;SZ . V(;Sj.

We refer to this approximation as a ‘tensor-free’ approach. It leads to a sparse matrix given by

& = / b -Veb,.
Q

which can be stored easily and possibly save even the time of the tensor-vector multiplication in the second
approach mentioned above.

To test this approximation, we carried out two simulations for the unsteady flow over a cylinder at
Re = 1200. In the first one, we stored the tensor, and in the second, we used the tensor-free approach.
We compared the results with experimental data®. As Figure 1 shows, the solutions obtained using both
approaches are nearly the same.

III. Solution of the Linearized System

The linear system we need to solve within each iteration of Picard’s method has the following generic

form:
] [ ) ‘| )
p )

Such systems are indefinite and call for special iterative techniques in order to achieve convergence’. The
coeflicient matrices are also nonsymmetric. We solve these systems using GMRES, which is a Krylov subspace
method for the solution of nonsymmetric systems. However, for GMRES to be viable, we need an efficient
preconditioner to ensure GMRES will converge in a reasonable number of iterations. To motivate such a
preconditioner, we first look at the block LU-decomposition of the coefficient matrix, K, of Eq. (6):

F BT
B 0

T T
K = FB = LU, where L := ! 0 and U := F B
B 0 BF~! T 0 —-BF'BT
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Figure 1. Validating the convection operator approximation using the flow over a cylinder at Re = 1200.

If we would choose U as a preconditioner, then all the eigenvalues of the preconditioned matrix L = KU !
are equal to 1 and have Jordan blocks of size at most 2. This implies that the GMRES algorithm would
need only two steps to compute the solution to the preconditioned problem, independent of the mesh size
or Reynolds number. Unfortunately, using U is prohibitive since it requires the action of the inverse of
the Schur complement S := BF~'BT, which is usually too expensive to compute. So we use a suitable
approximation to the Schur complement instead. We chose to obtain such an approximation by using the
so-called least-squares commutator preconditioner. It approximates the Schur complement matrix as follows:

S =BF'BT ~ (BQ'BT)(BQ'FQ'BT) Y (BQ'B™).

Here @ is the mass matrix defined in section II-C. The remaining step is to apply the action of the inverse of
the preconditioner. For that reason, it is not practical to work with Q! since it is a dense matrix. Instead,
the mass matrix Q is replaced with the diagonal approximation Q = diag(Q). The resulting approximation
Mg to S is thus defined as follows:

MS — (BQ71BT)(BQ71FQ713T)71(BéleT). (7)

The inverse of the matrix Mg is given by

Mgt = (BQT'B")N(BQT'FQT'BT)(BQT'BT) ! (8)
and the right-preconditioned linear system is as follows:

- B0 a0l

The least-squares commutator preconditioning involves two discrete Poisson solves, matrix-vector products
with the matrices B, BT, F, and (the diagonal matrix) Qfl, and one discrete convection-diffusion solve.

Note that the use of an inexact solver has no impact on the asymptotic convergence behavior of Picard’s
method, but it saves computational time. By inexact solver we mean that we run the GMRES algorithm
until the residual is reduced by only 2 orders of magnitude, i.e.

F BT
0 —Ms

F BT
0 —Ms

F BT

B 0 9)

[|r|]2
|Irol[2

<1072

where r represents the residual vector of Eq. (6).

5of 11

American Institute of Aeronautics and Astronautics



Since we are interested in fast iterative solvers, we solve the discrete Poisson equation using the Precon-
ditioned Conjugate Gradient method (PCG) with SSOR as a preconditioner. We remark that by employing
Eisenstat’s trick”, the SSOR preconditioner can be implemented very efficiently. This implementation has
nearly the same cost as the Conjugate Gradient (CG) algorithm without preconditioning. For the solution
of the discrete convection-diffusion equation we use the Transpose-Free Quasi Minimal Residual (TFQMR)
algorithm by Freund® with directional block Gauss-Seidel as a preconditioner.

IV. Mesh Adaption

Our solver is coupled with a fast adaptive grid generator. We start the simulation with a base mesh
(Mesh A) that has enough points just to define the boundaries of the domain. This mesh is quad-dominant.
Moreover, most of the quad elements of this mesh are squares. We refer to the non-square elements as
transition elements. For more details about the grid generator, we refer the reader to the previous work of
Ebeida and Davis!'0.

Algorithm: (Mesh Adaption)
Input: Mesh A, mesh B, solution variables defined at every node of mesh B from the last time step, ng € N,
r1, € R:=user-specified thresholds for refinement levels.

1. Calculate the gradient of the vorticity |Vw| using mesh B.

2. Map |Vw| from mesh A to mesh B.

3. Fori=1,2,...,ng do:
Merge transition elements for that refinement level with its corresponding fine region.
Refine any edge connecting two nodes (7, k) if the following condition is satisfied:

max { |Vwl|;, |Vw|i } > rr(3).
Interpolate the values of solution variables for the new point from mesh B.
end
4. Set mesh B to be the new refined mesh.

Output: new refined mesh B.

For the first time step, we run the simulation using the base mesh and after convergence, we set mesh B
to be the same as mesh A. We then run the mesh adaption technique and repeat the simulation for that time
step. So the first time step is simulated twice. The first one gives an approximate solution for the sake of
the spatial adaptation, and the second gives the solution using the adapted grid. An example for the output
of the mesh adaption algorithm is illustrated in Figure 2, using one refinement level.

o - ™
BE \
- ) < - | |
~ /
L = \ \
N
(a) Uniform grid and region to (b) Refinement results in hang- (c) Final mesh after elimina-
be refined ing nodes tion of all the hanging nodes

Figure 2. One refinement level applied to a subregion of the uniform base mesh.
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(a) (b) (©)

Figure 3. Merging transition elements.

