
Math 135B, Winter 2023.

Homework 1

Due: Jan. 20, 2023

1. (a) Assume that Xn are random variables such that that Xn → a in probability, where a is a
(nonrandom) constant. Suppose also f : R → R is a continuous function. Show that f(Xn) → f(a)
in probability.

(b) Assume that Xn and Yn are random variables such that Xn and Yn are defined on the same
probability space (so that they can be added). Assume also that Xn → a and Yn → b in probability,
where a and b are (nonrandom) constants. Show that Xn + Yn → a+ b in probability.

2. Assume that X1, X2, . . . are independent random variables, all uniform on [0, 1]. Compute the
limit, in probability, of the following random variables:

(a) 1
n

∑n
i=1Xn;

(b) 1
n

∑n
i=1X

2
n;

(c) 1
n

∑n
i=1XiXi+1; and

(d) (X1 · · ·Xn)1/n.

3. Assume you have 2n cards with n colors, with 2 cards of each color. Select n cards without
replacement, and let Nn be the number of colors that are not represented in your selection.

(a) Compute ENn and Var(Nn).

(b) Determine a constant c so that 1
nNn → c, in probability.

(c) Let Mn be the the number of colors that are represented in your selection. Determine a constant
d so that 1

nMn → d, in probability.

4. (From a Final Exam at Queen’s University, Ontario.) An urn contains m red and n blue balls.
Balls are drawn one at a time withour replacement until all m red balls are drawn. Let T be the
number of draws required. Compute ET . (Hint . The best way is to relate T to the number N of blue
balls that remain in the urn after all red balls are drawn.)
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Math 135B, Winter 2023.

Homework 1 Solutions.

1. (a) Assume that Xn are random variables such that that Xn → a in probability, where a is a
(nonrandom) constant. Suppose also f : R → R is a continuous function. Show that f(Xn) → f(a)
in probability.

Solution. Pick an ε > 0. Then there exists a δ > 0 so that |x− a| < δ implies |f(x)− f(a)| < ε. This
implies the following inclusion of events:

{|f(Xn)− f(a)| ≥ ε} ⊂ {|Xn − a| ≥ δ}.

By the assumption, P (|Xn − a| ≥ δ)→ 0. Therefore,

P (|f(Xn)− f(a)| ≥ ε) ≤ P (|Xn − a| ≥ δ)→ 0.

(b) Assume that Xn and Yn are random variables such that Xn and Yn are defined on the same
probability space (so that they can be added). Assume also that Xn → a and Yn → b in probability,
where a and b are (nonrandom) constants. Show that Xn + Yn → a+ b in probability.

Solution. Pick an ε > 0. By the assumption, P (|Xn− a| ≥ ε/2)→ 0, P (|Yn− b| ≥ ε/2)→ 0. We have

|(Xn + Yn)− (a+ b)| = |(Xn − a) + (Yn − b)| ≤ |Xn − a|+ |Yn − b|

and so, as events,

{|(Xn + Yn)− (a+ b)| ≥ ε} ⊂ {|Xn − a)| ≥ ε/2} ∪ {|Yn − b)| ≥ ε/2}.

It follows that

P (|(Xn + Yn)− (a+ b)| ≥ ε) ≤ P (|Xn − a)| ≥ ε/2) + P (|Yn − b)| ≥ ε/2)→ 0.

2. Assume that X1, X2, . . . are independent random variables, all uniform on [0, 1]. Compute the
limit, in probability, of the following random variables:
(a) 1

n

∑n
i=1Xn;

Solution. By WLLN, the limit is EX1 = 1/2.

(b) 1
n

∑n
i=1X

2
n;

Solution. By WLLN, the limit is EX2
1 = 1/3.

(c) 1
n

∑n
i=1XiXi+1; and

Solution.
Let Sn be the sum. We need to compute the limit of Sn/n.
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First solution. We use the second moment method. By independence, E(XiXi+1) = EXiEXi+1 =
1/4, and

Var(XiXi+1) = E(X2
iX

2
i+1)−

(
1

4

)2

=
1

9
− 1

16
=

7

144
.

Also, assume j > i. If j ≥ i+ 2, then

Cov(XiXi+1, XjXj+1)) = 0,

again by independence. If j = i+ 1, then

Cov(XiXi+1, Xi+1Xi+2)) = EXiEX
2
i+1EXi+2 −

1

16
=

1

2 · 3 · 2
− 1

16
=

1

48
.

