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Abstract In recent years, order-reduction techniques based on Krylov subspaces
have become the methods of choice for generating macromodels of large-scale
multi-port RCL networks that arise in VLSI circuit simulation. A popular method
of this type is PRIMA. Its main features are provably passivereduced-order models
and a Padé-type approximation property. On the other hand,PRIMA does not pre-
serve other structures inherent to RCL circuits, which makes it harder to synthesize
the PRIMA models as actual circuits. For the special case of RCL circuits without
voltage sources, SPRIM was introduced as a structure-preserving variant of PRIMA
that overcomes many of the shortcomings of PRIMA and at the same time, is more
accurate than PRIMA.

The purpose of this paper is twofold. First, we review the formulation of the
equations characterizing general RCL circuits as descriptor systems. Second, we
describe an extension of SPRIM to the case of general RCL circuits with voltage
and current sources. We present some properties of the general SPRIM algorithm
and report results of numerical experiments.

1 Introduction

The problem of order reduction of linear dynamical systems has a long history and
many powerful methods for generating provably good reduced-order models have
been developed. Most of this work was motivated by problems in control theory,
where, typically, the sizes of the dynamical systems to be reduced are relatively
small to begin with. In the early 1990s, the continued miniaturization (‘Moore’s
Law’) of VLSI circuits lead to the need for efficient order reduction of large-scale
linear dynamical systems with ever-increasing state-space dimension. The linear
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dynamical systems to be reduced in VLSI circuit simulation are RCL models of the
VLSI circuit’s interconnect system. These RCL models are relatively ‘simple’, but
large, electronic networks with resistors, capacitors, inductors, voltage sources, and
current sources as their only elements. Unlike the typical order-reduction problems
in control theory, the large state-space dimension of theseRCL circuits makes the
use of most of the more powerful reduction methods prohibitive. Furthermore, RCL
circuits are described by systems of differential-algebraic equations, resulting in so-
called descriptor systems. Many of the existing order-reduction methods cannot be
used directly for descriptor systems. Motivated by this ‘new’ application in VLSI
circuit simulation, starting in the early 1990s, there has been tremendous interest in
developing techniques for order reduction of large-scale descriptor systems.

Reduced-order modeling techniques based on Padé or Padé-type approximation
were quickly recognized to be powerful tools for the problems arising in VLSI
circuit simulation. The first such technique was asymptoticwaveform evaluation
(AWE) [27], which uses explicit moment matching. More recently, the attention
has moved to reduced-order models generated by means of Krylov-subspace algo-
rithms, which avoid the typical numerical instabilities ofexplicit moment matching;
see, e.g., the survey papers [12, 13, 14].

PVL [8, 9] and its multi-port version MPVL [10] use variants of the Lanczos
process [23] to stably compute reduced-order models that represent Padé or matrix-
Padé approximations [4] of the circuit transfer function.SyPVL [18] and its multi-
port version SyMPVL [11, 19, 20] are versions of PVL and MPVL,respectively, that
are tailored to RCL circuits. By exploiting the symmetry of RCL transfer functions,
the computational costs of SyPVL and SyMPVL are only half of those of general
PVL and MPVL.

Reduced-order modeling techniques based on the Arnoldi process [2], which is
another popular Krylov-subspace algorithm, were first proposed in [31, 24, 7, 25,
26]. Arnoldi-based reduced-order models are defined by a certain Padé-type approx-
imation property, rather than Padé approximation, and as aresult, in general, they
are not as accurate as a Padé-based model of the same size. Infact, Arnoldi-based
models are known to match only half as many moments as Lanczos-based models;
see [31, 24, 25, 13].

In many applications, in particular in VLSI interconnect analysis, the reduced-
order model is used as a substitute for the full-blown original model in higher-level
simulations. In such applications, it is very important forthe reduced-order model
to maintain the passivity properties of the original circuit. In [19, 20, 3], it is shown
that SyMPVL is passive for RC, RL, and LC circuits. However, the Padé-based
reduced-order model that characterizes SyMPVL cannot be guaranteed to be pas-
sive for general RCL circuits. On the other hand, in [24, 25, 26], it was proved
that the Arnoldi-based reduction technique PRIMA producespassive reduced-order
models for general RCL circuits. PRIMA employs a block version of the Arnoldi
process and then obtains reduced-order models by projecting the matrices defining
the RCL transfer function onto the Arnoldi basis vectors. While PRIMA generates
provably passive reduced-order models, it does not preserve other structures, such
as reciprocity or the block structure of the circuit matrices, inherent to RCL cir-
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cuits. This has motivated the development of the reduction technique SPRIM [15],
which overcomes these disadvantages of PRIMA. In particular, SPRIM generates
provably passive and reciprocal macromodels of multi-portRCL circuits. Further-
more, SPRIM models match twice as many moments as the corresponding PRIMA
models obtained with identical computational work.

SPRIM was originally proposed in [15] for the special case ofRCL circuits with-
out voltage sources. The purpose of this paper is twofold. First, we review the for-
mulation of the equations characterizing general RCL circuits as descriptor systems.
Second, we describe an extension of SPRIM to the case of general RCL circuits with
voltage and current sources. We present some properties of the general SPRIM al-
gorithm and report results of numerical experiments.

The remainder of this paper is organized as follows. In Section 2, we review the
equations describing general RCL circuits and the formulation of these equations
as descriptor systems. In Section 3, we present some basic facts about generating
reduced-order models of descriptor systems by means of Krylov subspace-based
projection. In Section 4, we describe the SPRIM algorithm for the case of general
RCL circuits. In Section 5, we make some comments about how toreduce the num-
ber of voltage sources before applying SPRIM to the remaining RCL network. In
Section 6, we report the results of some numerical experiments. Finally, in Section 7,
we mention some open problems and make some concluding remarks.

