
Power Grid Analysis Using a Flexible Conjugate
Gradient Algorithm with Sparsification
Peter Feldmann

IBM T. J. Watson Research Center
1101 Kitchawan Rd.

Yorktown Heights, NY 10598
Email: feldmann@watson.ibm.com

Roland W. Freund
Department of Mathematics

University of California, Davis
One Shields Avenue

Davis, CA 95616
Email: freund@math.ucdavis.edu

Emrah Acar
IBM Austin Research Lab

1101 Kitchawan Rd.
Yorktown Heights, NY 10598

Email: emrah@us.ibm.com

Abstract— In this paper, we present a flexible conjugate gradi-
ent method that is tailored to the solution of the truly large-scale
linear systems arising in VLSI power grid analysis. The algorithm
allows changing preconditioners and sparsification of the search
direction at each iteration. As a consequence, this variant
of the conjugate gradient algorithm becomes compatible with
implementations that avoid the modeling and representation of
numerically irrelevant portions of the problem, and take natural
advantage of the local and sparse nature of the solutions. The
paper presents the flexible conjugate gradient algorithm in detail
and explores strategies for preconditioning and sparsification.
The algorithm is applied to a number of realistic power grid
examples.

I. INTRODUCTION

The design and verification of today’s very large-scale in-
tegrated (VLSI) circuits involve some extremely challenging
numerical problems. One of the truly large-scale problems in
this area is power grid analysis. Power grids are modeled as
networks with up to tens of millions nodes. Due to the use
of Controlled Collapse Chip Connections, (C4), also called
Solder Bumps in packaging, the internal chip power grid is
connected to the board level power supply network not only
on the periphery but at points distributed across the entire
surface of the chip.

Steady-state analysis of power grids requires the solution of
correspondingly large sparse symmetric positive definite linear
systems. The coefficient matrices of these systems have the
structure of weighted Laplacians on three-dimensional grids,
but with ‘boundary’ conditions given on a subset of the interior
grid points, (the points corresponding to the C4s).

The architecture of the power grid, distributed on sev-
eral metal layers, each characterized by different wire cross-
sections, connected by vias with varying electrical properties
leads to widely varying Laplacian weights. Strongly-varying
weights and the interior boundary conditions have the effect
that solutions of these linear systems are often very localized.

These characteristics explain the relative success of random
walk methods for power grid analysis [2], [3]. These methods
avoid the explicit representation of the power grid analysis
problem in terms of matrices and vectors and take natural
advantage of solution locality. On the other hand, from a
computational point of view, random walk algorithms are

known to be inefficient and have poor and unreliable conver-
gence properties especially in comparison with powerful pre-
conditioned Krylov-subspace iterative methods and algebraic
multigrid techniques[1]. As a consequence, we can expect
important gains, from properly adapting the numerically more
sophisticated techniques in ways that exploit the locality of the
solution and avoid representing numerically irrelevant portions
of the problem.

In this paper, we present a flexible conjugate gradient
method that is tailored to the solution of the truly large-
scale linear systems arising in VLSI power grid analysis. The
algorithm allows changing preconditioners and sparsification
of the search direction at each iteration. These are the key
features to exploit the local nature of the solutions.

The remainder of the paper is organized as follows. In
Section II, we briefly describe the problem of DC analysis
of power grids and the resulting linear algebra problem. In
Section III, we review some basic properties of the classical
conjugate gradient (CG) method for solving symmetric pos-
itive definite systems of linear equations. In Section IV, we
introduce a new flexible variant of CG, referred to as FCG
in the sequel, that allows sparsification of the search direction
at each iteration. In Section V, we present some theoretical
properties of FCG. In Section VI, we discuss some practical
details for the use of FCG. In Section VII, we report the results
of numerical experiments with FCG. Finally, in Section VIII,
we make some concluding remarks.

II. POWER GRID DC ANALYSIS

Figure 1 shows one representative node in a power grid. At
such a node

�
, by Kirchhoff’s current law, Kirchhoff’s voltage

law, and Ohm’s law, we have the equation��������
	���� ������� ������ ��� ������	���� ������� � �!��" �$#��
(1)

for the unknown voltage

� �
at node

�
and the unknown

voltages

�!�
, %

"'&)(+*,(�-�-�-�(/.10�243 �,5
, at the nodes % adjacent to

�
.

