Math 135B, Winter 2023.

Homework 1

Due: Jan. 20, 2023

1. (a) Assume that X_{n} are random variables such that that $X_{n} \rightarrow a$ in probability, where a is a (nonrandom) constant. Suppose also $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function. Show that $f\left(X_{n}\right) \rightarrow f(a)$ in probability.
(b) Assume that X_{n} and Y_{n} are random variables such that X_{n} and Y_{n} are defined on the same probability space (so that they can be added). Assume also that $X_{n} \rightarrow a$ and $Y_{n} \rightarrow b$ in probability, where a and b are (nonrandom) constants. Show that $X_{n}+Y_{n} \rightarrow a+b$ in probability.
2. Assume that X_{1}, X_{2}, \ldots are independent random variables, all uniform on $[0,1]$. Compute the limit, in probability, of the following random variables:
(a) $\frac{1}{n} \sum_{i=1}^{n} X_{n}$;
(b) $\frac{1}{n} \sum_{i=1}^{n} X_{n}^{2}$;
(c) $\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i+1}$; and
(d) $\left(X_{1} \cdots X_{n}\right)^{1 / n}$.
3. Assume you have $2 n$ cards with n colors, with 2 cards of each color. Select n cards without replacement, and let N_{n} be the number of colors that are not represented in your selection.
(a) Compute $E N_{n}$ and $\operatorname{Var}\left(N_{n}\right)$.
(b) Determine a constant c so that $\frac{1}{n} N_{n} \rightarrow c$, in probability.
(c) Let M_{n} be the the number of colors that are represented in your selection. Determine a constant d so that $\frac{1}{n} M_{n} \rightarrow d$, in probability.
4. (From a Final Exam at Queen's University, Ontario.) An urn contains m red and n blue balls. Balls are drawn one at a time withour replacement until all m red balls are drawn. Let T be the number of draws required. Compute ET. (Hint. The best way is to relate T to the number N of blue balls that remain in the urn after all red balls are drawn.)

Math 135B, Winter 2023.

Homework 1 Solutions.

1. (a) Assume that X_{n} are random variables such that that $X_{n} \rightarrow a$ in probability, where a is a (nonrandom) constant. Suppose also $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function. Show that $f\left(X_{n}\right) \rightarrow f(a)$ in probability.

Solution. Pick an $\epsilon>0$. Then there exists a $\delta>0$ so that $|x-a|<\delta$ implies $|f(x)-f(a)|<\epsilon$. This implies the following inclusion of events:

$$
\left\{\left|f\left(X_{n}\right)-f(a)\right| \geq \epsilon\right\} \subset\left\{\left|X_{n}-a\right| \geq \delta\right\} .
$$

By the assumption, $P\left(\left|X_{n}-a\right| \geq \delta\right) \rightarrow 0$. Therefore,

$$
P\left(\left|f\left(X_{n}\right)-f(a)\right| \geq \epsilon\right) \leq P\left(\left|X_{n}-a\right| \geq \delta\right) \rightarrow 0 .
$$

(b) Assume that X_{n} and Y_{n} are random variables such that X_{n} and Y_{n} are defined on the same probability space (so that they can be added). Assume also that $X_{n} \rightarrow a$ and $Y_{n} \rightarrow b$ in probability, where a and b are (nonrandom) constants. Show that $X_{n}+Y_{n} \rightarrow a+b$ in probability.

Solution. Pick an $\epsilon>0$. By the assumption, $P\left(\left|X_{n}-a\right| \geq \epsilon / 2\right) \rightarrow 0, P\left(\left|Y_{n}-b\right| \geq \epsilon / 2\right) \rightarrow 0$. We have

$$
\left|\left(X_{n}+Y_{n}\right)-(a+b)\right|=\left|\left(X_{n}-a\right)+\left(Y_{n}-b\right)\right| \leq\left|X_{n}-a\right|+\left|Y_{n}-b\right|
$$

and so, as events,

$$
\left.\left.\left\{\left|\left(X_{n}+Y_{n}\right)-(a+b)\right| \geq \epsilon\right\} \subset\left\{\mid X_{n}-a\right) \mid \geq \epsilon / 2\right\} \cup\left\{\mid Y_{n}-b\right) \mid \geq \epsilon / 2\right\} .
$$

It follows that

$$
\left.\left.P\left(\left|\left(X_{n}+Y_{n}\right)-(a+b)\right| \geq \epsilon\right) \leq P\left(\mid X_{n}-a\right) \mid \geq \epsilon / 2\right)+P\left(\mid Y_{n}-b\right) \mid \geq \epsilon / 2\right) \rightarrow 0
$$

2. Assume that X_{1}, X_{2}, \ldots are independent random variables, all uniform on $[0,1]$. Compute the limit, in probability, of the following random variables:
(a) $\frac{1}{n} \sum_{i=1}^{n} X_{n}$;

Solution. By WLLN, the limit is $E X_{1}=1 / 2$.
(b) $\frac{1}{n} \sum_{i=1}^{n} X_{n}^{2}$;

Solution. By WLLN, the limit is $E X_{1}^{2}=1 / 3$.
(c) $\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i+1}$; and

Solution.