Throughout this paper the following notation is used. The set of real and complex
numbers is denoted byR andC, respectively. For (real or complex) matricesM =
[

mjk

]

, we denote byMT =
[

mkj

]

the transposeof M , and byMH :=
[

mkj

]

the
Hermitian (or complex conjugate) of M . The identity matrix is denoted byI and
the zero matrix by0; the actual dimensions ofI and0 will always be apparent from
the context. The notationM � 0 (M ≻ 0) is used to indicate that a real or complex
square matrixM is Hermitian positive semidefinite(positive definite). If all entries
of the matrixM � 0 (M ≻ 0) are real, thenM is said to besymmetric positive
semidefinite(positive definite).

2 RCL Circuit Equations

We consider general RCL circuits driven by voltage and current sources. In this
section, we review the formulation of such RCL circuits as linear time-invariant
differential-algebraic equations (DAEs).

2.1 The Lumped-Element Approach

The lumped-element approach uses directed graphs to model electronic circuits; see,
e.g., [6, 30, 32, 28]. The edgesE of the graph correspond to the electronic elements
of the circuit and the nodesN of the graph correspond to the interconnections of
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the electronic elements. In this subsection, we review thisapproach for the case of
general RCL circuits driven by voltage and current sources.

The elements of such a general RCL circuit are its resistors,capacitors, inductors,
voltage sources, and current sources. With each such element we associate an edge
e ∈ E , written as an ordered pair of nodes:

e = (n1,n2).

Here,n1,n2 ∈N are the nodes of the graph representing the interconnections of the
element to other circuit elements. We calln1 thetail nodeof e andn2 thehead node
of e. Note that thedirectionof e is from n1 to n2. For circuit elements for which
the direction of the electric current through the element isknown beforehand, the
direction ofe is chosen accordingly. For all other elements, an arbitrarydirection of
e is assigned. If the computed electric current through such an element is nonnega-
tive, then the current flow is in the direction ofe; otherwise, the actual current flow
is against the direction ofe.

The resulting directed graphG = (N ,E) can be described by itsincidence matrix
the rows and columns of which correspond to the nodesnj ∈ N and edgesek ∈ E ,
respectively. To this end, we set

ajk =















1 if edgeek leaves nodenj ,

−1 if edgeek enters nodenj ,

0 otherwise.

The rows of this matrix add up to the zero row, and thus the matrix is rank deficient.
In order to avoid this redundancy, we label one of the nodes astheground nodeof
the circuit and delete the corresponding row. We call the resulting matrixA. It has
|N |−1 rows and|E| columns, where|N | and|E| denote the number of nodes and
edges of the graphG, respectively. IfG (viewed as an undirected graph) is connected,
then the matrixA has full row rank:

rank A = |N |−1.

Note thatG is indeed connected for any real electronic circuit, and thus, this condi-
tion of full row rank ofA is always satisfied.

The matrixA allows an elegant formulation of the Kirchhoff’s laws for the given
RCL circuit. To this end, we denote byiE the vector the entries of which are the
currents along the edgesE , by vE the vector the entries of which are the voltages
across the edgesE , and byv the vector the entries of which are the voltages at the
nodesN , except for the ground node at which the voltage is zero. We remark that
iE andvE are vectors of length|E| andv is a vector of length|N |−1. Kirchhoff ’s
current laws(KCLs) can then be stated compactly as follows:

A iE = 0. (1)
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Kirchhoff ’s voltage laws(KVLs) have the following compact formulation:

AT v = vE . (2)

To obtain a complete characterization of the given RCL circuit, the so-called
branch constitutive relations(BCRs) for the actual circuit elements need to be added
to the Kirchhoff’s laws(1) and(2). To formulate the BCRs, it is convenient to as-
sume that the edgesek ∈ E are numbered according to element type in the following
order: resistors, capacitors, inductors, voltage sources, and current sources. The ma-
trix A and the vectorsiE andvE can thus be partitioned as follows:

A =
[

Ar Ac Al Av Ai

]

, iE =













ir
ic
il
iv
ii













, vE =













vr

vc

vl

vv

vi













. (3)

Here, the subscriptsr, c, l, v, andi refer to resistors, capacitors, inductors, voltage
sources, and current sources, respectively. Using the partitions (3), the Kirchhoff’s
laws(1) and(2) can be written as follows:

Ar ir +Ac ic +Al il +Av iv +Ai ii = 0,

AT
r v = vr, AT

c v = vc, AT
l v = vl, AT

v v = vv, AT
i v = vi.

(4)

Furthermore, the BCRs for the resistors, capacitors, and inductors can be stated in
the following compact form:

vr(t) = Rir(t), ic(t) = C
d

dt
vc(t), vl(t) = L

d

dt
il(t). (5)

Here,R andC are diagonal matrices, the diagonal entries of which are theresis-
tances of the resistors and the capacitances of the capacitors, respectively, and in
particular,R ≻ 0 andC ≻ 0. The matrixL contains the inductances between the
inductors as its entries. If mutual inductances are included, thenL is a full matrix;
otherwise,L is also a diagonal matrix. In both cases,L ≻ 0. Therefore, the matrices
in (5) always satisfy

R ≻ 0, C ≻ 0, and L ≻ 0. (6)

2.2 RCL Circuit Equations as Integro-DAEs

Equations(4) and (5), together with suitable initial conditions for some initial
time t0, completely characterize the time behavior of the RCL circuit. Here,

vv(t) and ii(t), t ≥ t0, (7)
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are given functions, which describe the voltages and currents provided by the volt-
age and current sources, respectively. The functions

v(t), vr(t), vc(t), vl(t), vi(t), ir(t), ic(t), il(t), iv(t) (8)

are the unknown solutions of the equations(4) and (5). These equations can be
greatly simplified by using the BCRs(5) and the formulae forvr, vc, andvl in (4)
to eliminate all but the unknown functionsv(t) andiv(t).