The equations

36& 5
for all 7 nodes of the power grids can be

written in compact form as a system of linear equations8�9 "�:;-
(2)

g g

g
g

1

3

2

5

4

5

4

1

g
2

3

Ik

k

Fig. 1. Representative node in a power grid

Here
8

is a real symmetric positive definite 7�� 7 matrix,
:

is a real vector of length 7 , and the entries of the solution
vector

9
are the unknown voltages at each node of the power

grid. Recall that a real symmetric 7�� 7 matrix
8

is said to
be positive definite if

��� 8 ���	� for all ��
���
(
���

" � -
When the solution of the system is required as part of a
dynamic analysis of the network, when reactive elements are
also present, the structure of the problem is maintained in most
practical cases.

Recall, however, the structure of the network as described
in Section I. Due to the presence of the C4s, most of the
current drawn by one device in any given point of the chip
is going to be supplied mainly through the nearby C4s and
the voltage drop caused by this current will be confined in
the immediate neighborhood, and practically negligible outside
it. As a consequence, the computation of the voltage drops
should be done in ways that avoid constructing the entire
matrix

8
and the full representation of the voltage solution

9
,

which may require a computational and storage effort orders of
magnitude beyond what would be necessary given the structure
of the problem.

Alternatively sometimes the problem requires knowing the
voltage drop in only one or a few probing points. This problem
too can be solved by exploiting the “local” structure of the
problem. In this case we seek, e.g., one value selected by the
very sparse vector �

�
"
� � 9

"
� �

3 8�� � : 5 (
which can also be solved as

�
" 3 8�� � � 5 �

:;(
In other words the “locality” of the problem can be exploited
whenever either the excitation,

:
, or the probing of the

solution, � exhibit “locality”. These “local”, efficiently solvable
problems can also be used as building blocks in a more
comprehensive analysis schemes.

In the sequel, we present a solver algorithm capable of
operating with only the relevant portion of the circuit matrix8

, while actively maintaining the sparsity of the solution.

III. A BRIEF REVIEW OF CG

The classical conjugate gradient (CG) algorithm [4] is an
iterative method for the solution of symmetric positive definite
linear systems

3 * 5
. Next, we briefly review some of the key

properties of CG.
The method allows the choice of an arbitrary initial guess9��
�� � . We denote by � �

" : � 8�9��
the corresponding

initial residual, and by � �
" � � � ��� the Euclidean norm of � � .

The method is usually combined with preconditioning. A
preconditioner for the linear system

3 * 5
is a real symmetric

positive definite 7�� 7 matrix with the following two
properties. First, linear systems "!

"
with coefficient

matrix are ‘easy’ to solve, compared to the solution of
the original linear system

3 * 5
. Second, CG applied to the

preconditioned linear system$ 8 �
�
% �

" : (9 "
 �

�
�

(
(3)

should converge significantly faster than CG applied to the
original system

3 * 5
. Note that the linear systems

3 * 5
and

3'& 5
are equivalent.

Starting from the initial guess
9��

, CG generates a sequence
of iterates 9 � (9 � (�-�-�-�(9)((�-�-�-
that converge to the solution

9+* " 8 � � :
of the linear

system

3 * 5
. Moreover, at iteration , , the , -th CG iterate

9-(
is an optimal approximation to

9
in the following sense. At

iteration , , any vector 9
 9 �/.�0 (
(4)

is a possible choice for the iterate
9�(

. Here,
0 (

denotes the , -
dimensional subspace of � � spanned by the , Krylov vectors

 �
�
� �

($ �
� 8 % �

�
� �

(�-�-�-�($ �
� 8 % (�

�
 �

�
� �

-
We remark that

0 (
is called the , -th Krylov subspace induced

by the matrix �
� 8

and the vector �
�
� � . Among all

possible vectors

321 5
, the , -th CG iterate

9 (
is the one that

minimizes the distance to the solution
9

in the
8

-norm� 9 � 9 ��3 * " $ 3 9 � 9 5 � 8 3 9 � 9 5 %
�
4 � -

More precisely,
9 (

is the unique vector of the form

3'1 5
that

satisfies � 9)(� 9 � 3 "
57698:<;=:=>@?�A)B � 9 � 9 � 3 -

(5)

