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Abstract In recent years, order-reduction techniques based on Kislbspaces
have become the methods of choice for generating macromaddbrge-scale
multi-port RCL networks that arise in VLSI circuit simulati. A popular method
of this type is PRIMA. Its main features are provably passaduced-order models
and a Padé-type approximation property. On the other HAREGYA does not pre-
serve other structures inherent to RCL circuits, which rsakkarder to synthesize
the PRIMA models as actual circuits. For the special caseQif Bircuits without
voltage sources, SPRIM was introduced as a structurespiegeariant of PRIMA
that overcomes many of the shortcomings of PRIMA and at theesame, is more
accurate than PRIMA.

The purpose of this paper is twofold. First, we review tharfolation of the
equations characterizing general RCL circuits as desargistems. Second, we
describe an extension of SPRIM to the case of general RCuitsrwith voltage
and current sources. We present some properties of theaje&SRRIM algorithm
and report results of numerical experiments.

1 Introduction

The problem of order reduction of linear dynamical systeasdnlong history and
many powerful methods for generating provably good redwarelér models have
been developed. Most of this work was motivated by problemsointrol theory,

where, typically, the sizes of the dynamical systems to loleiged are relatively
small to begin with. In the early 1990s, the continued muniaation (‘Moore’s

Law’) of VLSI circuits lead to the need for efficient order tedion of large-scale
linear dynamical systems with ever-increasing stateesmimension. The linear
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dynamical systems to be reduced in VLSI circuit simulati;mRCL models of the
VLSI circuit’s interconnect system. These RCL models atatireely ‘simple’, but
large, electronic networks with resistors, capacitordyators, voltage sources, and
current sources as their only elements. Unlike the typicd¢ereduction problems
in control theory, the large state-space dimension of tiR&Sk circuits makes the
use of most of the more powerful reduction methods prokibitrurthermore, RCL
circuits are described by systems of differential-algeteguations, resulting in so-
called descriptor systems. Many of the existing order-cidn methods cannot be
used directly for descriptor systems. Motivated by thisvhapplication in VLSI
circuit simulation, starting in the early 1990s, there hasrbtremendous interest in
developing techniques for order reduction of large-scakedptor systems.

Reduced-order modeling techniques based on Padé ortael@pproximation
were quickly recognized to be powerful tools for the proldeanising in VLSI
circuit simulation. The first such technique was asymptaiweform evaluation
(AWE) [27], which uses explicit moment matching. More rettgrthe attention
has moved to reduced-order models generated by means af\Ksybspace algo-
rithms, which avoid the typical numerical instabilitiesedfplicit moment matching;
see, e.g., the survey papers [12, 13, 14].

PVL [8, 9] and its multi-port version MPVL [10] use variant§ the Lanczos
process [23] to stably compute reduced-order models tpa¢sent Padé or matrix-
Padé approximations [4] of the circuit transfer functi8yPVL [18] and its multi-
portversion SyMPVL [11, 19, 20] are versions of PVL and MP¥&spectively, that
are tailored to RCL circuits. By exploiting the symmetry dERtransfer functions,
the computational costs of SyPVL and SyMPVL are only halftaf¢e of general
PVL and MPVL.

Reduced-order modeling techniques based on the Arnoldiegeo[2], which is
another popular Krylov-subspace algorithm, were first peaal in [31, 24, 7, 25,
26]. Arnoldi-based reduced-order models are defined bytaindtadé-type approx-
imation property, rather than Padé approximation, and @salt, in general, they
are not as accurate as a Padé-based model of the same deast, Arnoldi-based
models are known to match only half as many moments as Las#zazzed models;
see [31, 24, 25, 13].

In many applications, in particular in VLSI interconnecifyrsis, the reduced-
order model is used as a substitute for the full-blown oagmodel in higher-level
simulations. In such applications, it is very important floe reduced-order model
to maintain the passivity properties of the original citcln [19, 20, 3], it is shown
that SyMPVL is passive for RC, RL, and LC circuits. Howevére tPadé-based
reduced-order model that characterizes SyMPVL cannot laeagiteed to be pas-
sive for general RCL circuits. On the other hand, in [24, 26], & was proved
that the Arnoldi-based reduction technique PRIMA prodyszessive reduced-order
models for general RCL circuits. PRIMA employs a block vensof the Arnoldi
process and then obtains reduced-order models by pragjettnmatrices defining
the RCL transfer function onto the Arnoldi basis vectors.i@/RPRIMA generates
provably passive reduced-order models, it does not pressher structures, such
as reciprocity or the block structure of the circuit matsicenherent to RCL cir-
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cuits. This has motivated the development of the reducdohriique SPRIM [15],
which overcomes these disadvantages of PRIMA. In particBBRIM generates
provably passive and reciprocal macromodels of multi-g&et circuits. Further-
more, SPRIM models match twice as many moments as the corréisiy PRIMA
models obtained with identical computational work.

SPRIM was originally proposed in [15] for the special casB6L circuits with-
out voltage sources. The purpose of this paper is twofoldt,Rive review the for-
mulation of the equations characterizing general RCL @is@s descriptor systems.
Second, we describe an extension of SPRIM to the case ofgév@L circuits with
voltage and current sources. We present some propertibs general SPRIM al-
gorithm and report results of numerical experiments.