To this end, we now assume thatt0 = 0 and that

il(0) = 0. (9)

The third relation in(5) can then be rewritten in the form

il(t) = L−1

∫ t

0
vl(τ)dτ. (10)

Using(10), the first two relations of(5), and the formulae forvr, vc, andvl in (4),
it follows that

ir(t) = R−1AT
r v(t), ic(t) = CAT

c

d

dt
v(t), il(t) = L−1AT

l

∫ t

0
v(τ)dτ. (11)

Inserting these relations into(4), we obtain the coupled system of equations

E11
d

dt
v(t)−A11 v(t)+Al L

−1AT
l

∫ t

0
v(τ)dτ +Av iv(t) = −Ai ii(t),

−AT
v v(t) = −vv(t)

(12)

for the unknown functionsv(t) andiv(t). Here, we have set

E11 := Ac CAT
c and A11 := −Ar R−1AT

r . (13)

The system(12) is completed by adding initial values

v(0) and iv(0) (14)

for the solutionsv(t) andiv(t) at initial timet0 = 0.
We remark that the system(12) with initial conditions(14) represents anintegro-

differential-algebraic equation(integro-DAE). This is the most compact formula-
tion of the equations describing RCL circuits. By solving the integro-DAE(12), we
obtain the vectorv(t) of nodal voltages and the vectoriv(t) of currents through the
voltage sources. The remaining circuit quantities, namely

vr(t), vc(t), vl(t), vi(t), ir(t), ic(t), and il(t),

are then readily computed using the KVLs in(4), the first two BCRs in(5), and(10).
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2.3 RCL Circuit Equations as Descriptor Systems

While integro-DAEs of the type(12) are the most compact formulation of RCL
circuit equations, they are not directly amenable to Krylovsubspace-based reduction
techniques. Instead, we rewrite(13) as a descriptor system. This can be done by
treating the vectoril(t) of inductor currents also as an unknown function, along
with the functionsv(t) andiv(t). We denote by

x(t) :=







v(t)

il(t)

iv(t)






(15)

the resulting newstate-space vectorof unknowns. Furthermore, we define vectors
of input and output functions

u(t) :=

[−ii(t)

vv(t)

]

and y(t) :=

[

vi(t)

−iv(t)

]

. (16)

Recall from(12) that the entries of theinput vectoru(t) are all given functions.
Theoutput vectory(t) is readily obtained from the state-space vector(15). Indeed,
using the relationvi(t) = AT

i v(t) from (4), it follows that

y(t) = BT x(t), where B :=





Ai 0
0 0
0 −I



 . (17)

We now re-introduceil(t) into (12). To this end, we employ the formula foril(t)
stated in(11) and the differentiated form thereof:

L
d

dt
il(t) = AT

l v(t).

The resulting equivalent version of the system(12) can be stated as follows:

E11
d

dt
v(t)−A11 v(t)+Al il(t)+Av iv(t) = −Ai ii(t),

L
d

dt
il(t)−AT

l v(t) = 0,

−AT
v v(t) = −vv(t).

(18)

Finally, setting

E :=







E11 0 0

0 L 0

0 0 0






and A :=







A11 −Al −Av

AT
l 0 0

AT
v 0 0






, (19)
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and adding the relation(17) to (18), we obtain the following formulation of the
RCL circuit equations as adescriptor system:

E
d

dt
x(t) = Ax(t)+Bu(t),

y(t) = BT x(t).

(20)

The system(20) is completed by the initial conditions from(9) and(14):

x(0) = x0 :=







v(0)

0

iv(0)






.

In the following, we denote byN andm the length of the state-space vectorx(t)
and the length of the input vectoru(t) of (20), respectively. The numberN is called
thestate-space dimensionof the descriptor system(20). We remark thatm is also
the length of the vector-valued output vectory(t) of (20). In particular,A andE are
N ×N matrices, andB is anN ×m matrix. Note that, in view of(16), m is the
total number of voltage and current sources in the RCL circuit.

The formulation(20) is essential for using Krylov subspace techniques for model
order reduction of RCL circuits. Furthermore, the matricesA andE in (20) need to
be such that thematrix pencil

sE−A, s ∈ C, (21)

is regular, i.e., the matrixsE−A is singular only for finitely many values ofs ∈ C.
Regularity of the matrix pencil(21) is equivalent to certain rank conditions in-

volving the subblocks of the matrixA in (3). Indeed, the matrix pencil(21) is
regular if, and only if, the matrix

Av has full column rank (22)

and the matrix
[

Ar Ac Al Av

]

has full row rank. (23)

For an elementary proof of this characterization of regularity, we refer the reader to
[17, Theorem 1].

The rank conditions(22) and (23) have simple interpretations in terms of the
RCL circuit described by the descriptor system(20). Condition(22) means that the
subcircuit consisting of only the voltage sources of the given RCL circuit has no
closed (undirected) loops. Condition(23) means that the (undirected) graph cor-
responding to the subcircuit obtained from the given RCL circuit by deleting all
current sources is still connected. Both these conditions are satisfied for any practi-
cally relevant RCL circuit, and thus from now on, we always assume that the matrix
pencilsE −A associated with the descriptor system(20) is regular. Furthermore,
we stress that the occurrence of a singular matrix pencil is astrong indication that
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some error was made in the design or the modeling of the RCL circuit described
by (20).

2.4 Passivity

Any RCL circuit is passive, i.e., it consumes energy (provided by the voltage and
current sources), but does not generate energy.

One of the possible mathematical characterizations of passivity uses the concept
of the transfer function of a descriptor system. Recall thatthe matrix pencil(21) is
assumed to be regular. Therefore, we can define anm×m-matrix-valued function
by setting

H(s) := BT
(

sE−A
)−1

B, s ∈ C. (24)

Note thatH is a rational function, with possible poles at those finitelymany values
of s ∈ C for which the matrixsE −A is singular. The function(24) is called the
transfer functionof the descriptor system(20).

