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An implicit finite-element flow solver based on the Galerkin finite-element method is employed to study un-
steady laminar flow past single and multiple objects. A fast dynamic remeshing technique is used to control the
distribution of the mesh nodes during the unsteady simulation, thus minimizing (or even eliminating) the need
for adding artificial dissipation terms. The quad-dominant mesh generator coupled with this solver is based on a
Cartesian mesh with a conforming spatial decomposition. The dynamic remeshing technique preserves the qual-
ity of the elements during the refinement/coarsening process. A mixed Galerkin finite-element discretization
is used to generate the nonlinear system corresponding to the Navier-Stokes equations. After approximating
the time derivative by means of finite differences and applying Picard’s iteration, one obtains linear systems
of equations that need to be solved at each time step. The GMRES method combined with a least-squares
commutator as a preconditioner is employed for the solution of these linear systems. The time step is controlled
and adapted using an error estimation of the computed flow variables with respect to time. Results of several
numerical simulations are presented and validated against experimental and numerical studies to demonstrate
the viability of this new approach.
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1 Introduction

Incompressible flows play an important role in many areas, including aerodynamics, hydrody-
namics, and the simulation of manufacturing processes. Over the years, many techniques for
the numerical solution of the incompressible Navier-Stokes equations have been developed; see,
e.g., Gunzburger and Nicolaides (1993), Gresho and Sani (1998a,b), Hafez (2003), Elman et al.

(2005). In particular, the Galerkin finite-element method provides a rigorous and robust means
for devising high-order algorithms for unstructured grids. Methods of this type can be employed
to perform highly accurate simulations of flows around complex geometries, using grids that are
readily generated. Such high-order algorithms are attractive due to their ability to produce a
smaller error using relatively coarse meshes (Fidkowski et al. (2005), Nejat and Ollivier-Gooch
(2008)). However, high-order methods are more expensive than conventional second-order meth-
ods, on a per degree of freedom basis (Adjerid et al. (1995), Ainsworth (2004)). At the same
time, second-order techniques have to employ denser meshes than higher-order methods in order
to achieve comparable accuracy. Thus, for second-order algorithms, the use of adaptive grids is
crucial in order to reduce computational costs.

Over the last two decades, adaptive methods have stirred much interest in the engineering
community. For compressible flow applications, such methods are crucial because of the pressing
need for accurate computation of shock waves; see, e.g., Babuška et al. (1986), Flaherty et al.

(1989), Eriksson et al. (1998), Rannacher (1999). Adaptive methods offer a means for tackling
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complex flow problems at a reasonable cost and, at the same time, controlling the accuracy
of the numerical simulations. While spectacular results have been achieved for compressible
flow problems, progress for unsteady viscous incompressible flows has been more modest; see,
e.g., Hétu and Pelletiert (1992). For unsteady problems, a fast dynamic remeshing algorithm is
required. Mapping of variables from one mesh to another should be conservative and done in an
efficient way, otherwise the vorticity generated during the simulation will be dissipated and the
solution quality will deteriorate.

The method presented in this paper is based on a fast dynamic remeshing technique coupled
to a finite-element solver for unsteady viscous incompressible flows. The time-step during the
unsteady simulation is controlled and hence adapted via an error estimation procedure. The
proposed adaptive methodology is designed to transform an existing finite-element flow solver
into an adaptive one. To this end, the spatial and temporal adaptivity are kept completely
separate from the flow solver.

The paper is organized as follows. In Section 2, we review the governing equations and the
standard weak formulation using mixed finite elements and Picard’s iteration. Also, we discuss
various ways to handle the sparse convection tensor. In Section 3, we discuss the solution of the
resulting nonsymmetric linear systems by means of a suitably preconditioned GMRES algorithm
and compare the convergence of various iterative methods that are employed to efficiently im-
plement the preconditioner. The dynamic remeshing technique is presented briefly in Section 4,
and the control of the time step during the unsteady simulation is discussed in Section 5. The
methodology is validated in Section 6 by solving unsteady problems around single and multi-
ple bodies to clearly quantify improvements due to adaptivity. Finally, Section 7 provides some
concluding remarks.

2 Governing equations

In this section, we recall the governing equations and the approximation of the standard weak
formulation using mixed finite elements. For more details, we refer the reader to Gresho and
Sani (1998a) and Elman et al. (2005).