The remainder of this paper is organized as follows. In $a@j we review the
equations describing general RCL circuits and the fornmiadf these equations
as descriptor systems. In Section 3, we present some basicalaout generating
reduced-order models of descriptor systems by means obiistibspace-based
projection. In Section 4, we describe the SPRIM algorithmtifi@ case of general
RCL circuits. In Section 5, we make some comments about hoedoce the num-
ber of voltage sources before applying SPRIM to the remgiREL network. In
Section 6, we report the results of some numerical expetsnEimally, in Section 7,
we mention some open problems and make some concludingkemar

Throughoutthis paper the following notation is used. The@éeeal and complex
numbers is denoted iy andC, respectively. For (real or complex) matricks=
[m;], we denote by/”' = [my,;] thetransposeof M, and byMH := [my;] the
Hermitian (or complex conjuga)eof M. The identity matrix is denoted b and
the zero matrix by); the actual dimensions dfand0 will always be apparent from
the context. The notatiof/ = 0 (M = 0) is used to indicate that a real or complex
square matrix\/ is Hermitian positive semidefini{gositive definitg If all entries
of the matrix M = 0 (M > 0) are real, thenV/ is said to besymmetric positive
semidefinitépositive definite

2 RCL Circuit Equations

We consider general RCL circuits driven by voltage and eurssurces. In this
section, we review the formulation of such RCL circuits amedr time-invariant
differential-algebraic equations (DAES).

2.1 The Lumped-Element Approach

The lumped-element approach uses directed graphs to medgbaic circuits; see,
e.g., [6, 30, 32, 28]. The edgéwf the graph correspond to the electronic elements
of the circuit and the node&” of the graph correspond to the interconnections of
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the electronic elements. In this subsection, we reviewaproach for the case of
general RCL circuits driven by voltage and current sources.

The elements of such a general RCL circuit are its resistaggcitors, inductors,
voltage sources, and current sources. With each such eleveeassociate an edge
e € £, written as an ordered pair of nodes:

e=(ni,n2).

Here,ny,no € N are the nodes of the graph representing the interconnsaifahe
element to other circuit elements. We oalthetail nodeof e andny thehead node
of e. Note that thedirection of e is from ny to ny. For circuit elements for which
the direction of the electric current through the elemerkniswn beforehand, the
direction ofe is chosen accordingly. For all other elements, an arbiagction of
e is assigned. If the computed electric current through snckl@ment is nonnega-
tive, then the current flow is in the direction @fotherwise, the actual current flow
is against the direction af.

The resulting directed gragh= (A, £) can be described by itscidence matrix
the rows and columns of which correspond to the nodes A and edges;, € &,
respectively. To this end, we set

1 ifedgee, leaves node;,
ajr, = 4 —1 if edgeey enters node;,
0  otherwise

The rows of this matrix add up to the zero row, and thus theirmiatrank deficient.

In order to avoid this redundancy, we label one of the nodeéseground nodeof

the circuit and delete the corresponding row. We call thaltieg matrix A. It has
|N|—1 rows and&| columns, wherg\/| and|€| denote the number of nodes and
edges of the grapf, respectively. I (viewed as an undirected graph) is connected,
then the matrix4 has full row rank:

rank A = [N]—1.

Note thatG is indeed connected for any real electronic circuit, and tthis condi-
tion of full row rank of A is always satisfied.

The matrixA4 allows an elegant formulation of the Kirchhoff’s laws foetbiven
RCL circuit. To this end, we denote by the vector the entries of which are the
currents along the edges by ve the vector the entries of which are the voltages
across the edges and byv the vector the entries of which are the voltages at the
nodesV, except for the ground node at which the voltage is zero. Weark that
ig andvg are vectors of length€| andw is a vector of length\| — 1. Kirchhoff’s
current laws(KCLs) can then be stated compactly as follows:

Aig =0. (1)
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Kirchhoff’s voltage lawgKVLs) have the following compact formulation:
ATv = vg. (2)

To obtain a complete characterization of the given RCL dird¢he so-called
branch constitutive relation®CRs) for the actual circuit elements need to be added
to the Kirchhoff's laws(1) and(2). To formulate the BCRs, it is convenient to as-
sume that the edgeg < £ are numbered according to element type in the following
order: resistors, capacitors, inductors, voltage soysrescurrent sources. The ma-
trix A and the vectorge andvg can thus be partitioned as follows:

23 Uy
lc (%
AZ[A7- Ac A Ay Ai}, te= ||, ve=|v|. 3)
Ly Vy
(21 Vi

Here, the subscripts ¢, [, v, andi refer to resistors, capacitors, inductors, voltage
sources, and current sources, respectively. Using thiipast(3), the Kirchhoff’s
laws (1) and(2) can be written as follows:

A, ir+Acic+Al Z’l""-Av iyt Ai ii =0,
(4)

ATv=v,, Alv=v, Alv=v, ATv=nv,, Alv=u,.

Furthermore, the BCRs for the resistors, capacitors, athacitors can be stated in
the following compact form:

d d

Evc(t), v (t) = L—i(t). ()

or(t) = Riy(t), io(t)=C =

Here, R andC are diagonal matrices, the diagonal entries of which aredhis-
tances of the resistors and the capacitances of the caacispectively, and in
particular,R > 0 andC > 0. The matrixL contains the inductances between the
inductors as its entries. If mutual inductances are inadutieenL is a full matrix;
otherwise L is also a diagonal matrix. In both casés;- 0. Therefore, the matrices
in (5) always satisfy

R>0, C=0, and L>0. (6)

2.2 RCL Circuit Equations as Integro-DAESs

Equations(4) and (5), together with suitable initial conditions for some initia
timety, completely characterize the time behavior of the RCL dirédere,

Vo (t) and I (t), t>to, (7)
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are given functions, which describe the voltages and ctsegmovided by the volt-
age and current sources, respectively. The functions

v(t), UT(t)v ve(t), Ul(t)v vi(t), ir(t)v z'c(t)v z'l(t)v in(t) (8)

are the unknown solutions of the equatidd$ and (5). These equations can be
greatly simplified by using the BCR$) and the formulae fov,., v, andv; in (4)
to eliminate all but the unknown functions$t) andi,(t).