There are a number of different, but mathematically equiva-
lent implementations of CG. A compact formulation of the first, iterations of a version of CG based on three-term recursions
is as follows:8DCE("�F (HGI(.KJ (? �

L (# (?
�
M � (

(
CE("

 �
� F (- (6)

Here,
C (

is an 7 � , matrix whose columns form a basis
of the , -th Krylov subspace

0 (
,
G (

is an , � , nonsingular
tridiagonal matrix,

J (?
�
L (
 � , and M (denotes the , -th unit

vector in � (. Moreover, the columns of the matrices

F (
and

C (
are constructed such that the following orthogonality

relations hold true:

C � (
F (" C � (C (" �����

�
� � � ����� �
� � � . . .

...
...

. . .
. . . �� ����� � � (

�
				
�

-
(7)

Using the quantities in

3� 5
, the , -th CG iterate

9 (
can be

characterized as follows:9)(" 9 �/. C (�� ((
where

GI(�� ("
� � M

� -
(8)

Here, M
�

denotes the first unit vector in � (.
Note that, in view of the second relation in

3� 5
, the columns!�� of the matrix

C (
and the columns # � of the matrix

F (
are

connected via a solve with the preconditioner , i.e.,

!��
"
 �

�
�

(�� " & (*1(�-�-�-�(
,

-
(9)

IV. A FLEXIBLE VARIANT OF CG

In each iteration of standard CG, the preconditioner
is used to compute the vectors ! (via the solution of the
linear system "! (

"
(. Saad [5], with his flexible GMRES

(FGMRES) algorithm, was the first to devise a method that
allows a changing preconditioner (at each , -th iteration.
The basic idea is as follows. Instead of using

3� 5
with a fixed

matrix , at iteration , , the vectors ! (and # (are connected
via the relation ! (

"
 �

�
(# (

(
(10)

where (is a nonsingular matrix that is allowed to change
in each iteration. Note that FGMRES is an iterative method
for the solution of nonsymmetric linear systems. Here, we use
an approach similar to FGMRES to develop a flexible variant
of CG that allows not only changing preconditioning but also
sparsification of the iteration vectors. In fact, sparsification
is the key property of our algorithm for efficient power grid
analysis. We remark that other flexible variants of the CG
method have been proposed [6], [7]. We stress that these
variants are different from the flexible CG (FCG) algorithm
proposed here. In particular, the algorithms in [6], [7] are not
set up to allow sparsification.

Instead of a relation of the form

3 &
� 5 , at iteration , , we

generate vectors ! (and # (that are connected via

! (
"�� (# (- (11)

Here,

� (
is an 7 � 7 matrix of the form� ("�� 	 � (�

�
(
� 	 � ((

(12)

where (,

� 	 � (
,

� 	 � (
are 7 �;7 matrices and (is assumed

to be nonsingular. In

36&
* 5
, the matrix (is the preconditioner

for the linear system

3 * 5
to be solved. Note that (is allowed

to change at each iteration. However, we mostly use a fixed
preconditioner, i.e.,

 (
"
 for all ,

-
The purpose of the matrices

� 	 � (
and

� 	 � (
is to sparsify

the vector ! (by zeroing out small entries of # (via the
matrix

� 	 � (
and small entries of �

�
(
� 	 � (# (via the matrix

� 	 � (
. We stress that

� 	 � (
and

� 	 � (
depend on the size of the

entries of # (, and so in general, these matrices do change at
each iteration. Furthermore, we remark that the matrix

� (
is

singular in general, and that

� (
is not even required to be

symmetric.
First, we state the underlying recurrence relations of our

FCG algorithm in compact form, similar to the compact
form

3� 5
of standard CG. After the first , iterations, FCG

has generated the columns of the matricesF ("��
#
�
� ����� # (�� and

C ("��
!
�
! � ����� ! (��

-
These matrices are connected as follows:8 C ("�F (! (.#" (? �

L (# (?
�
M � (

(
C ("$� � �

#
�%� � # � ����� � (# (�� -

(13)

Here,
 (

is an ,	��, upper Hessenberg matrix,
" (?