2.1 Unsteady incompressible Navier-Stokes equations

The equations describing unsteady incompressible flows in their non-dimensional form can be
written as follows:

∂q

∂t
+ q · ∇q−

1

Re
∇2q + ∇p = f ,

∇ · q = 0.
(1)

Equation (1) is posed on a given domain Ω, together with suitable conditions on the boundary
∂Ω of Ω. We assume that these boundary conditions are of the form

q = w on ∂ΩD and
1

Re

∂q

∂n
− n p = 0 on ∂ΩN , (2)

where ∂Ω = ∂ΩD ∪ ∂ΩN . Here, n denotes the outward-pointing normal to the boundary and w

is assumed to be a given function on the Dirichlet part, ∂ΩD, of the boundary. Note that we
need to specify the pressure p only on the Neumann part, ∂ΩN , of the boundary. We remark
that in the case of pure Dirichlet boundary conditions, i.e. ∂ΩD = ∂Ω, the pressure part p of
the solution of the Navier-Stokes problem described by equations (1) and (2) is only unique up
to a hydrostatic constant.
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The major difficulty in solving equation (1) lies in the coupling of the velocity and the pres-
sure through the incompressibility constraint. Unlike the case of compressible flows, where the
pressure is obtained from an equation of state, the pressure field in incompressible flows estab-
lishes itself instantaneously and must therefore be integrated implicitly in time. This reflects the
assumption that the speed of sound through incompressible flows is infinite.

2.2 Weak formulation

Let

L2(Ω) :=
{

u : Ω 7→ R
∣

∣

∣

∫

Ω
u2 <∞

}

denote the space of square-integrable Lebesgue functions, and let

H1(Ω) :=
{

u : Ω 7→ R
∣

∣

∣
u,
∂u

∂x
,
∂u

∂y
∈ L2(Ω)

}

denote the corresponding Sobolev space of functions that have square-integrable derivatives. The
usual solution space and test space are given by

H1
E :=

{

u ∈ H1(Ω)
∣

∣ u = w on ∂ΩD

}

and H1
E0

:=
{

v ∈ H1(Ω)
∣

∣ v = 0 on ∂ΩD

}

,

respectively. Then, the standard weak formulation of equations (1) and (2) is the problem to
find u ∈ H1

E and p ∈ L2(Ω) such that

∫

Ω

∂u

∂t
· v +

∫

Ω
(u · ∇u) · v +

1

Re

∫

Ω
∇u : ∇v +

∫

Ω
p (∇ · v) =

∫

Ω
f · v for all v ∈ H1

E0
,

∫

Ω
q (∇ · u) = 0 for all q ∈ L2(Ω).

(3)

Here, ∇u : ∇v denotes the component-wise scalar product, which in two dimensions is given by

∇u : ∇v := ∇ux · ∇vx + ∇uy · ∇vy.

Note that in equation (3), the nonlinear convection term is represented by the trilinear form

c : H1
E ×H1

E ×H1
E0

7→ R. c(z,u,v) :=

∫

Ω
(z · ∇u) · v.

The other terms in equation (3) are described by bilinear forms; for example, the diffusion term
is represented by

a : H1
E ×H1

E0
7→ R, a(u,v) :=

1

Re

∫

Ω
∇u : ∇v.

2.3 Mixed finite-element approximation

A discrete approximation of the weak formulation is obtained by replacing the infinite-
dimensional spaces H1

E, H1
E0

, and L2(Ω) in equation (3) by suitably chosen finite-dimensional

subspacesXh
E ⊂ H1

E, Xh
0 ⊂ H1

E0
, and Mh ⊂ L2(Ω). The discrete problem then is to find uh ∈ Xh

E
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and ph ∈Mh such that

∫

Ω

∂uh

∂t
· v +

∫

Ω
(uh · ∇uh) · v +

1

Re

∫

Ω
∇uh : ∇v +

∫

Ω
ph(∇ · v) =

∫

Ω
f · v for all v ∈ Xh

0 ,

∫

Ω
q(∇ · uh) = 0 for all q ∈Mh(Ω).

(4)

Implementation of this approach entails defining appropriate bases for the finite-element
spaces, leading to a nonlinear system of algebraic equations. To this end, we use a set of vector-
valued basis functions {φj }, so that

uh =

nu
∑

j=1

ujφj +

nu+n∂
∑

j=nu+1

ujφj and

nu
∑

j=1

ujφj ∈ Xh
0 .