To this end, we now assume thgt= 0 and that

i1(0) = 0. )

The third relation in(5) can then be rewritten in the form

t
i(t) = L1 /O vy (1) dr. (10)

Using (10), the first two relations of5), and the formulae fow,, v., andv; in (4),
it follows that

ir(t) = R7YAT (1), ic(t)ZCA”{iv(t), il(t)zL—lAlT/tu(T)dT. (11)
dt 0

Inserting these relations intd), we obtain the coupled system of equations

Eqq %v(t) —Apo(t)+ A LAY /Otv(f) dr 4+ Ay iy (t) = —A;1(1), (12)
— AT v(t) = —v(t)
for the unknown functions(t¢) andi,(t). Here, we have set
B :=A.CAT and A :=—-A.R1AT. (13)
The systen{12) is completed by adding initial values
v(0) and i,(0) (14)

for the solutions(t) andi, (¢) at initial timeto = 0.

We remark that the syste(d2) with initial conditions(14) represents aimtegro-
differential-algebraic equatioiiintegro-DAE). This is the most compact formula-
tion of the equations describing RCL circuits. By solving thtegro-DAE(12), we
obtain the vector(t) of nodal voltages and the vectoy(t) of currents through the
voltage sources. The remaining circuit quantities, namely

vp(t), we(t), wv(t), wvi(t), ir(t), ic(t), and i(t),

are then readily computed using the KVL{if), the first two BCRs ir{5), and(10).
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2.3 RCL Circuit Equations as Descriptor Systems

While integro-DAEs of the typé12) are the most compact formulation of RCL
circuit equations, they are not directly amenable to Kndolspace-based reduction
techniques. Instead, we rewrif¢3) as a descriptor system. This can be done by
treating the vectoi;(¢) of inductor currents also as an unknown function, along
with the functions(¢) andi, (t). We denote by

z(t) == & (t) (15)

the resulting nevstate-space vectasf unknowns. Furthermore, we define vectors
of input and output functions

;z@((tt))} and y(t):= {—1}252)] (16)

Recall from(12) that the entries of theéput vectoru(t) are all given functions.
Theoutput vectory(¢) is readily obtained from the state-space ve¢iar. Indeed,
using the relatiom; (t) = A7 v(t) from (4), it follows that

ult) = {

A; 0
y(t)=BTxz(t), where B:=|0 0 (17)
0 —I

We now re-introduceé; (¢) into (12). To this end, we employ the formula for(t)
stated in(11) and the differentiated form thereof:

d .
L—i(t) = AT u(t).

The resulting equivalent version of the systéif) can be stated as follows:

d
F1 —t’l}(t) — A v(t) +Apig(t) + Ayiy () = —Ajii(t),

d
L %z’l(t) — AT o(t) =0, (18)
—ATw(t) = —u,(t).
Finally, setting
Eyp 00 A —A —A,
E=|0 L 0| and A:==| A" 0 0 |, (19)

0 0 0 AT 0 0
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and adding the relatiofil7) to (18), we obtain the following formulation of the
RCL circuit equations as @escriptor system

d
E—a(t) = Au(t) + Bu(t), (20)

y(t) = B x(t).

The systen{20) is completed by the initial conditions fro8) and(14):

In the following, we denote by andm the length of the state-space vecidt)
and the length of the input vecta(t) of (20), respectively. The numbé¥ is called
the state-space dimensiaf the descriptor systerf20). We remark thain is also
the length of the vector-valued output vecydt) of (20). In particular,A andE are
N x N matrices, and3 is an N x m matrix. Note that, in view of16), m is the
total number of voltage and current sources in the RCL dircui
The formulation20) is essential for using Krylov subspace techniques for model
order reduction of RCL circuits. Furthermore, the matridesnd F in (20) need to
be such that thenatrix pencil

sE—A, seC, (21)

isregular, i.e., the matrixs F — A is singular only for finitely many values afe C.

Regularity of the matrix pencil21) is equivalent to certain rank conditions in-
volving the subblocks of the matrixd in (3). Indeed, the matrix penci21) is
regular if, and only if, the matrix

A, has full column rank (22)

and the matrix
[A. A. Ay A, ] hasfull row rank (23)

For an elementary proof of this characterization of regtylave refer the reader to
[17, Theorem 1].

The rank conditiong22) and (23) have simple interpretations in terms of the
RCL circuit described by the descriptor systéi). Condition(22) means that the
subcircuit consisting of only the voltage sources of theegiRCL circuit has no
closed (undirected) loops. Conditidd3) means that the (undirected) graph cor-
responding to the subcircuit obtained from the given RClcuitrby deleting all
current sources is still connected. Both these conditioasatisfied for any practi-
cally relevant RCL circuit, and thus from now on, we alwaysuase that the matrix
pencil s E — A associated with the descriptor systé®0) is regular. Furthermore,
we stress that the occurrence of a singular matrix pencikisang indication that
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some error was made in the design or the modeling of the RQluitidescribed
by (20).

2.4 Passivity

Any RCL circuit is passivei.e., it consumes energy (provided by the voltage and
current sources), but does not generate energy.