�
L (
� , and M (denotes the , -th unit vector in � (. Moreover, the

columns of the matrices

F (
and

C (
are constructed such that

the following semi-biorthogonality relations hold true:

C � (
F (" �����

�
� � � ����� �
& � � . . .

...
...

. . .
. . . �& ����� & � (

� 				
�

-
(14)

Using the quantities in

3 & & 5
, the , -th FCG iterate

9�(
can be

characterized as follows:9)(" 9 �/. CE(�� ((
where

 (��-("
� � M

� -
(15)

Here, M
�

denotes the first unit vector in � (.
Next, we present the basic steps of an actual implementation

of FCG.

Algorithm 1 (Flexible Conjugate Gradient Method)

0) Choose an initial vector
9 �
 � � .

Set � �
" : � 8�9��

, � �
" � � � � � , and #

� "
� ��' � � .

1) For ,
"'& (*1(�-�-�-

, do:(Select

� (")� 	 � (�
�
(
� 	 � (

.(Compute ! (
"*� (# (.(Set

� ("
! � (# (.(Compute #

" 8 ! (.(For

� "'&)(+*,(�-�-�- (
, , do:

Set" � L (
" ! �� #� (and #

"
� # � " � L (

-
(16)

(Set
" (?

�
L (

" � # � � and # (?
�$"

' " (?
�
L (.(Set

C ("��
!
�
! � ����� ! (+� .

(Set
 (" � " � L � � � L �

� �
L � L������ L (.

2) Compute the solution
��(

of the , � , linear system (� ("
� � M

�
(17)

and set
9 (" 9�� . C (� (

.

V. SOME THEORETICAL PROPERTIES OF FCG

In this section, we present some properties of the FCG
method.

Let � (" ����� 8	� ! � (! � (�-�-�-�(! (�
 -
(18)

denote the subspace of � � spanned by the columns of the
matrix

C (
. In view of

36& � 5
, the , -th FCG iterate

9-(
is is of

the form 9)(
 9 �/.� (-
(19)

Then, using

3 & & 5
and the semi-biorthogonality relations

3 & 1 5
,

it is easy to verify that among all possible iterates
9
 9 � .�� (

,
the , -th FCG iterate

9)(
is the one that minimizes the distance

to the solution
9

in the
8

-norm. More precisely,
9-(

is the
unique vector of the form

36&�� 5
that satisfies� 9)(� 9 � 3 "
576 8:<;=:=> ?�� B � 9 � 9 � 3 -

(20)

Note that

3 *
� 5 is an extension of the optimality property

3 � 5
of

standard CG. However, we stress that, in general, the subspace� (
in

3 *
� 5 is no longer a Krylov subspace.

In Algorithm 1 there are two operations that potentially
could result in a breakdown, namely division by

� ("
� in

3 &�� 5
and the solution of the linear system

36& � 5
in the case

 (
is

singular. Next, we show that such breakdowns cannot occur
provided some weak assumptions are satisfied.

To ensure that
� (� � for all , , we choose the ‘right’ and

‘left’ sparsification matrices

� 	 � (
and

� 	 � (
in

3 & * 5
such that� 	 � ("�� (

and

� 	 � (" �
� (

-
Hence, the matrix

� (
in

36&
* 5
is of the form� (")�
� (�

�
(
� (-

(21)

Moreover, we assume that the preconditioner (in

3 *,& 5
is

indeed symmetric positive definite. Then, provided that the
sparsification matrix

� (
does not zero out all entries of the

vector # (, i.e., � (*
")� (# (�" � ((22)

we have� ("
! � (# (

"
�(
�
� (�

�
(
� (# ("

� �(�
�
(� (� �

-
(23)

Thus division by
� ("

� cannot occur. Furthermore, in view
of

3 & 1 5
, it also follows that the matrixC � (

F (
is nonsingular

-
(24)

In order to guarantee that the matrix
 �(

in

3 & � 5
is non-

singular, we only need the standard assumption (see [5]) that
the matrix

C (
has full column rank , . Indeed, by multiplying

the first relation

3 & & 5
from the left by

C � (and by using thatC � (# (?
� " �

, it follows thatC � (8DC (" $ C � (
F (% (-

(25)

Since
8

is symmetric positive definite and
C (

has full column
rank, the matrix on the left-hand side of

3 * � 5
is nonsingular.