We fix the coefficients uj , j = nu + 1, nu + 2, . . . , nu + n∂ , so that the second term interpolates
the boundary data on ∂ΩD. We also introduce a set of pressure basis functions {ψk } and set

ph =

np
∑

k=1

pkψk.

Employing the backward Euler method to approximate the time derivative in equation (4), one
obtains a system of of nonlinear equations, which in tensor notation is given as follows:

qij

(

un
j − un−1

j

∆t

)

+ cijku
n
j u

n
k + aiju

n
j + bilql = qijfj,

blju
n
j = 0,

(5)

where i, j = 1, 2, . . . , nu and l = 1, 2, . . . , np. Moreover, the superscript n is used to donate the
solution at the n-th time step. The operators qij, aij , bji represent sparse matrices defined as
follows:

qij ∈ Rnu×nu = mass matrix =

∫

Ω
φj · φi,

aij ∈ Rnu×nu = diffusion operator =

∫

Ω
∇φj : ∇φi,

blj ∈ Rnp×nu = divergence operator =

∫

Ω
ψl(∇ · φj).

The operator cijk is a sparse three-dimensional tensor defined as follows:

cijk ∈ Rnu×nu×nu = convection operator =

∫

Ω
(φk · ∇φj) · φi.

Solution of the nonlinear system of equations (5) can be carried out efficiently using Picard’s
method or Newton’s method, both of which are iterative procedures. The operators defined
above are independent of the solution variables. They only depend on the test functions and
the employed mesh. Hence these operators are calculated once and updated for each new mesh.
Storage of these operators might introduce a problem for large mesh sizes. In this case, the 3D
tensor is the one that might consume a lot of memory, although it is also sparse. To illustrate
this fact, let ns be the number of points that live in the stencil of any internal point i. For this
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node, the 3D tensor stores a dense square matrix of size ns × ns, while the other operators only
store a sparse row vector with only nu nonzero entries. In our simulations, the number of nodes
in the mesh can go up to 105 using a personal computer with 2 Gigabyte RAM without facing a
storage problem with storing all the operators. For larger problems, this remains an issue that
we will discuss in the following section.

In order to avoid stability issues, we chose to work with mixed finite elements for the velocity
components and the pressure. More precisely, for rectangular elements, we use biquadratic ap-
proximations (Q2) for the velocity components and bilinear approximations (Q1) for the pressure
field. A similar approach is followed for the triangular elements, where we use quadratic approx-
imations (P2) for the velocity components and linear approximations (P1) for the pressure field.
Isoparametric mapping is employed to enable the integration over the corresponding reference
elements. Gauss quadrature is then used to evaluate the integrals within the various operators.
For more details about the construction of the Galerkin system, we refer the reader to Ebeida
(2008).

2.4 Nonlinear iteration

Picard’s method is a classical linearization procedure that starts with an ‘initial guess’,
(un,0, pn,0), and then constructs a sequence of iterates { (un,m, pn,m) } until it converges to the
solution of the weak formulation. In this approach, we approximate the nonlinear convection
term as follows:

c(un,un,v) ≈ c(un.m,un,m+1,v).

We then define the operator

cmij = cijku
n,m
k ,

which is a sparse matrix that can be stored easily. However, in order to construct it, we have
either to discretize the convection operator using un,m at the beginning of every m-th nonlinear
iteration, or we can store the tensor cijk and get the matrix cmij by a tensor-vector product
operation. The first approach consumes time and the second one consumes memory. In order to
resolve this issue, we chose to approximate the convection operator as follows:

cmij ≈ u
n,m
i ·

∫

Ω
φi · ∇φj .

We refer to this approximation as a ‘tensor-free’ approach. It leads to a sparse matrix given by

c∗ij =

∫

Ω
φi · ∇φj,

which reduces the storage requirements significantly and saves the computational time consumed
by the tensor-vector multiplication required during the conservative approach mentioned above.

We validated this non-conservative approximation using the unsteady flow over a cylinder at
Reynolds number Re = 1200 with an impulsive initial condition, Figure 1 shows the velocity
distribution in the wake at non-dimensional time t̄ := tU/L = 2.9 and the evolution of the
maximum velocity in the wake during the first four non-dimensional time units t̄. Here, L and
U denote the characteristic length and velocity, respectively, for this flow problem. The results
obtained using the tensor-free approximation are compared to the results obtained using the
conservative formulation as well as the experimental data published by Nagata et al. (1985).
The comparison shows that the solutions obtained using both approaches are nearly the same
and in good agreement with the experimental data.
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(a) Velocity distribution in wake at tU/L = 2.9 (b) Evolution of max velocity in wake with time

Figure 1. Validating the convection operator approximation using the flow over a cylinder at Re = 1200 using the results
obtained from the conservative formulation and the experimental data obtained by Nagata et al. (1985).