One of the possible mathematical characterizations ofyigsgses the concept
of the transfer function of a descriptor system. Recall thatmatrix penci21) is
assumed to be regular. Therefore, we can define anm-matrix-valued function
by setting

H(s):=BT(sE—A)"'B, seC. (24)
Note thatH is a rational function, with possible poles at those finitelgny values
of s € C for which the matrixs E — A is singular. The functiori24) is called the
transfer functiorof the descriptor systerf20).

The function(24), H, is said to bepositive realif it has no poles in the right-half

Cy:={seC ‘ Res>0}
of the complex plane and
H(s)+ (H(s))" =0 forall seC,.

Itis well known that a system described (0) is passive if, and only if, the transfer
function of (20) is positive real, see, e.g., [1].

Since RCL circuits are passive, it thus follows that the $fanfunctions of the
circuit equations stated as descriptor systé20$ are guaranteed to be positive real.
An alternative proof of this fact uses the following simptedrem, which can be
found as Theorem 13 in [13].

Theorem 1. Let A, E € RN>*N and B € RV*™_ Assume that
E=ET+»0, A+AT <0, (25)

and that the matrix pencil E — A is regular. Then, the functiof24), H, is positive
real.

In view of this theorem, we only need to verify that the masid andE defined
in (19) satisfy the condition§25). Note that by(6) and(13), we have

En=EL =0, L=LT+0, and A, =47 <o.

Together with(19) it follows that
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00
E=ET>0 and A+4T=| 0 0 0] =0
00

Hence the transfer functions of RCL circuit equations stade descriptor sys-
tems(20) are indeed positive real.

3 Projection-Based Order Reduction

In this section, we review some basic facts about generagitigced-order models
of descriptor system&0) by means of projection. From now on, we always assume
that the systeni20) describes a given RCL circuit. In particular, the matrices
andE are of the form(19), and the matrix3 is of the form(17).

3.1 Reduced-Order Models

A generalreduced-order modedf (20) is a descriptor system of the same form
as (20), but with a reduced state-space dimensioa N, instead ofN. Thus a
reduced-order model is of the form

d

By = 8(t) = An (1) + Bul(?), (26)

g(t) = Bra(t),

whereA,,, E, € R"*™ andB,, € R"*"™. Note that the input vectar(t) is the same
as in(20). In particular, the number is unchanged fronf20). The output vector
g(t) of (26) is only an approximation of the original output vectg(it) of (20).
In fact, the problem of order reduction is to find a sufficigriirge reduced state-
space dimension and matricesA,,, E,, and B,, such that the output vector of
the reduced-order modé26) is a ‘sufficiently good’ approximation of the output
vector of the original syster{20).

Provided that the matrix pencil

sE,—A,, se€C, (27)
associated witti26) is regular, we can define a transfer function as before:
Hy(s):=BY (sE,—Ay) " 'B,, seC. (28)

In terms of transfer functions, the problem of order redurets to find a sufficiently
large reduced state-space dimensioand matricesd,,, E,,, andB,, such that the
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transfer function28), H,,, of the reduced-order model is a ‘sufficiently good’ ap-
proximation of the transfer functiof24), H of the original system:

Hy,(s)~ H(s) in‘some sense’ (29)

3.2 Order Reduction Via Projection

A very basic approach to constructing reduced-order masigdeemployprojection
Let
V, e RVX" with  rank V,, =n (30)

be given. Then, by simply setting
Ap:=V.rAV,, E,:=VIEV,, and B,:=V[IB, (31)

one obtains a reduced-order mod26) that can be viewed as a projection of the
N-dimensional state space of the original system ontmtdénensional subspace
spanned by the columns of the matbix. In particular, projection employs an ansatz
of the form

Z(t) = Vpa(t)

for the state-space vectaft) of the reduced-order modéR6). Recall thatz(t)
denotes the state-space vector of the original sy$#ém
There are two appealing aspects of the projection approach:

1. Reduced-order models obtained by means of projectiaaltyi preserve passiv-
ity of the original system; see, e.g., [24, 25, 26]. Indekd,dnly additional con-
dition on the matrix(30), V,,, is that the resulting matrix pendi27) is regular.
Recall thatd and FE satisfy the semidefiniteness properti2s). The definitions
of A, andE,, in (31) readily imply that these matrices also satig?p). There-
fore, by Theorem 1, the transfer functi¢2g), H,, is positive real, and thus the
corresponding reduced-order modet) is passive.

2. By choosing the matri¥;, such that the subspace spanned by its columns con-
tains a certain Krylov subspace, one obtains reduced-ordeels for which28),
H,, is a Padé-type approximation of the original transfercfion (24), H; see
Subsection 3.4 below.

3.3 Block Krylov Subspaces

Suppose we want to evaluate the transfer functivf), H, of the descriptor sys-
tem (20) at some poinky € C at which the matrixso E — A is nonsingular. The
most efficient way of obtaining/ (so) is to first solve the system of linear equations
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(soE—A)X(s0) =B (32)
for X (so) and then compute
H(so) =BT X (s0).

The coefficient matrixso E — A of (32) is large, but sparse, and as it is the case
for all practical circuit matrices, a sparse LU factoripatiof this matrix can be
computed with typically little fill-in; see, e.g., [30, 32].