The function(24), H , is said to bepositive realif it has no poles in the right-half

C+ :=
{

s ∈ C
∣

∣ Re s > 0
}

of the complex plane and

H(s)+
(

H(s)
)H � 0 for all s ∈ C+.

It is well known that a system described by(20) is passive if, and only if, the transfer
function of(20) is positive real, see, e.g., [1].

Since RCL circuits are passive, it thus follows that the transfer functions of the
circuit equations stated as descriptor systems(20) are guaranteed to be positive real.
An alternative proof of this fact uses the following simple theorem, which can be
found as Theorem 13 in [13].

Theorem 1. Let A, E ∈ RN×N andB ∈ RN×m. Assume that

E = ET � 0, A+AT � 0, (25)

and that the matrix pencilsE−A is regular. Then, the function(24), H , is positive
real.

In view of this theorem, we only need to verify that the matricesA andE defined
in (19) satisfy the conditions(25). Note that by(6) and(13), we have

E11 = ET
11 � 0, L = LT ≻ 0, and A11 = AT

11 � 0.

Together with(19) it follows that
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E = ET � 0 and A+AT =







2A11 0 0

0 0 0

0 0 0






� 0.

Hence the transfer functions of RCL circuit equations stated as descriptor sys-
tems(20) are indeed positive real.

3 Projection-Based Order Reduction

In this section, we review some basic facts about generatingreduced-order models
of descriptor systems(20) by means of projection. From now on, we always assume
that the system(20) describes a given RCL circuit. In particular, the matricesA
andE are of the form(19), and the matrixB is of the form(17).

3.1 Reduced-Order Models

A generalreduced-order modelof (20) is a descriptor system of the same form
as (20), but with a reduced state-space dimensionn < N , instead ofN . Thus a
reduced-order model is of the form

En
d

dt
x̃(t) = An x̃(t)+Bn u(t),

ỹ(t) = BT
n x̃(t),

(26)

whereAn, En ∈Rn×n andBn ∈Rn×m. Note that the input vectoru(t) is the same
as in(20). In particular, the numberm is unchanged from(20). The output vector
ỹ(t) of (26) is only an approximation of the original output vectory(t) of (20).
In fact, the problem of order reduction is to find a sufficiently large reduced state-
space dimensionn and matricesAn, En, andBn such that the output vector of
the reduced-order model(26) is a ‘sufficiently good’ approximation of the output
vector of the original system(20).

Provided that the matrix pencil

sEn −An, s ∈ C, (27)

associated with(26) is regular, we can define a transfer function as before:

Hn(s) := BT
n

(

sEn −An

)−1
Bn, s ∈ C. (28)

In terms of transfer functions, the problem of order reduction is to find a sufficiently
large reduced state-space dimensionn and matricesAn, En, andBn such that the
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transfer function(28), Hn, of the reduced-order model is a ‘sufficiently good’ ap-
proximation of the transfer function(24), H of the original system:

Hn(s) ≈ H(s) in ‘some sense’. (29)

3.2 Order Reduction Via Projection

A very basic approach to constructing reduced-order modelsis to employprojection.
Let

Vn ∈ R
N×n with rank Vn = n (30)

be given. Then, by simply setting

An := V T
n AVn, En := V T

n EVn, and Bn := V T
n B, (31)

one obtains a reduced-order model(26) that can be viewed as a projection of the
N -dimensional state space of the original system onto then-dimensional subspace
spanned by the columns of the matrixVn. In particular, projection employs an ansatz
of the form

x̃(t) = Vnx(t)

for the state-space vector̃x(t) of the reduced-order model(26). Recall thatx(t)
denotes the state-space vector of the original system(20).

There are two appealing aspects of the projection approach:

1. Reduced-order models obtained by means of projection trivially preserve passiv-
ity of the original system; see, e.g., [24, 25, 26]. Indeed, the only additional con-
dition on the matrix(30), Vn, is that the resulting matrix pencil(27) is regular.
Recall thatA andE satisfy the semidefiniteness properties(25). The definitions
of An andEn in (31) readily imply that these matrices also satisfy(25). There-
fore, by Theorem 1, the transfer function(28), Hn is positive real, and thus the
corresponding reduced-order model(26) is passive.

2. By choosing the matrixVn such that the subspace spanned by its columns con-
tains a certain Krylov subspace, one obtains reduced-ordermodels for which(28),
Hn, is a Padé-type approximation of the original transfer function (24), H ; see
Subsection 3.4 below.

3.3 Block Krylov Subspaces

Suppose we want to evaluate the transfer function(24), H , of the descriptor sys-
tem (20) at some points0 ∈ C at which the matrixs0 E −A is nonsingular. The
most efficient way of obtainingH(s0) is to first solve the system of linear equations
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(

s0 E−A
)

X(s0) = B (32)

for X(s0) and then compute

H(s0) = BT X(s0).

The coefficient matrixs0 E −A of (32) is large, but sparse, and as it is the case
for all practical circuit matrices, a sparse LU factorization of this matrix can be
computed with typically little fill-in; see, e.g., [30, 32].