Therefore, the matrix
 (

cannot be singular.

VI. SOME PRACTICAL DETAILS OF FCG

In this section, we present some practical details for the use
of FCG.

A. Sparsification

Recall from

3 & * 5
that the purpose of the matrices

� 	 � (
and

� 	 � (
is to sparsify the iteration vectors, i.e., to zero out the

small entries of these vectors. For example, the simplest choice
of the matrices

� 	 � (
and

� 	 � (
is diagonal matrices with zeros

and ones on the diagonal. Of course, in this case, we do not
explicitly set up the matrices

� 	 � (
or

� 	 � (
. Instead, we obtain

the sparsified vector

� (
" ����
�
�
�
� �
...� �

� 			
�

"�� 	 � (# (
(

where # (
" ����
�
� �� �
...� �

� 			
�

(

by setting

� �
"�� � � if � � � ������������ "! � � # (��� ,

� if � � �#��$��������� "! � � # (� � , (26)

for all

� " &)(+*1(�-�-�-�(
7 . Here, �&% �'������ �!($ &

is some
tolerance for the ‘right’ sparsification due to

� 	 � (
. The ‘left’

sparsification due to

� 	 � (
is done analogous to

3 * � 5
, but with

a tolerance �)% �'������ #*+$ &
. We stress that the tolerances�'������ "! and �������� #* for the right and left sparsification can

be (and in practice are) chosen to be different. Also, remark
that the choice �'������ "! "

� or �'������ #* "
� corresponds to no

right or no left sparsification, respectively.

B. Preconditioning

Recall from

3 & * 5
that the matrix (is the actual precon-

ditioner for the linear system

3 * 5
. In all our numerical tests,

we used a fixed preconditioner
"
 (for all , .

Next, we describe two simple preconditioning techniques.
Let 8 "(, .+- . , � (27)

be the additive splitting of the coefficient matrix
8

of

3 * 5
into

its strictly lower triangular part

,
, its diagonal part

-
, and its

strictly upper triangular part

,
� .

For diagonal preconditioning, one chooses

" - -

Since
8

is symmetric positive definite, all the diagonal entries
of

8
are positive. Thus the diagonal preconditioner

" -
is

guaranteed to be symmetric positive definite and, in particular,

0
20

40
60

80
100

0

50

100

150
−0.05

−0.04

−0.03

−0.02

−0.01

0

Direct solve

Fig. 2. Example 1, direct solver

nonsingular. For diagonal preconditioning, left sparsification
becomes unnecessary, and one sets �'������ #* "

� in this case.
For SSOR preconditioning, one chooses

" $ - . , % - � � $ - . , � % -

Again, is guaranteed to be symmetric positive definite and
nonsingular. Note that the factors

$ - . , %
and

$ - . , � % are
both triangular and that

- � �
is diagonal. Therefore, each solve

with the SSOR preconditioner requires only two triangular
solves and one multiplication with the diagonal matrix

-
.

In practice, SSOR preconditioning is more effective when it
is combined with an appropriate reordering technique. This
means that, instead of

3 * � 5
, one uses a corresponding splitting

for the reordered matrix � � 8
� , where � is a permutation

matrix produced by a reordering routine. The numerical results
with SSOR preconditioning reported in Section VII were
obtained with symmetric reverse Cuthill-McKee reordering.
For SSOR preconditioning, we only use left sparsification, and
thus �'������ "! "

� in this case.

VII. NUMERICAL EXAMPLES

In this section, we report some results of numerical ex-
periments for three examples. Example 1 is a single-layer
anisotropic power grid with 7

" �
���

&
nodes. It was run

with digaonal preconditioning. In Figure 2, we show the nodal
voltages obtained by solving the linear system

8�9 " :
with

a direct method and the anisotropic nature of the network is
apparent from the solution.