The basic idea behind Krylov subspace-based order reducticelectronic cir-
cuits is to reuse the LU factorization, which was computeotitain H (s¢), to gen-
erate the information contained in the leading Taylor cofits of H expanded
aboutsg. To this end, we rewrite the transfer functi@t) as follows:

H(s)=BT (s E— A+ (s—s0)E) " 'B=B"(I+(s—so)M) 'R, (33)

where

M:=(soE—A)'E and R:=(soE—A) 'B. (34)

In view of (33), the Taylor expansion aff abouts is given by
H(s)=Y (=1 B"MIR(s - s0)’. (35)
§=0

The leading Taylor coefficients df can thus be obtained by computing inner prod-
ucts of the columns of the matri® and the leading columns of th#ock Krylov
matrix

|[R MR M?R --- MI7'R ..-]. (36)

Let Nimax (< N) denote the rank of this matrix. Then far=1,2,..., Nyax, the
n-th block Krylov subspac@nduced byM andR) is defined as thé-dimensional
subspace ofV spanned by the firsi linearly independent columns of the block
Krylov matrix (36). In the following, s (M, R) denotes thig:-th block Krylov
subspace. Note that, by constructidii,(M, R) contains the necessary information
to generate at least the first

FJ (37)

m

Taylor coefficients of the expansiq85) of H aboutsy. In the generic case, the
integer(37) is the exact number of Taylor coefficients that can be obtafnam
K (M, R). However, in certain degenerate cases, one can obtain ewenaoeffi-
cients; we refer the reader to [17, 16] for a complete charamdtion of the exact
number of coefficients.

We remark that for actual numerical computations, this defmof I, (M, R)
is useless. Instead, one employs a suitable Krylov subsalgogithm to gener-
ate a numerically well-behaved basis/of (M, R). One such algorithm is the band
Arnoldi process described in [14]. It produces orthonorbaais vectors for the sub-
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spacedC; (M, R). We remark that Krylov subspace algorithms involve the iratr
M only in the form of matrix-vector product®/v. For the computation of these,
the matrix M never needs to be formed explicitly. Instead, in view of tleéird-
tion of M in (34), each matrix-vector produdt/v can be obtained via one sparse
multiplication with £ and two sparse triangular solves with the LU factors of the
matrix so £ — A.

Finally, we stress that for genera € C, K, (M, R) is a subspace of V. If
we restrictsg to be real, then the matriced and R are real andC,, (M, R) is a
subspace aR" .

3.4 Krylov Subspace-Based Projection

We now employ the block Krylov subspaces defined in Subse®&i8 to choose
suitable projection matricés,.
Recall from(30) that the matrice¥,, are assumed to be real. For the sake of gen-

erating reduced-order models, this assumption is not #akeand in fact, complex
N x n matrices can be used as well. However, in order to obtairygassdels, the
matricesV,, need to be real. To guarantee this condition, from now on warae
that

sp € R, (38)

so thatKC, (M, R) is a subspace d&'V. At the end of this subsection, we include
some remarks about how to proceed in the case of truly complexC \ R.
For Krylov subspace-based projection, we choose the m@uix V,,, such that

Ka(M,R) C colspan V,. (39)

Since, by constructiork’;, (M, R) has dimensiom and, by(30), V,, is assumed to
have rankz, the condition(39) implies that

n<n. (40)

An obvious choice folV,, is a matrix whose columns form a basis/6f, (M, R),
such as the vectors generated by the band Arnoldi proceshislicase, we have
7 =n in (40).

Let A, E,, and B,, be the matriceg31), and letH,, be the transfer func-
tion (28) of the corresponding reduced-order mo@€l). The main result of Krylov
subspace-based projection then states khats a Pade-type approximationf the
original transfer functiori24), H, in the following sense:

Hp(s) = H(s) +O((s—s0)'™), where j(n)> L%J . (41)
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Moreover, in the generic casg(n) = |7/m| in (41). The property(41) is well
known. For example, it was established for various speaasks in [5, 24, 21].
Proofs for the general case be found in [13, 16]. We remartkttigamatrix-valued
coefficients of the Taylor expansion of the transfer funeti@4), H, about the
expansion poinkg are often callednomentsand that the Padé-type approxima-
tion (41) is also referred to asoment matching

If instead of (38), the expansion poingy is chosen to be truly complex, then
K# (M, R) is a complex subspace and the projection matgn (39) will be com-
plex as well in general. One possibility of keeping the pcogn matrix real is to
replace the complex matri, satisfying(39) by the real matrix

[ReV,, ImV,]. (42)

The obvious disadvantage of this approach is that the dimers the reduced-
order model is doubled. Furthermore, in general, the matiy is not guaranteed
to have full column rank, and so before usidg) as a projection matrix, one would
need to check for and possibly delete any linearly depenct#omns of(42). On
the other hand, the transfer function of the resulting reduwarder model will sat-
isfy a Padé-type property of the for(d1) for both sy and the complex conjugate
expansion pointg; see, e.g., [22].

3.5 Structure Preservation

Recall from(19) and(17) that the matricesl, £/, andB exhibit certain block struc-
tures reflecting the fact that the descriptor sys{ef) describes an RCL circuit. As
long as the expansion poigg is chosen to be real, the reduced-order model gener-
ated via projection preserves the passivity of the origRf@L circuit, but not these
block structures of the data matrices. In fact, in gen&paWill be a dense matrix,
and then the data matricé€3l) of the reduced-order model will be dense matrices
as well.

For example, consider the ‘minimal’ choice of the mafrixin (39),i.e.,n=n
andV,, is chosen as any matrix whose columns skigiiM, R). The resulting order
reduction method is mathematically equivalent to PRIMA, [28, 26]. However, in
general the data matrices of the PRIMA reduced-order madalense and do not
preserve the block structures of the original matrided”, and B. In the next sec-
tion, we describe how these structures can indeed be peesbyaking advantage
of the fact that in(39) we can choose a matriX, with n > 7.