Let S_{n} be the sum. We need to compute the limit of S_{n} / n.

First solution. We use the second moment method. By independence, $E\left(X_{i} X_{i+1}\right)=E X_{i} E X_{i+1}=$ $1 / 4$, and

$$
\operatorname{Var}\left(X_{i} X_{i+1}\right)=E\left(X_{i}^{2} X_{i+1}^{2}\right)-\left(\frac{1}{4}\right)^{2}=\frac{1}{9}-\frac{1}{16}=\frac{7}{144}
$$

Also, assume $j>i$. If $j \geq i+2$, then

$$
\left.\operatorname{Cov}\left(X_{i} X_{i+1}, X_{j} X_{j+1}\right)\right)=0
$$

again by independence. If $j=i+1$, then

$$
\left.\operatorname{Cov}\left(X_{i} X_{i+1}, X_{i+1} X_{i+2}\right)\right)=E X_{i} E X_{i+1}^{2} E X_{i+2}-\frac{1}{16}=\frac{1}{2 \cdot 3 \cdot 2}-\frac{1}{16}=\frac{1}{48}
$$

(In fact, the precise values of the variance and the covariance when $j=i+1$ are not important, as long as they are finite. What is important is that the covariance vanishes when $j>i+1$. There are many problems with "local dependence" in which a similar property holds.) We conclude that, by the variance-covariance formula,

$$
\begin{aligned}
\operatorname{Var}\left(S_{n}\right) & =\sum_{i=1}^{n} \operatorname{Var}\left(X_{i} X_{i+1}\right)+2 \sum_{i<j} \operatorname{Cov}\left(X_{i} X_{i+1}, X_{j} X_{j+1}\right) \\
& =\sum_{i=1}^{n} \operatorname{Var}\left(X_{i} X_{i+1}\right)+2 \sum_{i=1}^{n-1} \operatorname{Cov}\left(X_{i} X_{i+1}, X_{i+1} X_{i+2}\right) \\
& =n \frac{7}{144}+2(n-1) \frac{1}{48}
\end{aligned}
$$

It follows that $E\left(S_{n} / n\right)=1 / 4$ and $\left.\operatorname{Var}\left(S_{n} / n\right)=\operatorname{Var}\left(S_{n}\right) / n^{2}=\mathcal{O}(1 / n)\right)$, so that $S_{n} / n \rightarrow 1 / 4$ in probability.

Second solution. Assume first that n is odd. Write

$$
\frac{1}{n} S_{n}=\frac{1}{n}\left(X_{1} X_{2}+X_{3} X_{4}+\cdots X_{n} X_{n+1}\right)+\frac{1}{n}\left(X_{2} X_{3}+X_{4} X_{5}+\cdots X_{n-1} X_{n}\right)
$$

Call the first sum S_{n}^{\prime} and the second $S_{n}^{\prime \prime}$. Then S_{n}^{\prime} has $(n+1) / 2$ independent (and identically distributed) terms, each with with expectation $1 / 4$, and $S_{n}^{\prime \prime}$ has $(n-1) / 2$ independent terms, each with with expectation $1 / 4$. So, $\frac{2}{n+1} S_{n}^{\prime} \rightarrow \frac{1}{4}$ and $\frac{2}{n-1} S_{n}^{\prime \prime} \rightarrow \frac{1}{4}$, in probability, by WLLN. Our sum is

$$
\frac{1}{n} S_{1}+\frac{1}{n} S_{2}=\frac{n+1}{2 n} \cdot \frac{2}{n+1} S_{1}+\frac{n-1}{2 n} \cdot \frac{2}{n-1} S_{2} \rightarrow \frac{1}{2} \cdot \frac{1}{4}+\frac{1}{2} \cdot \frac{1}{4}=\frac{1}{4}
$$

by Problem 1 (b). The case when n is even is similar. The answer is $1 / 4$.
(d) $\left(X_{1} \cdots X_{n}\right)^{1 / n}$.