The basic idea behind Krylov subspace-based order reduction for electronic cir-
cuits is to reuse the LU factorization, which was computed toobtainH(s0), to gen-
erate the information contained in the leading Taylor coefficients ofH expanded
abouts0. To this end, we rewrite the transfer function(24) as follows:

H(s) = BT
(

s0 E−A+(s− s0)E
)−1

B = BT
(

I +(s− s0)M
)−1

R, (33)

where
M :=

(

s0 E−A
)−1

E and R :=
(

s0 E−A
)−1

B. (34)

In view of (33), the Taylor expansion ofH abouts0 is given by

H(s) =

∞
∑

j=0

(−1)jBT M jR (s− s0)
j . (35)

The leading Taylor coefficients ofH can thus be obtained by computing inner prod-
ucts of the columns of the matrixB and the leading columns of theblock Krylov
matrix

[

R MR M2R · · · M j−1R · · ·
]

. (36)

Let Nmax (≤ N) denote the rank of this matrix. Then forn̂ = 1,2, . . . ,Nmax, the
n̂-th block Krylov subspace(induced byM andR) is defined as thên-dimensional
subspace ofCN spanned by the first̂n linearly independent columns of the block
Krylov matrix (36). In the following,Kn̂(M,R) denotes thiŝn-th block Krylov
subspace. Note that, by construction,Kn̂(M,R) contains the necessary information
to generate at least the first

⌊

n̂

m

⌋

(37)

Taylor coefficients of the expansion(35) of H abouts0. In the generic case, the
integer(37) is the exact number of Taylor coefficients that can be obtained from
Kn̂(M,R). However, in certain degenerate cases, one can obtain even more coeffi-
cients; we refer the reader to [17, 16] for a complete characterization of the exact
number of coefficients.

We remark that for actual numerical computations, this definition of Kn̂(M,R)
is useless. Instead, one employs a suitable Krylov subspacealgorithm to gener-
ate a numerically well-behaved basis ofKn̂(M,R). One such algorithm is the band
Arnoldi process described in [14]. It produces orthonormalbasis vectors for the sub-
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spacesKn̂(M,R). We remark that Krylov subspace algorithms involve the matrix
M only in the form of matrix-vector productsMv. For the computation of these,
the matrixM never needs to be formed explicitly. Instead, in view of the defini-
tion of M in (34), each matrix-vector productMv can be obtained via one sparse
multiplication withE and two sparse triangular solves with the LU factors of the
matrixs0 E−A.

Finally, we stress that for generals0 ∈ C, Kn̂(M,R) is a subspace ofCN . If
we restricts0 to be real, then the matricesM andR are real andKn̂(M,R) is a
subspace ofRN .

3.4 Krylov Subspace-Based Projection

We now employ the block Krylov subspaces defined in Subsection 3.3 to choose
suitable projection matricesVn.

Recall from(30) that the matricesVn are assumed to be real. For the sake of gen-
erating reduced-order models, this assumption is not essential, and in fact, complex
N ×n matrices can be used as well. However, in order to obtain passive models, the
matricesVn need to be real. To guarantee this condition, from now on we assume
that

s0 ∈ R, (38)

so thatKn̂(M,R) is a subspace ofRN . At the end of this subsection, we include
some remarks about how to proceed in the case of truly complexs0 ∈ C\R.

For Krylov subspace-based projection, we choose the matrix(30), Vn, such that

Kn̂(M,R) ⊆ colspan Vn. (39)

Since, by construction,Kn̂(M,R) has dimension̂n and, by(30), Vn is assumed to
have rankn, the condition(39) implies that

n̂ ≤ n. (40)

An obvious choice forVn is a matrix whose columns form a basis ofKn̂(M,R),
such as the vectors generated by the band Arnoldi process. Inthis case, we have
n̂ = n in (40).

Let An, En, andBn be the matrices(31), and letHn be the transfer func-
tion (28) of the corresponding reduced-order model(26). The main result of Krylov
subspace-based projection then states thatHn is aPad́e-type approximationof the
original transfer function(24), H , in the following sense:

Hn(s) = H(s)+O
(

(s− s0)
j(n̂)

)

, where j(n̂) ≥
⌊

n̂

m

⌋

. (41)
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Moreover, in the generic case,j(n̂) = ⌊n̂/m⌋ in (41). The property(41) is well
known. For example, it was established for various special cases in [5, 24, 21].
Proofs for the general case be found in [13, 16]. We remark that the matrix-valued
coefficients of the Taylor expansion of the transfer function (24), H , about the
expansion points0 are often calledmomentsand that the Padé-type approxima-
tion (41) is also referred to asmoment matching.

If instead of(38), the expansion points0 is chosen to be truly complex, then
Kn̂(M,R) is a complex subspace and the projection matrixVn in (39) will be com-
plex as well in general. One possibility of keeping the projection matrix real is to
replace the complex matrixVn satisfying(39) by the real matrix

[

Re Vn Im Vn

]

. (42)

The obvious disadvantage of this approach is that the dimension of the reduced-
order model is doubled. Furthermore, in general, the matrix(42) is not guaranteed
to have full column rank, and so before using(42) as a projection matrix, one would
need to check for and possibly delete any linearly dependentcolumns of(42). On
the other hand, the transfer function of the resulting reduced-order model will sat-
isfy a Padé-type property of the form(41) for boths0 and the complex conjugate
expansion points0; see, e.g., [22].

3.5 Structure Preservation

Recall from(19) and(17) that the matricesA, E, andB exhibit certain block struc-
tures reflecting the fact that the descriptor system(20) describes an RCL circuit. As
long as the expansion points0 is chosen to be real, the reduced-order model gener-
ated via projection preserves the passivity of the originalRCL circuit, but not these
block structures of the data matrices. In fact, in generalVn will be a dense matrix,
and then the data matrices(31) of the reduced-order model will be dense matrices
as well.

For example, consider the ‘minimal’ choice of the matrixVn in (39), i.e.,n̂ = n
andVn is chosen as any matrix whose columns spanKn̂(M,R). The resulting order
reduction method is mathematically equivalent to PRIMA [24, 25, 26]. However, in
general the data matrices of the PRIMA reduced-order model are dense and do not
preserve the block structures of the original matricesA, E, andB. In the next sec-
tion, we describe how these structures can indeed be preserved by taking advantage
of the fact that in(39) we can choose a matrixVn with n > n̂.