3 Solution of the linearized system

In this section, we discuss the solution of the nonsymmetric linear systems that arise within the
nonlinear iteration.

3.1 Preconditioning of the nonsymmetric linear systems

The linear system we need to solve within each iteration of Picard’s method has the following
generic form:

[

F BT

B 0

] [

u

p

]

=

[

f∗

g

]

. (6)

We remark that the submatrix F is nonsymmetric. Thus the coefficient matrix of the linear
system in equation (6) is also nonsymmetric. Moreover, the matrix is indefinite, and iterative
techniques combined with efficient preconditioning are required to achieve satisfactory conver-
gence; see, e.g., Saad (2003). In our simulations, we employ preconditioned GMRES (Saad and
Schultz (1986)), which is a Krylov subspace method for the solution of general nonsymmetric
linear systems.

To motivate our choice of preconditioning, we first look at the block LU -decomposition of the
coefficient matrix, K, of equation (6):

K :=

[

F BT

B 0

]

= L0U0, where L0 :=

[

I 0
BF−1 I

]

and U0 :=

[

F BT

0 −BF−1BT

]

.

If we would choose U0 as a preconditioner, then all the eigenvalues of the preconditioned matrix
L = KU−1

0 are equal to 1 and have Jordan blocks of size at most 2. This implies that the
preconditioned GMRES algorithm would never need more than two iterations to compute the
solution of the linear system in equation (6). Unfortunately, using U0 is not an option since it
requires the action of the inverse of the Schur complement S := BF−1BT , which is usually too
expensive to compute. Instead, we employ a suitable approximation to the Schur complement.
To this end, we use the so-called least-squares commutator preconditioner (Elman et al. (2007)).
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It approximates the Schur complement S as follows:

S = BF−1BT ≈ (BQ−1BT )(BQ−1FQ−1BT )−1(BQ−1BT ).

Here, Q = [qij] is the mass matrix defined in Section 2. The remaining step is to apply the action
of the inverse of the preconditioner. For this step, it is not practical to work with Q−1 since it
is a dense matrix. Instead, the mass matrix Q is replaced with the diagonal approximation
Q̂ = diag(Q). The resulting approximation MS to S is thus defined as follows:

MS := (BQ̂−1BT )(BQ̂−1FQ̂−1BT )−1(BQ̂−1BT ).

The inverse of the matrix MS is given by

M−1
S := (BQ̂−1BT )−1(BQ̂−1FQ̂−1BT )(BQ̂−1BT )−1

and the right-preconditioned linear system is as follows:

[

F BT

B 0

] [

F BT

0 −MS

]

−1 [
u∗

p∗

]

=

[

f

g

]

,

[

u∗

p∗

]

=

[

F BT

0 −MS

] [

u

p

]

.

The implementation of this Least-Squares Commutator Preconditioner (LSCP) involves two
discrete Poisson solves, matrix-vector products with the sparse matrices B, BT , F , and the
diagonal matrix Q̂−1, and one discrete convection-diffusion solve.

Note that the use of an inexact solver has no impact on the asymptotic convergence behavior
of Picard’s method, but it saves computational time. By inexact solver we mean that we run the
GMRES algorithm until the residual is reduced by only 2 orders of magnitude, i.e.

||r||2 ≤ 10−2 × ||r0||,

where r represents the residual vector of equation (6).
Since we are interested in fast iterative solvers, we solve the discrete Poisson equation using the

Preconditioned Conjugate Gradient method (PCG) with SSOR as a preconditioner. We remark
that by employing a trick due to Eisenstat (1981), the SSOR preconditioner can be implemented
very efficiently. This implementation has nearly the same cost as the Conjugate Gradient (CG)
algorithm without preconditioning. For the solution of the discrete convection-diffusion equation
we use the Transpose-Free Quasi Minimal Residual (TFQMR) algorithm by Freund (1993) with
directional block Gauss-Seidel as a preconditioner.

