Math 135B, Winter 2023.

Homework 1

Due: Jan. 20, 2023

1. (a) Assume that X_{n} are random variables such that that $X_{n} \rightarrow a$ in probability, where a is a (nonrandom) constant. Suppose also $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function. Show that $f\left(X_{n}\right) \rightarrow f(a)$ in probability.
(b) Assume that X_{n} and Y_{n} are random variables such that X_{n} and Y_{n} are defined on the same probability space (so that they can be added). Assume also that $X_{n} \rightarrow a$ and $Y_{n} \rightarrow b$ in probability, where a and b are (nonrandom) constants. Show that $X_{n}+Y_{n} \rightarrow a+b$ in probability.
2. Assume that X_{1}, X_{2}, \ldots are independent random variables, all uniform on $[0,1]$. Compute the limit, in probability, of the following random variables:
(a) $\frac{1}{n} \sum_{i=1}^{n} X_{n}$;
(b) $\frac{1}{n} \sum_{i=1}^{n} X_{n}^{2}$;
(c) $\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i+1}$; and
(d) $\left(X_{1} \cdots X_{n}\right)^{1 / n}$.
3. Assume you have $2 n$ cards with n colors, with 2 cards of each color. Select n cards without replacement, and let N_{n} be the number of colors that are not represented in your selection.
(a) Compute $E N_{n}$ and $\operatorname{Var}\left(N_{n}\right)$.
(b) Determine a constant c so that $\frac{1}{n} N_{n} \rightarrow c$, in probability.
(c) Let M_{n} be the the number of colors that are represented in your selection. Determine a constant d so that $\frac{1}{n} M_{n} \rightarrow d$, in probability.
4. (From a Final Exam at Queen's University, Ontario.) An urn contains m red and n blue balls. Balls are drawn one at a time withour replacement until all m red balls are drawn. Let T be the number of draws required. Compute ET. (Hint. The best way is to relate T to the number N of blue balls that remain in the urn after all red balls are drawn.)
