Math 135B, Winter 2023.

Homework 1

Due: Jan. 20, 2023

1. (a) Assume that X, are random variables such that that X,, — a in probability, where a is a
(nonrandom) constant. Suppose also f : R — R is a continuous function. Show that f(X,) — f(a)
in probability.

(b) Assume that X, and Y,, are random variables such that X, and Y, are defined on the same
probability space (so that they can be added). Assume also that X,, — a and Y,, — b in probability,
where a and b are (nonrandom) constants. Show that X,, +Y,, — a + b in probability.

2. Assume that X;, Xs,... are independent random variables, all uniform on [0,1]. Compute the
limit, in probability, of the following random variables:

(a) % Z?:l Xn;

(b) % > i X5

(¢) 13" X; X 11; and
(

d) (X;--- X))V,

3. Assume you have 2n cards with n colors, with 2 cards of each color. Select n cards without
replacement, and let IV,, be the number of colors that are not represented in your selection.

(a) Compute EN,, and Var(N,).
(b) Determine a constant ¢ so that 2 N,, — ¢, in probability.

(c) Let M, be the the number of colors that are represented in your selection. Determine a constant
d so that %Mn — d, in probability.

4. (From a Final Exam at Queen’s University, Ontario.) An urn contains m red and n blue balls.
Balls are drawn one at a time withour replacement until all m red balls are drawn. Let T be the
number of draws required. Compute ET. (Hint. The best way is to relate T' to the number N of blue
balls that remain in the urn after all red balls are drawn.)



Math 135B, Winter 2023.

Homework 1 Solutions.

1. (a) Assume that X, are random variables such that that X,, — a in probability, where a is a
(nonrandom) constant. Suppose also f : R — R is a continuous function. Show that f(X,) — f(a)
in probability.

Solution. Pick an € > 0. Then there exists a 6 > 0 so that |z — a| < § implies |f(z) — f(a)| < e. This
implies the following inclusion of events:

{1f(Xn) = fla)| = €} C{|Xn —a| > 6}
By the assumption, P(|X,, —a| > §) — 0. Therefore,
P(f(Xa) = F(@)] 2 €) £ P(1X, —al 2 8) 0.
(b) Assume that X,, and Y,, are random variables such that X,, and Y,, are defined on the same

probability space (so that they can be added). Assume also that X,, — a and Y,, — b in probability,
where a and b are (nonrandom) constants. Show that X,, +Y,, — a + b in probability.

Solution. Pick an € > 0. By the assumption, P(| X, —a| > €¢/2) — 0, P(|Y,, —b| > ¢/2) — 0. We have
(X +Y0) = (a+0)] = [(Xn —a) + (Yo = b)| <[ X —af + [V, — ]
and so, as events,
(X0 +Ya) = (@ + )| = €} € {|Xn — a)] = ¢/2} U{[¥n — b)| = ¢/2}.
It follows that
P(I(Xn + Ya) = (a+ )| = &) < P X, — a)| = ¢/2) + P(Y — b)] > ¢/2) > 0.

2. Assume that X;, X,,... are independent random variables, all uniform on [0,1]. Compute the
limit, in probability, of the following random variables:

(a) 5 2oimy Xos

Solution. By WLLN;, the limit is EX; = 1/2.
(b) % Z?:l X£§

Solution. By WLLN, the limit is EX? = 1/3.
(¢) 3 2oimy XiXiq; and

Solution.
Let S;, be the sum. We need to compute the limit of S,,/n.



First solution. We use the second moment method. By independence, E(X;X;11) = EX;EX,;11 =
1/4, and

N 1 1 7
Var(X; X;41) = BE(X?X2,,) — <4) =5 6= T

Also, assume j > i. If j > i+ 2, then
COV(XZ'XZ'+1,Xij+1)) = 0,

again by independence. If j =4+ 1, then

1 1 1 1
COV(XZ'X,L'+1,X¢+1XZ‘+2)) = EXZEXZ2+1EXZ+2 — E = 2.3.9 — TG = ZS

(In fact, the precise values of the variance and the covariance when j = i + 1 are not important, as
long as they are finite. What is important is that the covariance vanishes when j > i + 1. There are
many problems with “local dependence” in which a similar property holds.) We conclude that, by the
variance-covariance formula,