3.2 Test problems for the iterative solvers

The LSCP involves solving two discrete Poisson equations with a symmetric positive definite
coefficient matrix and a convection-diffusion equation with a nonsymmetric matrix. Hence, dif-
ferent methods are employed for solving these two different systems. In this section, we use two
test problems to illustrate some properties of the iterative methods that can be used to solve
the linear systems arising within the application of the LSCP preconditioner.

In particular, our gaol is to show the dependence of the convergence rate of these methods on
the number of nodes in the mesh used in the discretization. In the case of solving the convection-
diffusion equation, we also want to check the effect of the Reynolds number on the convergence
of the utilized iterative method.
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(a) Mesh 1 (8,604 Nodes) (b) Mesh 3 (101,702 Nodes) (c) Final solution

Figure 2. Potential flow over a circular cylinder using the stream function.

3.2.1 A symmetric positive definite linear system

Consider the problem

−∇2ψ = 0,

which arises in the simulation of inviscid flow around a circular cylinder using the stream func-
tion. The corresponding linear system is symmetric positive definite. We used three meshes (with
8, 604, 27, 700, 101, 702 nodes) to discretize this equation. Figure 2 shows the smallest and the
largest of the three meshes employed, as well as the final solution. When creating the meshes,
more nodes were added near the boundary representing the circular cylinder. This is the reason
why the two meshes shown in Figure 2 look the same in the far field. The corresponding discrete
Poisson problem is solved using multigrid (MG), Conjugate Gradients (CG), Preconditioned
Conjugate Gradients (PCG) with SSOR as a preconditioner, and the classical Gauss-Seidel iter-
ative method. As shown in Figure 3, the convergence rate of MG was not affected by increasing
the number of nodes in the mesh, which is one of the key properties of MG. CG on the other
hand is slightly affected by the increased number of nodes. PCG with SSOR preconditioning
nearly cuts the number of iterations in half, without essentially any additional costs due to the
use of Eisenstat’s trick. Comparing MG and CG to the classical Gauss-Seidel method shows the
superiority of these non-stationary methods.

3.2.2 A nonsymmetric linear system

Consider the problem

u
∂ρ

∂x
+ v

∂ρ

∂y
−

1

Re
∇2ρ = 0.

This is a convection-diffusion problem where the wind velocity is specified everywhere in a
box domain with Drichlet and Neumann boundary conditions. The corresponding linear system
is nonsymmetric. We used three meshes (with 8, 673, 17, 381, 34, 793 nodes) to discretize this
equation. When creating these meshes, more nodes were added near the boundary representing
the solid surfaces. Figure 4 shows the smallest of the three meshes, as well as the final solution
for Reynolds numbers Re = 102, Re = 103, and Re = 104. For this case, we want to check
the influence of increasing the number of mesh points as well as increasing the value of Re.
Figure 5 shows the convergence rates for the different iterative methods at a fixed Reynolds
number while increasing the number of the nodes in the mesh. On the other hand, Figure 6
illustrates the effect of varying the Reynolds number on the convergence rates for the different
iterative methods using the same mesh. Note that successive line over-relaxation (SLOR) was
implemented in MG as a smoother instead of the damped Jacobi method utilized while solving
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(a) Multigrid (b) CG method

(c) PCG method with SSOR (d) Gauss-Seidel method

Figure 3. Convergence history for different methods applied to the discrete Poisson equation.

(a) Mesh with 8673

nodes

(b) Re = 102 (c) Re = 103 (d) Re = 104

Figure 4. Mesh + Solution of the discrete convection-diffusion problem.

the symmetric positive definite system. SLOR was also utilized in GMRES and TFQMR as a
preconditioner. The results show that MG is the optimal method to solve such a problem. The
convergence rate of MG was slightly affected by increasing the Reynolds number and was not
affected at all by increasing the number of nodes in the mesh. As one would expect, GMRES
performs better compared to TFQMR but as the number of nodes increases, the number of
iterations increases as well.
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(a) Multigrid (b) GMRES

(c) TFQMR (d) SLOR

Figure 5. Convergence history for different methods applied to the discrete convection-diffusion equation at Re = 104.

4 Adaptive dynamic remeshing

Our solver is coupled with a fast adaptive dynamic remeshing technique. We start the simulation
with a base mesh Mb, which has just enough nodes to define the boundaries of the domain. This
mesh is crack-free and quad-dominant, and most of the quadrilaterals are squares. We refer to
the non-square elements as transition elements. For more details about generating such a base
mesh, we refer the reader to the previous work of Ebeida and Davis (2008).