Solution. Rewrite as $\exp \left(\frac{1}{n} \sum_{i=1}^{n} \log X_{n}\right)$. By WLLN,

$$
\frac{1}{n} \sum_{i=1}^{n} \log X_{n} \rightarrow E \log X_{1}=\int_{0}^{1} \log x d x=-1
$$

in probability, and so the limit is e^{-1}, by problem 1 (a), applied to the function $f(x)=e^{x}$.

Note. To apply WLLN as we stated in class, we also need to verify that $E X_{1}^{2}=\int_{0}^{1}(\log x)^{2} d x$ is finite. (In fact, WLLN holds without that assumption.) By the change of variables $\log x=-z$, we get $E X_{1}^{2}=\int_{0}^{\infty} z^{2} e^{-z} d z=2$.
3. Assume you have $2 n$ cards with n colors, with 2 cards of each color. Select n cards without replacement, and let N_{n} be the number of colors that are not represented in your selection.
(a) Compute $E N_{n}$ and $\operatorname{Var}\left(N_{n}\right)$.

Solution. Let I_{i} be the indicator of the event that color i is missing. Then $N_{n}=I_{1}+\ldots+I_{n}$. The indicators all have the same expectation

$$
E I_{i}=P(\text { color } i \text { is missing })=\frac{\binom{2 n-2}{n}}{\binom{2 n}{n}}=\frac{(2 n-2)!n!}{(2 n)!(n-2)!}=\frac{n-1}{2(2 n-1)},
$$

and so

$$
E N_{n}=\frac{n(n-1)}{2(2 n-1)} .
$$

Moreover, for $i \neq j$,

$$
\begin{aligned}
E\left(I_{i} I_{j}\right) & =P(\text { colors } i, j \text { are both missing })=\frac{\binom{2 n-4}{n}}{\binom{2 n}{n}}=\frac{(2 n-4)!n!}{(2 n)!(n-4)!} \\
& =\frac{n(n-1)(n-2)(n-3)}{2 n(2 n-1)(2 n-2)(2 n-3)}=\frac{(n-2)(n-3)}{4(2 n-1)(2 n-3)} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\operatorname{Var}\left(N_{n}\right) & =E N_{n}+\sum_{i \neq j} E\left(I_{i} I_{j}\right)-E N_{n}^{2} \\
& =\frac{n(n-1)}{2(2 n-1)}+n(n-1) \frac{(n-2)(n-3)}{4(2 n-1)(2 n-3)}-\left(\frac{n(n-1)}{2(2 n-1)}\right)^{2} .
\end{aligned}
$$

(It is not necessary to simplify further.)
(b) Determine a constant c so that $\frac{1}{n} N_{n} \rightarrow c$, in probability.

Solution. Let $X_{n}=N_{n} / n$. By (a),

$$
E X_{n}=\frac{E N_{n}}{n} \rightarrow \frac{1}{4},
$$

and

$$
\operatorname{Var}\left(X_{n}\right)=\frac{1}{n^{2}} \operatorname{Var}\left(N_{n}\right) \rightarrow 0+\frac{1}{16}-\frac{1}{16}=0 .
$$

Therefore, the convergence holds with $c=1 / 4$.
(c) Let M_{n} be the the number of colors that are represented in your selection. Determine a constant d so that $\frac{1}{n} M_{n} \rightarrow d$, in probability.

Solution. As $M_{n}=n-N_{n}, \frac{1}{n} M_{n}=1-\frac{1}{n} N_{n}$, and we may take $d=1-c=3 / 4$.
4. (From a Final Exam at Queen's University, Ontario.) An urn contains m red and n blue balls. Balls are drawn one at a time withour replacement until all m red balls are drawn. Let T be the number of draws required. Compute $E T$. (Hint. The best way is to relate T to the number N of blue balls that remain in the urn after all red balls are drawn.)

Solution. Following the hint, we observe that $T=m+n-N$. To each blue ball i, we attach the indicator I_{i} of the event that it remains in the urn after all red balls are selected. This is the event that the ball i is the last in the ordering of m red balls and the blue ball i, and thus has the probability $1 /(m+1)$. So $E I_{i}=1 /(m+1)$. Furthermore, $N=I_{1}+\ldots+I_{n}$, so $E N=n /(m+1)$ and

$$
E T=m+n-\frac{n}{m+1}=\frac{m(m+n+1)}{m+1} .
$$