The reader may ask why preservation of the block structures of the matricesA,
E, andB is important. There are two reasons:

1. In practice, one would like to synthesize the system described by the reduced-
order model(26) as an actual physical electronic circuit. It is well known that
passivity of the reduced-order model is sufficient to guarantee the existence of
such a synthesized circuit; see, e.g., [1]. However, passivity alone is not enough
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to guarantee synthesis as an RCL circuit, and in general, some other circuit ele-
ments are needed. Additional properties, such asreciprocity, of the reduced-order
model are necessary to ensure synthesis as an RCL circuit. While preserving the
block structures of the data matrices of the original descriptor system alone is
not enough to guarantee synthesis as an RCL circuit, it ensures reciprocity and
significantly increases the probability that the reduced-order model can be syn-
thesized as an actual RCL circuit.

2. Preserving the block structure also doubles the number ofTaylor coefficients
that are matched in the Padé-type approximation property of the reduced-order
model. More precisely, the structure-preserving SPRIM algorithm matches twice
as many coefficients as the non-structure-preserving PRIMAalgorithm; see
equation(47) in Subsection 4.3 below.

4 The SPRIM Algorithm

The SPRIM (Structure-Preserving Reduced-order Interconnect Macromodeling) al-
gorithm was originally introduced in [15] for the special case of RCL circuits with
only current sources, but no voltage sources. In this case, the third block row and
column ofA andE in (19) and the third block row ofE in (17) are non-existent.
This significantly simplifies both the implementation of SPRIM and the derivation
of certain theoretical properties of SPRIM. In this section, we describe the SPRIM
algorithm for the case of general RCL circuits with both voltage and current sources.

4.1 Preserving the Block Structures

The main computational step of SPRIM is the generation of a suitable basis for
the n̂-th block Krylov subspaceKn̂(M,R). This step is identical to what is done
in PRIMA. Let V̂n̂ be the resulting matrix, the columns of which form a basis
of Kn̂(M,R). PRIMA employs this matrix as the projection matrix to obtain the
reduced-order data matrices(31). As pointed out before, in general, these PRIMA
data matrices are dense and thus do not preserve the block structures of the original
matricesA, E, andB.

Instead of using the matrix̂Vn̂ directly for the projection, SPRIM employs a
modified version of this matrix that trivially leads to structure preservation. To this
end,V̂n̂ is first partitioned as follows:

V̂n̂ =







V (1)

V (2)

V (3)






. (43)
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Here, the block sizes correspond to the block sizes ofA andE in (19). While V̂n̂

has full column rank̂n, the same is not necessarily true for the three subblocksV (l),
l = 1,2,3, in (43). In particular, the third block,V (3) is of sizenv × n̂, wherenv

denotes the number of voltage sources of the given RCL circuit. The numbernv is
very small and usuallynv < n̂. Therefore,V (3) typically does not have full column
rank. In the actual implementation of SPRIM, we run a Gram-Schmidt algorithm on
the rows ofV (3) to determine a matrix̃V (3) the columns of which span the same
space as the columns ofV (3), but has full column rank. The other two blocks usually
have many more rows than columns. and these blocks are unlikely not to have full
column rank. In the actual implementation of SPRIM, there isthe option to check
the column ranks of the first two blocks and replace them by matricesṼ (1) andṼ (2)

of full columns rank. Next, we set up the actual projection matrix Vn as follows:

Vn :=







Ṽ (1) 0 0

0 Ṽ (2) 0

0 0 Ṽ (3)






. (44)

By construction, we have

Kn̂(M,R) = colspan V̂n̂ ⊆ colspan Vn. (45)

Thus the matrix(44), Vn, satisfies the condition(39), which in turn guarantees the
Padé-type approximation property(41). Furthermore, in view of the block structure
of Vn, the data matrices(31) of the resulting reduced-order model obtained via
projection withVn have the same block structure as the original data matricesA, E,
andB.

4.2 The Algorithm

The order reduction procedure outlined in the previous subsection is the SPRIM
algorithm for general RCL circuits. SPRIM can be formulatedas an actual algorithm
in the following form.

Algorithm 2 (SPRIM for general RCL circuits)

• Input: matrices of the form

A =







A11 −Al −Av

AT
l 0 0

AT
v 0 0






, E =







E11 0 0

0 L 0

0 0 0






, B =







Ai 0

0 0

0 −I






,

whereA11 � 0, E11 � 0, andL ≻ 0;
an expansion points0 ∈ R.

• Formally set
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M = (s0 E−A)−1 E, R = (s0 E−A)−1 B.

• Until n̂ is large enough, run your favorite block Krylov subspace method(applied
to M andR) to construct the columns of the basis matrix

V̂n̂ =
[

v1 v2 · · · vn̂

]

of then̂-th block Krylov subspaceKn̂(M,R), i.e.,

colspan V̂n̂ = Kn̂(M,R).

• Let

V̂n̂ =







V (1)

V (2)

V (3)







be the partitioning ofV̂n̂ corresponding to the block sizes ofA andE.
• For l = 1,2,3 do:

If rl := rank V (l) < n̂, determine anN × rl matrix Ṽ (l) with

colspan Ṽ (l) = colspan V (l) and rank Ṽ (l) = rl.

• Set

Ã11 =
(

Ṽ (1)
)T

A11Ṽ
(1), Ãl =

(

Ṽ (1)
)TAlṼ

(2), Ãv =
(

Ṽ (1)
)TAvṼ (3),

Ẽ11 =
(

Ṽ (1)
)T

E11Ṽ
(1), L̃ =

(

Ṽ (2)
)T

LṼ (2), Ãi =
(

Ṽ (1)
)TAi.