Figure 3 depicts the solution of the same linear system with
FCG and a very aggressive sparsification factor sptol1

"
�
-
� � . The two solutions are indistinguishable and the sparsifi-

cation led to a reasonable increase in the number of iterations
to convergence. The computational saving in manipulating
sparse vectors is significant.

Figure 4 shows the sparsity of the FCG iteration vectors vs.
the iteration number , for different choices of the sparsifica-
tion factor sptol1. The plot also shows the total number of
iterations to convergence.

0
20

40
60

80
100

0

50

100

150
−0.05

−0.04

−0.03

−0.02

−0.01

0

fcg 0.025 sparsification

Fig. 3. Example 1, FCG with ��� ����	 sparsification

0 50 100 150 200 250
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

no sparsif.

0.001 sparsif.

0.01 sparsif.

0.025 sparsif.

Fig. 4. Example 1, sparsity of vectors vs. iterations

The next example exploits the sparsity on the observability
side. Here we analyze a 6 layer power grid with 30000 nodes
shown in Figure 5. We compute the voltage drop at a particular
point marked with X on the figure.

The result is shown in Figure 6 and again we observe
significant sparsification at the expense of modest increase in
the number of iterations.

Finally, the last Examples applies FCG to a regular DC
analysis of a 6 layer powergrid with about 30000 nodes with
currents drawn in numerous locations, in other words, non-
local excitation, and seeking the complete solution. Even in
this situation our algorithm detects and exploits a significant
amount of sparsity resulting in great computational and mem-
ory savings. Figure 6 shows

VIII. CONCLUDING REMARKS

The paper has introduced a novel flexible conjugate gradient
algorithm as a tool for the solution of the extremely large
electrical networks that arise in the analysis of VLSI power
distribution networks. The main feature of the algorithm is its
ability to change and adapt its preconditioner at every iteration.
This feature is used successfully to sparsify and eliminate
numerically irrelevant portions of the basis vectors and thus

Fig. 5. Example 2, volt5

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3
x 10

4

nu
m

be
r

of
 n

on
ze

ro
s

number of iterations

no sparsif.

0.001 sparsif.

0.005 sparsif.

0.01 sparsif.

Fig. 6. Example 2, sparsity of vectors vs. iterations

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3
x 10

4

number of iterations

nu
m

be
r

of
 n

on
ze

ro
s

no sparsif.

0.001 sparsif.

0.005 sparsif.

0.01 sparsif.

Fig. 7. Example 3, sparsity of vectors vs. iterations

exploit for great computational savings the natural sparsity of
the solution. As a consequence, the extremely large cost of
modeling distant and irrelevant portions of the network can
also be avoided. The examples demonstrate the robustness
of the algorithm even in the presence of very aggressive
sparsification.

REFERENCES

[1] J. Kozhaya, S. Nassif, and F. Najm, “A multigrid-like technique for power
grid analysis,” IEEE Trans. Computer-Aided Design, vol. 21, no. 10, pp.
1148–1160, 2002.

[2] H. Qian, S. Nassif, and S. Sapatnekar, “Power grid analysis using random
walks,” IEEE Trans. Computer-Aided Design, vol. 24, no. 8, pp. 1204–
1224, 2005.

[3] H. Qian and S. S. Sapatnekar, “A hybrid linear equation solver and
its application in quadratic placement,” in Tech. Dig. 2005 IEEE/ACM
International Conference on Computer-Aided Design. Los Alamitos,
California: IEEE Computer Society Press, 2005, pp. 904–908.

[4] M. R. Hestenes and E. L. Stiefel, “Methods of conjugate gradients for
solving linear systems,” J. Res. Nat. Bur. Standards, vol. 49, pp. 409–436,
1952.

[5] Y. Saad, “A flexible inner-outer preconditioned GMRES algorithm,” SIAM
J. Sci. Comput., vol. 14, pp. 461–469, 1993.

[6] G. H. Golub and Q. Ye, “Inexact preconditioned conjugate gradient
method with inner-outer iteration,” SIAM J. Sci. Comput., vol. 21, pp.
1305–1320, 1999.

[7] Y. Notay, “Flexible conjugate gradients,” SIAM J. Sci. Comput., vol. 22,
pp. 1444–1460, 2000.