The reader may ask why preservation of the block structuréseomatricesA,

FE, andB is important. There are two reasons:

1. In practice, one would like to synthesize the system desdrby the reduced-
order model(26) as an actual physical electronic circuit. It is well knowatth
passivity of the reduced-order model is sufficient to gutsaithe existence of
such a synthesized circuit; see, e.g., [1]. However, pagsilone is not enough
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to guarantee synthesis as an RCL circuit, and in generak sher circuit ele-

ments are needed. Additional properties, sualeeiprocity, of the reduced-order
model are necessary to ensure synthesis as an RCL circule @Whserving the

block structures of the data matrices of the original desorisystem alone is
not enough to guarantee synthesis as an RCL circuit, it eageciprocity and

significantly increases the probability that the reducetkomodel can be syn-
thesized as an actual RCL circuit.

2. Preserving the block structure also doubles the numbd@ayibr coefficients
that are matched in the Padé-type approximation propéiiyeoreduced-order
model. More precisely, the structure-preserving SPRINalgm matches twice
as many coefficients as the non-structure-preserving PREWdrithm; see
equation(47) in Subsection 4.3 below.

4 The SPRIM Algorithm

The SPRIM Gtructure-Preserving Reduced-order Interconnect Macometing al-
gorithm was originally introduced in [15] for the speciakezof RCL circuits with
only current sources, but no voltage sources. In this casethird block row and
column of A and F in (19) and the third block row of? in (17) are non-existent.
This significantly simplifies both the implementation of SFRand the derivation
of certain theoretical properties of SPRIM. In this sectiwe describe the SPRIM
algorithm for the case of general RCL circuits with both agk and current sources.

4.1 Preserving the Block Structures

The main computational step of SPRIM is the generation ofitalsie basis for
the 7i-th block Krylov subspacé’, (M, R). This step is identical to what is done
in PRIMA. Let Vj, be the resulting matrix, the columns of which form a basis
of K4 (M, R). PRIMA employs this matrix as the projection matrix to ohtéie
reduced-order data matric€l). As pointed out before, in general, these PRIMA
data matrices are dense and thus do not preserve the blackusés of the original
matricesA, F, andB.

Instead of using the matri¥;, directly for the projection, SPRIM employs a
modified version of this matrix that trivially leads to sttuce preservation. To this
end,V, is first partitioned as follows:

Va= V. (43)
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Here, the block sizes correspond to the block sized ahd £ in (19). While V;,
has full column rank, the same is not necessarily true for the three subbl&éks
1=1,2,3,in (43). In particular, the third blocky (%) is of sizen,, x 7, wheren,,
denotes the number of voltage sources of the given RCL ¢irthe numben,, is
very small and usually.,, < 7. Therefore) () typically does not have full column
rank. In the actual implementation of SPRIM, we run a Grarmssidt algorithm on
the rows of(®) to determine a matri¥’®) the columns of which span the same
space as the columns B3, but has full column rank. The other two blocks usually
have many more rows than columns. and these blocks are lyntiketo have full
column rank. In the actual implementation of SPRIM, therthés option to check
the column ranks of the first two blocks and replace them byioesti’ () andV (2)

of full columns rank. Next, we set up the actual projectiorinrd/;, as follows:

vih 0 0
V=] 0 V@ o |. (44)
0o 0 vV®
By construction, we have
Kn(M,R) = colspan vV, C colspan V,. (45)

Thus the matrixX44), V,,, satisfies the conditio(89), which in turn guarantees the
Padé-type approximation propeftyl ). Furthermore, in view of the block structure
of V,,, the data matrice$31) of the resulting reduced-order model obtained via
projection withV;, have the same block structure as the original data maticés
andB.

4.2 The Algorithm

The order reduction procedure outlined in the previous ectit is the SPRIM
algorithm for general RCL circuits. SPRIM can be formuledsdn actual algorithm
in the following form.

Algorithm 2 (SPRIM for general RCL circuits)

e Input: matrices of the form

A A —A, Eiin 00 A; 0
A=A 0o 0|, E=| 0 L 0|, B=|0 0 [,
Ay 00 0 0 0 0 —I

whereA1; <0, E11 = 0,and L = 0;
an expansion poingp € R.
e Formally set
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M=(soE—A)'E, R=(soE—A)"'B.

Until 71 is large enough, run your favorite block Krylov subspaceodtapplied
to M and R) to construct the columns of the basis matrix

Vi=[v1 va - vq]
of theni-th block Krylov subspack; (M, R), i.e.,
colspan Vi, = Kn(M,R).

o Let
v
V,=|V®
v (3)
be the partitioning ofi/;, corresponding to the block sizes dfand E.
Fori=1,2,3 do:
If r;:=rank V() <, determine anV x r; matrix V() with

colspan VW = colspan V' and rank VO =,
e Set
A = (f/(l))TAllf/(l), A = (f/(l))TAlf/(Q)7 A, = (f/(l))TAvf/@)’

B =) ELVO, L=@@) Ly®, 4= (o) 4,

Output: the data matrices

A —A —A, Ei1 0
Ay=| A" 0o 0|, B.=| 0 L :
AT 0 0 0 0
AZ‘ 0
and B,=1| 0 0 )
0 —(Ve)"

of the SPRIM reduced-order model

d _ ~
B = 8() = Ay &(0) + By u(?), (46)

§(t) = By a(t).