We remark that a transition element is formed by an incomplete refinement of a square element. This
incomplete refinement is restricted here to either one or two neighboring edges of the square element. In the
first case, the square is transformed into a block of 2 quads and 1 triangle. In the later case, the square is
transformed into 3 quads.

Figure 3(a) shows that the transition elements will always lie between two levels of square elements. So if
we decide to refine a square element in the coarse region (marked with an ‘x’), a mesh quality problem will
result as illustrated in 3(b). The technique used to fix this problem is to merge all the transition elements
for that level. In other words, each block of transition elements is transformed into 4 square elements, as
shown in Fig 3(c).

This algorithm will be employed for refining and coarsening the mesh elements from the last refinement
step, although it is always refining the base mesh. Interpolating the variables from the last refined mesh
to the new refined one is crucial for preventing the dissipation of the vortices within the flow. Currently,
we do not adapt the mesh at every time step, but rather we chose to run this algorithm once within a
non-dimensional time interval of length 0.1.

V. Time-Step Control

In this section, we discuss an algorithm for the adaption of the time step, following the technique described
in''. Once the Reynolds number is specified, the grid is generated, and the test functions are chosen, the
solution of Egs. (1) and (2) depends only on the time step. Let h denote the time step at time ¢. Let u(t; h)
be the computed approximation of the exact velocity u*(t). If we know the order p of the method used in
approximating the time derivatives, then we have the following error estimate:

2r —1

" (t; g) —u’(t) ~ Hen <t; g) .

At each time step, we start with an initial guess H > 0 for the desired time step h and calculate the quantity

1
H +1

to+ H:H)—u(to+ H; = p

u(0+ ) ) u<0+ 72)2 NH

THT A gp ¢ e
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which approximates the ratio H/h. If rg > 2, then the error is large. On the other hand, if ry is too
small then we might want to increase the time step in order to reduce the simulation time. In the numerical
experiments reported in this paper, we chose to work with € = 1076 x |Ju(¢o)||]2 and an acceptable range
of 1.0 < rg < 5.0. If a value of ry exists in that range, we proceed to the next time step. If not, we set
H = 2h and re-simulate the last time step. Figure 4 shows the fast evolution of the time step H for a flow
over a cylinder at Re = 1200 with impulsive initial condition. The algorithm started with H = 2.6 x 10~*
and at approximately ¢t = 6.0 the algorithm set H to be 0.077.

0o

0.08

oo

0.08

0.0s

0.04

Time Step (H)

003

o002

om

3 1 5
Non-dimensional Time (t)

Figure 4. Evolution of time steps at the beginning of the simulation of flow over a cylinder at Re = 1200 with
impulsive initial condition.

VI. Test Cases

A. Unsteady Laminar Flow Over Two Vertical Cylinders at Re = 200

The goal of this simulation is to illustrate the ability of our code to simulate flow over multiple objects and
to accurately resolve the interaction of the vortices generated around each cylinder. Figure 5 shows the
interaction of the vortex shedding around each cylinder and how the vortices impact with each other at the
centerline preserving the symmetry of the flow. Vorticity contours overlaid onto the computational grid are
shown in Figure 5 for different instants in time (in seconds) from ¢ = 1 to ¢t = 20. At ¢t = 1, the viscous flow
of each cylinder is just beginning to shed. At ¢t = 4, the vortices near the centerline begin to interact. The
adaptation algorithm has correctly identified the vortices along with the interaction region and has refined
the grid in those regions. The contours and grid shown at ¢ = 8, 12, 16, and 20 further illustrate how the
adaptation algorithm has identified the multiple vortices in the domain and kept the grid refined in those
regions. It should also be noted that the solution and grid remained symmetric about the centerline between
the two cylinders indicating high spatial and temporal accuracy.

B. Unsteady Laminar Flow Over a NACA 0012 Airfoil at Re =800, a = 20°

Figure 6 shows the evolution of the vorticity and the grid produced during a simulation of the unsteady
incompressible flow around a NACA 0012 airfoil at Re = 800 and an angle of attack of 20 degrees. We
picked this case to test the capability of capturing the starting vortex and the steady vortex shedding.
Figure 6(a) shows the starting vortex generated near the trailing edge. Figure 6(b) illustrates how the grid
is adapted to track the starting vortex while it moves toward the outflow boundary. Figure 6(c) shows the
starting vortex while crossing the outflow boundary in a smooth way. Figures 6(d) and 6(e) display the
evolution of the airfoil vortex street.
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(e) t = 15.80

Figure 5. Evolution of grid and vorticity contours for flow over two vertical cylinders at Re = 200.
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Figure 6. Evolution of grid and vorticity contours for flow over a NACA 0012 airfoil at Re = 800, o = 20°.
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VII. Summary and Future Work

We presented a new Galerkin finite-element technique for the simulation of unsteady incompressible flows.
This technique employs a fast dynamic remeshing procedure to adaptively redistribute the grid points based
on the gradient of the vorticity calculated using the solution variables from the previous time step. A varying
time step is chosen based on an error estimation algorithm. Our technique allows the use of larger domains
without dramatically increasing the number of grid points. Efficient Galerkin finite-element discretization
is accomplished through the storage of the different operators associated with the Navier-Stokes equations
as sparse tensors. The use of fast iterative solvers, such as preconditioned GMRES, CG, and TFQMR, is
crucial for incompressible flows. Our technique still needs to be tested using unsteady flows at high Reynolds
numbers. Also, the extension to three-dimensional flows needs to be investigated.
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