Var(Sn) = Z Var(XiXiH) + 2 Z COV()(Z"XH_l7 Xij.;,_l)

i=1 i<j

n n—1
== ZV&I‘(XZ'Xi_,_l) + 2 Z COV(XZ‘XZ'_,_l, X¢+1Xi+2)
i=1 i=1
7 1
—n— 4+ 2n—1)—.
nigg T2 =g
It follows that E(S,/n) = 1/4 and Var(S,/n) = Var(S,)/n?> = O(1/n)), so that S,/n — 1/4 in
probability.
Second solution. Assume first that n is odd. Write

1 1 1
5 = E(XlXQ + XX+ XpXni1) + E(XZXS + Xa X5 + - Xpo1Xn)
Call the first sum S/, and the second S;/. Then S], has (n + 1)/2 independent (and identically dis-

tributed) terms, each with with expectation 1/4, and S has (n — 1)/2 independent terms, each with

with expectation 1/4. So, —2+ S/ — i and %S;{ — %, in probability, by WLLN. Our sum is

) n+1~n
1 1 n+l 2 n—1 2 11 11 1
-9 -5, = . S . So — — . = .=
T e L N T L R S 7

by Problem 1(b). The case when 7 is even is similar. The answer is 1/4.
(d) (X1--- X))

Solution. Rewrite as exp(1 " | log X,,). By WLLN,
1< 1
— E loan—>E10gX1:/ logx dx = —1,
n “ 0
i=1

T

in probability, and so the limit is e~!, by problem 1(a), applied to the function f(z) = e*.



Note. To apply WLLN as we stated in class, we also need to verify that EX? = fol (logz)? dx is
finite. (In fact, WLLN holds without that assumption.) By the change of variables logx = —z, we
get EX? = [[F 2% 7 dz=2.

3. Assume you have 2n cards with n colors, with 2 cards of each color. Select n cards without
replacement, and let IN,, be the number of colors that are not represented in your selection.

(a) Compute EN,, and Var(NV,).

Solution. Let I; be the indicator of the event that color ¢ is missing. Then N, = I1 + ...+ I,. The
indicators all have the same expectation

2n—2
2n — 2)In! -1
EI; = P(color i is missing) = C.) _ (@n=2)nl _ n

Cry T en)ln-2)! " 2@2n-1)

and so ( 0
n(n —
EN, = ————.

" 2(2n—1)
Moreover, for i # j,

3 - Y n—4)!
E(I;1;) = P(colors i,j are both missing) = (2:) = )i — 4]
nn—-1)n-2)(n-3)  (n—2)(n-3)

T m(2n—1)(2n—2)2n—3) 4(2n—1)(2n—3)

It follows that

Var(N,) = EN, + Y _ E(I;I;) — EN}

i
~n(n—1) (n—2)(n—3) n(n—1)\?
BT R T sy y Ty <2(2n - 1)) '

(It is not necessary to simplify further.)
(b) Determine a constant ¢ so that 2 N,, — ¢, in probability.

Solution. Let X,, = N, /n. By (a),

EXH:EN"—>1,
n 4
and
Var(X )—iVar(N)—>O+i—i—0
" n? " 16 16

Therefore, the convergence holds with ¢ = 1/4.

(c) Let M, be the the number of colors that are represented in your selection. Determine a constant
d so that %Mn — d, in probability.

Solution. As M, =n — N,, %Mn =1- %Nn, and we may take d =1 — ¢ = 3/4.



4. (From a Final Exam at Queen’s University, Ontario.) An urn contains m red and n blue balls.
Balls are drawn one at a time withour replacement until all m red balls are drawn. Let T be the
number of draws required. Compute ET. (Hint. The best way is to relate T' to the number N of blue
balls that remain in the urn after all red balls are drawn.)

Solution. Following the hint, we observe that ' = m 4+ n — N. To each blue ball i, we attach the
indicator I; of the event that it remains in the urn after all red balls are selected. This is the event
that the ball 7 is the last in the ordering of m red balls and the blue ball 7, and thus has the probability
1/(m+1). So EI; =1/(m + 1). Furthermore, N =11 + ...+ I,, s0 EN =n/(m + 1) and

n _ m(m+n+1)

ET =m+n— —
m+1 m+1