18 Roland W. Freund

4.3 The Pa@-Type Approximation Property of SPRIM

Recall that SPRIM is a Krylov subspace-based projectiototktin particular, the
matrixV,, used in the projection satisfies the condit{@8), which implies the Padé-
type approximation propertfd1). It turns out that SPRIM actually has a stronger
Padé-type approximation property. More precisely, thagfer functionH,, of the
SPRIM reduced-order modgl6) satisfies

Hn(s) :H(S)—FO((S—So)Qj(ﬁ))’ where _](’fl) > {%J s (47)

instead of(41). The integerj(n) is the same as if41), and in the generic case,
j(n) = |n/m]in (47). The property means that at the expansion pajnthe trans-
fer function of the SPRIM reduced-order model matches twisenany leading
Taylor coefficients as the theory of general Krylov subspaased projection meth-
ods predicts.

This higher accuracy of SPRIM is a consequence of structesepvation. Pro-
jection methods that do not preserve the structures of tiggnat data matrices,
such as PRIMA, do not satisfy the more accurate Padé-tyqeepty (47).

The proof of(47) is relatively straightforward for the special case of RCE: ci
cuits without voltage sources; see [15]. In this case, thid thlock row and column
of the matricesA and E' and the third block row of the matri are empty, and one
can easily make both matricelsand £ symmetric by changing the sign of the sec-
ond block row, without changing. This symmetry, along with the corresponding
symmetry of the data matrices of the SPRIM reduced-ordemispdan be used to
establish(47). In the case of general RCL circuits, it is no longer possiblmake
A and E symmetric without changin@, and a different approach to provirgr)
is required. The key observation here is that the matitasd £’ are.J-symmetri¢
i.e., they satisfy

JA=ATJ and JE=E"J,

with respect to the indefinite matrix

I 0 0
J=1]0 -1 o |,
0 0 —I

where thel’s denote identity matrices of the same size as the diagdoek$ of

A andE. Since the matriced,, and E,, of the SPRIM reduced-order model have
the same block structure ab and E, respectively, the matriced,, and E,, are
Jn-symmetric with respect to a ‘reduced’ versidp of J. Finally, the projection
matrix (44), V;,, employed in SPRIM isompatiblewith J and.J,, in the sense that

TV, =V, dp. (48)
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In [16], we developed a general theory of Krylov subspacgetarojection of/-
symmetric descriptor systems. More precisely, we showatlttie stronger Padé-
type approximation propertyt7) holds true, provided that the data matrices of the
reduced-order models asg -symmetric and the compatibility conditigng) is sat-
isfied. By applying this more general result [16, Theoreno9$PRIM, we obtain
its stronger Padé-type approximation prop&#y).

5 Treatment of Voltage Sources

Recall from(19) that the third block row and column of the matricésndE arise
due to the presence of voltage sources in the given RCL tifdote that the size
of the third block rows isi, x N and the size of the third block columnsi&x n,,.
Here,n, denotes the number of voltage sources, which is usually seil. In
SPRIM, the corresponding third blodk(®) of the matrix(43), V;, is usually rank
deficient and thus needs to be replaced by a bld€k of full column rank, see
Algorithm 2.

In many cases, it is actually possible to treat all or at Isaste of the voltage
sources separately and to apply the model reduction afgoriitiself to a slightly
smaller RCL circuit. The reason is that voltage sources sually connected to the
ground node of the circuit and they are connected to the r@ntgRCL circuit by
a resistor. Such a case is illustrated in Figure 1, which stmwRCL circuit with4
such voltage sources connected to the ground node and bigrés the remain-
ing RCL network. Recall fron{16) that the given voltages of the voltage sources

Remaining RCL network

| | | |
Fig. 1 An RCL circuit for
which 4 voltage sources can
be eliminated before model L

reduction is applied

are part of the input vectar(t) of the descriptor systerf20) and from(16) that the
unknown currents through the voltage sources and the \adtagthe circuit nodes
are part of the unknown state-vectd() of (20). For voltage sources connected to
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the remaining RCL network as in Figure 1, there are someatrielations between
some of these circuit quantities, which can be used to rethecstate-space dimen-
sion of (20). More precisely, consider a typical voltage source coretetd ground
and to a resistor, as shown in Figure 2. In this case, thegelta(t) at node 1 is
equal to the voltage, (¢) provided by the voltage source:

v1(t) = vy (1) (49)

By Kirchhoff’s current law, the unknown current(t) through the voltage source
is equal to the unknown curreif(t) through the resistor. Together with Ohm'’s law
for resistors, it follows that

io0) =in(t) = 3 (02(6) ~ 01 (1), (50)

whereuvs (t) denotes the unknown voltage at node 2 &hid the given resistance of
the resistor. Using the two relatio$9) and(50), we can eliminate the unknowns
v1(t) andi,(t) from the circuit equation, thus reducing the state-spamedsion
by 2.

The above procedure can be carried out for all voltage setheg are connected
to the ground node and by a single resistor to the remaining R&@work. Ifnge)
denotes the number of such voltage sources in the given RCuigithen the state-

space dimension of the resulting descriptor syste{® := N — 2n§f). Here, N
is the state-space dimension of the original descriptdesy&20).