In our implementation we used the gradient of the vorticity as the error-related function.
Note that during the first time step of the dynamic remeshing algorithm, Mb and Ms are
the same. Hence after we obtain a refined mesh corresponding to that time step, we repeat
the simulation using the refined mesh. So the first time step is simulated twice. The first one
gives an approximate solution for the sake of the spatial adaptation, and the second gives the
solution using the adapted mesh. An example for the output of the mesh adaptation algorithm
is illustrated in Figure 7, using one refinement level.

We remark that a transition element is formed by an incomplete refinement of a square element.
This incomplete refinement is restricted here to either one or two neighboring edges of the square
element. In the first case, the square is transformed into a block of two quads and one triangle.
In the later case, the square is transformed into three quads.

Figure 8(a) shows that the transition elements will always lie between two levels of square
elements. So if we decide to refine a square element in the coarse region (marked with an ‘×’),
a mesh quality problem will result, as illustrated in Figure 8(b). The technique used to fix this
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(a) Multigrid (b) GMRES

(c) TFQMR (d) SLOR

Figure 6. Convergence history for different methods applied to the discrete convection-diffusion using 8673 nodes.

(a) Uniform mesh and region

to be refined

(b) Refinement results in

hanging nodes

(c) Final mesh after elimina-

tion of all the hanging nodes

Figure 7. One refinement level applied to a subregion of the uniform base mesh.

problem is to merge all the transition elements for that level. In other words, each block of
transition elements is transformed into four square elements, as shown in Figure 8(c).

This algorithm is employed for refining and coarsening the mesh elements from the last re-
finement step, although it is always refining the base mesh. Interpolating the variables from the
last refined mesh to the new refined one is crucial for preventing the dissipation of the vortices
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Algorithm 1 (Adaptive Dynamic Remeshing)

Input : Coarse base mesh Mb, refined solution mesh Ms, discrete error-related function f
defined on Ms, rL ∈ RnR :=user-specified thresholds for nR refinement levels.

Create a copy of Mb and denote it Mo.

for i = 1 to nR do

Project f from Ms to Mi−1.
Merge all the transition elements Mi−1 of between refinement levels, i− 1 and i.
Refine any element in Mi−1 at the refinement level i − 1 if the maximum value of f over
that element exceeds the threshold rL(i).
Create new transition elements between the refinement levels i and i− 1 to obtain a refined
conformal mesh Mi.

end for

Map the solution variables using a conservative interpolation scheme from Ms to MnR
.

Output : New refined mesh, MnR
, with a more convenient node distribution for simulating the

next time step.

(a) Two coarse elements to be

refined

(b) Hanging nodes might be cre-

ated

(c) Merging of transition ele-
ments

Figure 8. Merging of transition elements during refinement of Coarse level elements to avoid the creation of hanging nodes.

within the flow. Currently, we do not adapt the mesh at every time step, but rather we chose
to run this algorithm whenever the number of the mesh elements that should be refined exceeds
4% of the total number of elements.

5 Time-step control

In this section, we discuss an algorithm for the adaption of the time step, following the technique
described in Stoer and Bulirsch (2002). Once the Reynolds number is specified, the grid is
generated, and the test functions are chosen, the solution of equations (1) and (2) depends only
on the time step. Let h denote the time step at time t. Let u(t;h) be the computed approximation
of the exact velocity u∗(t). If we know the order p of the method used in approximating the time
derivatives, then we have the following error estimate:

u
(

t;h/2
)

− u∗(t) ≈
u
(

t;h
)

− u
(

t;h/2
)

2p − 1
.
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At each time step, we start with an initial guess H > 0 for the desired time step h and calculate
the quantity

rH :=

(

2p

2p − 1

∥

∥u
(

t0 +H;H
)

− u
(

t0 +H;H/2
)∥

∥

2

ǫ

)

1

p+ 1
≈
H

h
,

which approximates the ratio H/h. If rH ≫ 2, then the error is large. On the other hand, if rH is
too small, then we might want to increase the time step in order to reduce the simulation time.
In the numerical experiments reported in this paper, we chose to work with ǫ = 10−6 ×||u(t0)||2
and an acceptable range of 1.0 < rH < 5.0. If a value of rH exists in that range, we proceed to
the next time step. If not, we set H = 2h and re-simulate the last time step. Figure 9 shows
the fast evolution of the time step H for a flow over a cylinder at Re = 1200 with impulsive
initial condition. The algorithm started with H = 2.6 × 10−4 and at approximately t = 6.0 the
algorithm set H to be 0.077.