(In fact, the precise values of the variance and the covariance when j = i + 1 are not important, as
long as they are finite. What is important is that the covariance vanishes when j > i+ 1. There are
many problems with “local dependence” in which a similar property holds.) We conclude that, by the
variance-covariance formula,

Var(Sn) =

n∑
i=1

Var(XiXi+1) + 2
∑
i<j

Cov(XiXi+1, XjXj+1)

=
n∑

i=1

Var(XiXi+1) + 2
n−1∑
i=1

Cov(XiXi+1, Xi+1Xi+2)

= n
7

144
+ 2(n− 1)

1

48
.

It follows that E(Sn/n) = 1/4 and Var(Sn/n) = Var(Sn)/n2 = O(1/n)), so that Sn/n → 1/4 in
probability.

Second solution. Assume first that n is odd. Write

1

n
Sn =

1

n
(X1X2 +X3X4 + · · ·XnXn+1) +

1

n
(X2X3 +X4X5 + · · ·Xn−1Xn)

Call the first sum S′n and the second S′′n. Then S′n has (n + 1)/2 independent (and identically dis-
tributed) terms, each with with expectation 1/4, and S′′n has (n− 1)/2 independent terms, each with
with expectation 1/4. So, 2

n+1S
′
n → 1

4 and 2
n−1S

′′
n → 1

4 , in probability, by WLLN. Our sum is

1

n
S1 +

1

n
S2 =

n+ 1

2n
· 2

n+ 1
S1 +

n− 1

2n
· 2

n− 1
S2 →

1

2
· 1

4
+

1

2
· 1

4
=

1

4
,

by Problem 1(b). The case when n is even is similar. The answer is 1/4.

(d) (X1 · · ·Xn)1/n.

Solution. Rewrite as exp( 1
n

∑n
i=1 logXn). By WLLN,

1

n

n∑
i=1

logXn → E logX1 =

∫ 1

0
log x dx = −1,

in probability, and so the limit is e−1, by problem 1(a), applied to the function f(x) = ex.
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Note. To apply WLLN as we stated in class, we also need to verify that EX2
1 =

∫ 1
0 (log x)2 dx is

finite. (In fact, WLLN holds without that assumption.) By the change of variables log x = −z, we
get EX2

1 =
∫∞
0 z2e−z dz = 2.

3. Assume you have 2n cards with n colors, with 2 cards of each color. Select n cards without
replacement, and let Nn be the number of colors that are not represented in your selection.

(a) Compute ENn and Var(Nn).

Solution. Let Ii be the indicator of the event that color i is missing. Then Nn = I1 + . . . + In. The
indicators all have the same expectation

EIi = P (color i is missing) =

(
2n−2
n

)(
2n
n

) =
(2n− 2)!n!

(2n)!(n− 2)!
=

n− 1

2(2n− 1)
,

and so

ENn =
n(n− 1)

2(2n− 1)
.

Moreover, for i 6= j,

E(IiIj) = P (colors i, j are both missing) =

(
2n−4
n

)(
2n
n

) =
(2n− 4)!n!

(2n)!(n− 4)!

=
n(n− 1)(n− 2)(n− 3)

2n(2n− 1)(2n− 2)(2n− 3)
=

(n− 2)(n− 3)

4(2n− 1)(2n− 3)
.

It follows that

Var(Nn) = ENn +
∑
i 6=j

E(IiIj)− EN2
n

=
n(n− 1)

2(2n− 1)
+ n(n− 1)

(n− 2)(n− 3)

4(2n− 1)(2n− 3)
−
(
n(n− 1)

2(2n− 1)

)2

.

(It is not necessary to simplify further.)

(b) Determine a constant c so that 1
nNn → c, in probability.

Solution. Let Xn = Nn/n. By (a),

EXn =
ENn

n
→ 1

4
,

and

Var(Xn) =
1

n2
Var(Nn)→ 0 +

1

16
− 1

16
= 0.

Therefore, the convergence holds with c = 1/4.

(c) Let Mn be the the number of colors that are represented in your selection. Determine a constant
d so that 1

nMn → d, in probability.

Solution. As Mn = n−Nn, 1
nMn = 1− 1

nNn, and we may take d = 1− c = 3/4.
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4. (From a Final Exam at Queen’s University, Ontario.) An urn contains m red and n blue balls.
Balls are drawn one at a time withour replacement until all m red balls are drawn. Let T be the
number of draws required. Compute ET . (Hint . The best way is to relate T to the number N of blue
balls that remain in the urn after all red balls are drawn.)

Solution. Following the hint, we observe that T = m + n − N . To each blue ball i, we attach the
indicator Ii of the event that it remains in the urn after all red balls are selected. This is the event
that the ball i is the last in the ordering of m red balls and the blue ball i, and thus has the probability
1/(m+ 1). So EIi = 1/(m+ 1). Furthermore, N = I1 + . . .+ In, so EN = n/(m+ 1) and

ET = m+ n− n

m+ 1
=
m(m+ n+ 1)

m+ 1
.
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