Itis relatively straightforward to carry out this elimina on the matrices of the
original system(20). Here, we omit the full details and just state the final result
The given RCL circuit is again described by a descriptoresysthat now has the
following form:

Node 2 @ V(1)

R i(t)

Node 1 vl(t)

I.(t)
Fig. 2 A typical voltage v
source connected to the

ground node and by a sin-

gle resistor to the remaining

RCL network —
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EO L0y = 40 20 4) + BO w(e),
dt (51)

y(t) = Du(t) + (CN T2 (1),

Here,A(") andE(") areN(") x N(") matrices corresponding to the remaining RCL
network. These matrices have the same block structure amatréces in(20), but

with the sizes of each first and third block row and column oetdbbyngf). In
particular, in the case that all voltage sources have bésinaited, thenA(") and
E() have no third block rows and columns at all. The state-vectort) of (51) is
obtained from the state-vectart) of (20) by deleting the voltages at the nodes
between the eliminated voltage sources and the directlyeted resistors and
the currents through the eliminated voltage sources. Tetiand output vectors
of (51) are the same as {{16). We now partition these vectors as follows:

—ii(t) ’Ui(t)
u(t)= |0 (t)| and y(t)= |- ()] . (52)
v$(t) ~i(1)

Here, the superscriptg¢)” and “(r)” refer to eliminated and remaining voltages

sources, respectively. Finally, (51), D € R™*™ and B, (") ¢ RN xm gre
matrices of the following form:

AZ' Blg 0 -Ai —312 0
B"W=10 0 0], ¢cW=|l0 0 0 |,
0 0 —I 0 0 —I
(53)
0 0 0
and D={0 R;' 0
0 0 0

Here, R denotes the diagonal matrix the entries of which are thesta@sies of
the resistors connected directly to the eliminated volsmeces, and the partitions
in (53) are conforming with the partitions of the input and outputtees(52).

To btain a reduced-order model of the descriptor systéir), we can again
employ SPRIM. The data matrices of the reduced system aggnelot analogous
to (31), together with the additional relations

Cn:=VTc" and D,:=D.

It is easy to see that SPRIM applied to the descriptor systgim preserves the
structures of all the data matrices.
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6 Numerical Examples

In this section, we present some results for two classesradiitiexamples. In all
cases, we ran the SPRIM algorithm for increasing valuesetittnensiom of the
underlying block Krylov subspaces and stopped when thestearfiunction of the
SPRIM reduced-order model had converged to the transfeatibmof the unre-
duced original descriptor system. Here, convergence isitored over a relevant
frequency range of interest of the form

$=iw, Wmin < W < Wnax,

wherei = /—1. For the value of. at convergence of SPRIM, we also generated the
corresponding PRIMA reduced-order model produced fronséimeen-dimensional
block Krylov subspace. This is a fair comparison since gatireg basis vectors for
this subspace is the dominating computational cost for B®RIM and PRIMA.

In all cases, we plot the absolute valuesidfs) and H,,(s) (for both SPRIM and
PRIMA) over the frequency range of interest.

The first example is a variant of the so-called PEEC circu®].[2t only has
state-space dimensiaN = 308, but due to its many poles and zeros close to the
frequency range of interest, its transfer function has nfaagures. This variant of
the PEEC circuit has two current sources and one voltagespand thusn = 3.

The expansion pointgg = 7 x 10'? was used. In this case, the Krylov dimension
n =90 is needed to achieve convergence. Figure 3 depicts theutbsalues of the
(1,1)-component of th& x 3-matrix-valued transfer functions. Clearly, for= 90
PRIMA has not converged yet. Figure 4 shows a close-up ofitheasge where the
PRIMA and SPRIM reduced-order models differ the most. Fégus and 6 display
the corresponding plots for ti{é, 3)-component of th x 3-matrix-valued transfer
functions.

The second example (referred to as “package example”) igarl®CL circuit
with state-space dimensiavi = 1841. This circuit has8 current sources artvolt-
age sources, and thus= 16. Its transfer function i$6 x 16-matrix-valued and has
256 components. The expansion poigt= 27 x 10 was used. For this example,
the Krylov dimension: = 128 is needed to achieve convergence. Figures 7 and 8
depict the absolute values of tli® 1)-component and thg, 9)-component of the
transfer functions. Note that fér= 128 PRIMA has not converged yet.

The 8 voltage sources of the package example are all of the typershoFig-
ure 2, and so all voltage sources can be eliminated usingpihe@ach outlined in
Section 5. We have applied SPRIM and PRIMA to the resultingcdptor sys-
tem(51) of state-space dimensidvi(") = 1841 — 16 = 1825. As before, the Krylov
dimensionn = 128 is needed to achieve convergence. Figure 9 shows the absolut
values of the(16,9)-component of the transfer functions.
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10° ¢

10" £ — — — PRIMA model 3
3 SPRIM model ]

abs(H N 1)

Frequency (Hz) 9

Fig. 3 PEEC example(1, 1)-component of transfer functions

7 Concluding Remarks

In this paper, we reviewed the formulation of general RClcwits as descriptor
systems and described the SPRIM reduction algorithm foeiggRCL circuits.

While there has been a lot of progress in Krylov subspaceeasder reduc-
tion of large-scale RCL circuits in recent years, there ditersany open prob-
lems. All state-of-the-art structure-preserving methaieh as SPRIM, first gen-
erate a basis matrix of the underlying Krylov subspace aed gtmploy explicit
projection using some suitable partitioning of the basigrixéo obtain a structure-
preserving reduced-order model. In particular, there wrerhajor problems with
the use of such explicit projections. First, it requires sh@rage of the basis ma-
trix, which becomes prohibitive in the case of truly largale linear dynamical
systems. Second, the approximation properties of thetinegstructure-preserving
reduced-order models are not optimal, and they show thathitable degrees of
freedom are not fully used in general. It would be highly desle to have structure-
preserving reduction methods that do not involve expligijgction and would thus
be applicable in the truly large-scale case. Other unreslabsues include the au-
tomatic and adaptive choice of suitable expansion paintnd robust and reliable
stopping criteria and error bounds.
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4 — — — PRIMA model
SPRIM model

abs(H N l)
=
o

1.5 2 25 3 3.5 4 4.5 5 55
Frequency (Hz) x 10°

Fig. 4 PEEC example, close-up 6f, 1)-component of transfer functions
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