Figure 9. Evolution of time steps at the beginning of the simulation of flow over a cylinder at Re = 1200 with impulsive
initial condition.

6 Numerical results

In this section, we present numerical results for two test problems to validate our proposed
methodology.

6.1 Cross-flow over two parallel cylinders at Re = 200

The goal of this simulation is to illustrate the ability of our approach to simulate flow over
multiple objects and to accurately resolve the interaction of the vortices generated around each
cylinder. Figure 10 shows the interaction of the vortex shedding around each cylinder and how
the vortices impact each other at the centerline while preserving the symmetry of the flow.
Vorticity contours overlaid onto the computational mesh are shown in Figure 10 for different
instants in time (in seconds) from t = 1 to t = 20. At t = 1, the viscous flow of each cylinder
is just beginning to shed. At t = 4, the vortices near the centerline begin to interact. The
adaptation algorithm has correctly identified the vortices along with the interaction region and
has refined the mesh in those regions. The contours and mesh shown at t = 8, 12, 16, and 20
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further illustrate how the adaptation algorithm has identified the multiple vortices in the domain
and kept the mesh refined in those regions. It should also be noted that the solution and the
mesh remained symmetric about the centerline between the two cylinders indicating high spatial
and temporal accuracy. The computed time history of the total lift and the total drag coefficients
are presented in Figure 11. The oscillatory pattern corresponds to the shedding of the vortices
and shows an important feature of this flow (Farrant et al. (2000)): the vortex shedding starts
initially in symmetrical anti-phase mode and then after some time, it shifts to be in phase.

(a) t = 1.00 (b) t = 4.00 (c) t = 8.00

(d) t = 12.00 (e) t = 16.00 (f) t = 20.00

Figure 10. Evolution of mesh and vorticity contours for flow over two vertical cylinders at Re = 200.

6.2 Unsteady Laminar Flow Over a NACA 0012 Airfoil at Re = 800, α = 20◦

Figure 12 shows the evolution of the vorticity and the mesh produced during a simulation of the
unsteady incompressible flow around a NACA 0012 airfoil at Re = 800 and an angle of attack
of α = 20◦. The domain of this problem is 11 units in length and 20 units in height. These
are non-dimensional units relative to the chord length of the airfoil. The trailing edge is located
at the origin. The lower left corner of the domain is located at (−5,−10). For this case we set
Re = 800, which forces the flow to be unsteady. The initial condition for the simulation was
an impulsive flow at t = 0. As Figure 12 shows, an initial vortex is generated near the trailing
edge of the airfoil followed by a sequence of vortices. The vortex shedding is the reason for
the fluctuations in the generated lift and drag. The initial vortex reaches the boundaries of the
domain at non-dimensional time tU/L = 12.0, while the transition phase decays at tU/L = 30.0.
Here, L and U denote the characteristic length and velocity, respectively, for this flow problem.
We picked this case to demonstrate the capability of the dynamic remeshing technique to capture
the starting vortex and the steady vortex shedding. The computed time history of the total lift
and the total drag coefficients are presented in Figure 13. Note that the oscillatory pattern is
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Figure 11. Evolution of the force coefficient with time for the flow over two vertical cylinders at Re = 200.

due to the shedding of the vortices. The computed corresponding Strouhal number, based on
the foil chord, is approximately 0.54.

7 Concluding remarks

We presented a new Galerkin finite-element technique for the simulation of unsteady incompress-
ible flows. This technique employs a fast dynamic remeshing procedure to adaptively redistribute
the mesh points based on the gradient of the vorticity calculated using the solution variables from
the previous time step. A varying time step is chosen based on an error estimation algorithm.
Our technique allows the use of larger domains without dramatically increasing the number of
nodes in the mesh. Efficient Galerkin finite-element discretization is accomplished through the
storage of the different operators associated with the Navier-Stokes equations as sparse tensors.
The use of fast iterative solvers, such as preconditioned GMRES, CG, and TFQMR, is crucial
for incompressible flows. Our technique still needs to be tested using unsteady flows at high
Reynolds numbers, which we plan to do in future work. Also, we will investigate the extension
of the approach in this paper to three-dimensional flows.
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