• Output: the data matrices

An =







Ã11 −Ãl −Ãv

ÃT
l 0 0

ÃT
v 0 0






, En =







Ẽ11 0 0

0 L̃ 0

0 0 0






,

and Bn =







Ãi 0

0 0

0 −
(

Ṽ (3)
)T






,

of the SPRIM reduced-order model

En
d

dt
x̃(t) = An x̃(t)+Bn u(t),

ỹ(t) = BT
n x̃(t).

(46)
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4.3 The Pad́e-Type Approximation Property of SPRIM

Recall that SPRIM is a Krylov subspace-based projection method. In particular, the
matrixVn used in the projection satisfies the condition(39), which implies the Padé-
type approximation property(41). It turns out that SPRIM actually has a stronger
Padé-type approximation property. More precisely, the transfer functionHn of the
SPRIM reduced-order model(46) satisfies

Hn(s) = H(s)+O
(

(s− s0)
2j(n̂)

)

, where j(n̂) ≥
⌊

n̂

m

⌋

, (47)

instead of(41). The integerj(n̂) is the same as in(41), and in the generic case,
j(n̂) = ⌊n̂/m⌋ in (47). The property means that at the expansion points0, the trans-
fer function of the SPRIM reduced-order model matches twiceas many leading
Taylor coefficients as the theory of general Krylov subspace-based projection meth-
ods predicts.

This higher accuracy of SPRIM is a consequence of structure preservation. Pro-
jection methods that do not preserve the structures of the original data matrices,
such as PRIMA, do not satisfy the more accurate Padé-type property(47).

The proof of(47) is relatively straightforward for the special case of RCL cir-
cuits without voltage sources; see [15]. In this case, the third block row and column
of the matricesA andE and the third block row of the matrixB are empty, and one
can easily make both matricesA andE symmetric by changing the sign of the sec-
ond block row, without changingB. This symmetry, along with the corresponding
symmetry of the data matrices of the SPRIM reduced-order models, can be used to
establish(47). In the case of general RCL circuits, it is no longer possibleto make
A andE symmetric without changingB, and a different approach to proving(47)
is required. The key observation here is that the matricesA andE areJ-symmetric,
i.e., they satisfy

JA = AT J and JE = ET J,

with respect to the indefinite matrix

J =







I 0 0

0 −I 0

0 0 −I






,

where theI ’s denote identity matrices of the same size as the diagonal blocks of
A andE. Since the matricesAn andEn of the SPRIM reduced-order model have
the same block structure asA and E, respectively, the matricesAn and En are
Jn-symmetric with respect to a ‘reduced’ versionJn of J . Finally, the projection
matrix (44), Vn, employed in SPRIM iscompatiblewith J andJn in the sense that

JVn = VnJn. (48)
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In [16], we developed a general theory of Krylov subspace-based projection ofJ-
symmetric descriptor systems. More precisely, we showed that the stronger Padé-
type approximation property(47) holds true, provided that the data matrices of the
reduced-order models areJn-symmetric and the compatibility condition(48) is sat-
isfied. By applying this more general result [16, Theorem 9] to SPRIM, we obtain
its stronger Padé-type approximation property(47).

5 Treatment of Voltage Sources

Recall from(19) that the third block row and column of the matricesA andE arise
due to the presence of voltage sources in the given RCL circuit. Note that the size
of the third block rows isnv ×N and the size of the third block columns isN ×nv.
Here,nv denotes the number of voltage sources, which is usually verysmall. In
SPRIM, the corresponding third blockV (3) of the matrix(43), V̂n̂ is usually rank
deficient and thus needs to be replaced by a blockṼ (3) of full column rank, see
Algorithm 2.

In many cases, it is actually possible to treat all or at leastsome of the voltage
sources separately and to apply the model reduction algorithm itself to a slightly
smaller RCL circuit. The reason is that voltage sources are usually connected to the
ground node of the circuit and they are connected to the remaining RCL circuit by
a resistor. Such a case is illustrated in Figure 1, which shows an RCL circuit with4
such voltage sources connected to the ground node and by a resistor to the remain-
ing RCL network. Recall from(16) that the given voltages of the voltage sources

Fig. 1 An RCL circuit for
which 4 voltage sources can
be eliminated before model
reduction is applied
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   Remaining RCL network

are part of the input vectoru(t) of the descriptor system(20) and from(16) that the
unknown currents through the voltage sources and the voltages at the circuit nodes
are part of the unknown state-vectorx(t) of (20). For voltage sources connected to
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the remaining RCL network as in Figure 1, there are some trivial relations between
some of these circuit quantities, which can be used to reducethe state-space dimen-
sion of(20). More precisely, consider a typical voltage source connected to ground
and to a resistor, as shown in Figure 2. In this case, the voltagev1(t) at node 1 is
equal to the voltagevv(t) provided by the voltage source:

v1(t) = vv(t). (49)

By Kirchhoff’s current law, the unknown currentiv(t) through the voltage source
is equal to the unknown currentir(t) through the resistor. Together with Ohm’s law
for resistors, it follows that

iv(t) = ir(t) =
1

R

(

v2(t)− v1(t)
)

, (50)

wherev2(t) denotes the unknown voltage at node 2 andR is the given resistance of
the resistor. Using the two relations(49) and(50), we can eliminate the unknowns
v1(t) andiv(t) from the circuit equation, thus reducing the state-space dimension
by 2.

The above procedure can be carried out for all voltage sources that are connected

to the ground node and by a single resistor to the remaining RCL network. If n(e)
v

denotes the number of such voltage sources in the given RCL circuit, then the state-

space dimension of the resulting descriptor system isN (r) := N −2n
(e)
v . Here,N

is the state-space dimension of the original descriptor system(20).
It is relatively straightforward to carry out this elimination on the matrices of the

original system(20). Here, we omit the full details and just state the final result.
The given RCL circuit is again described by a descriptor system that now has the
following form:

Fig. 2 A typical voltage
source connected to the
ground node and by a sin-
gle resistor to the remaining
RCL network
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E(r) d

dt
x(r)(t) = A(r) x(r)(t)+B(r)u(t),

y(t) = Du(t)+
(

C(r)
)T

x(r)(t).

(51)

Here,A(r) andE(r) areN (r)×N (r) matrices corresponding to the remaining RCL
network. These matrices have the same block structure as thematrices in(20), but

with the sizes of each first and third block row and column reduced byn
(e)
v . In

particular, in the case that all voltage sources have been eliminated, thenA(r) and
E(r) have no third block rows and columns at all. The state-vectorx(r)(t) of (51) is
obtained from the state-vectorx(t) of (20) by deleting the voltages at the nodes
between the eliminated voltage sources and the directly connected resistors and
the currents through the eliminated voltage sources. The input and output vectors
of (51) are the same as in(16). We now partition these vectors as follows:

u(t) =









−ii(t)

v
(e)
v (t)

v
(r)
v (t)









and y(t) =









vi(t)

−i
(e)
v (t)

−i
(r)
v (t)









. (52)

Here, the superscripts “(e)” and “(r)” refer to eliminated and remaining voltages

sources, respectively. Finally, in(51), D ∈ Rm×m andB(r), C(r) ∈ RN (r)
×m are

matrices of the following form:

B(r) =







Ai B12 0

0 0 0

0 0 −I






, C(r) =







Ai −B12 0

0 0 0

0 0 −I






,

and D =







0 0 0

0 R−1
1 0

0 0 0






.

(53)

Here,R1 denotes the diagonal matrix the entries of which are the resistances of
the resistors connected directly to the eliminated voltagesources, and the partitions
in (53) are conforming with the partitions of the input and output vectors(52).

To btain a reduced-order model of the descriptor system(51), we can again
employ SPRIM. The data matrices of the reduced system are obtained analogous
to (31), together with the additional relations

Cn := V T
n C(r) and Dn := D.

It is easy to see that SPRIM applied to the descriptor system(51) preserves the
structures of all the data matrices.
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6 Numerical Examples

In this section, we present some results for two classes of circuit examples. In all
cases, we ran the SPRIM algorithm for increasing values of the dimension̂n of the
underlying block Krylov subspaces and stopped when the transfer function of the
SPRIM reduced-order model had converged to the transfer function of the unre-
duced original descriptor system. Here, convergence is monitored over a relevant
frequency range of interest of the form

s = iω, ωmin ≤ ω ≤ ωmax,

wherei=
√
−1. For the value of̂n at convergence of SPRIM, we also generated the

corresponding PRIMA reduced-ordermodel produced from thesamên-dimensional
block Krylov subspace. This is a fair comparison since generating basis vectors for
this subspace is the dominating computational cost for bothSPRIM and PRIMA.
In all cases, we plot the absolute values ofH(s) andHn(s) (for both SPRIM and
PRIMA) over the frequency range of interest.

The first example is a variant of the so-called PEEC circuit [29]. It only has
state-space dimensionN = 308, but due to its many poles and zeros close to the
frequency range of interest, its transfer function has manyfeatures. This variant of
the PEEC circuit has two current sources and one voltage source, and thusm = 3.
The expansion points0 = π× 1010 was used. In this case, the Krylov dimension
n̂ = 90 is needed to achieve convergence. Figure 3 depicts the absolute values of the
(1,1)-component of the3×3-matrix-valued transfer functions. Clearly, forn̂ = 90
PRIMA has not converged yet. Figure 4 shows a close-up of the subrange where the
PRIMA and SPRIM reduced-order models differ the most. Figures 5 and 6 display
the corresponding plots for the(1,3)-component of the3×3-matrix-valued transfer
functions.

The second example (referred to as “package example”) is a larger RCL circuit
with state-space dimensionN = 1841. This circuit has8 current sources and8 volt-
age sources, and thusm = 16. Its transfer function is16×16-matrix-valued and has
256 components. The expansion points0 = 2π×1010 was used. For this example,
the Krylov dimension̂n = 128 is needed to achieve convergence. Figures 7 and 8
depict the absolute values of the(8,1)-component and the(9,9)-component of the
transfer functions. Note that for̂n = 128 PRIMA has not converged yet.

The8 voltage sources of the package example are all of the type shown in Fig-
ure 2, and so all voltage sources can be eliminated using the approach outlined in
Section 5. We have applied SPRIM and PRIMA to the resulting descriptor sys-
tem(51) of state-space dimensionN (r) = 1841−16= 1825. As before, the Krylov
dimensionn̂ = 128 is needed to achieve convergence. Figure 9 shows the absolute
values of the(16,9)-component of the transfer functions.
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Fig. 3 PEEC example,(1,1)-component of transfer functions

7 Concluding Remarks

In this paper, we reviewed the formulation of general RCL circuits as descriptor
systems and described the SPRIM reduction algorithm for general RCL circuits.

While there has been a lot of progress in Krylov subspace-based order reduc-
tion of large-scale RCL circuits in recent years, there are still many open prob-
lems. All state-of-the-art structure-preserving methods, such as SPRIM, first gen-
erate a basis matrix of the underlying Krylov subspace and then employ explicit
projection using some suitable partitioning of the basis matrix to obtain a structure-
preserving reduced-order model. In particular, there are two major problems with
the use of such explicit projections. First, it requires thestorage of the basis ma-
trix, which becomes prohibitive in the case of truly large-scale linear dynamical
systems. Second, the approximation properties of the resulting structure-preserving
reduced-order models are not optimal, and they show that theavailable degrees of
freedom are not fully used in general. It would be highly desirable to have structure-
preserving reduction methods that do not involve explicit projection and would thus
be applicable in the truly large-scale case. Other unresolved issues include the au-
tomatic and adaptive choice of suitable expansion pointss0 and robust and reliable
stopping criteria and error bounds.
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