Math 135B, Winter 2023.

Homework 2

Due: Jan. 27, 2023

1. Assume that X_{1}, \ldots, X_{5} are independent random variables with the same density

$$
f(x)= \begin{cases}\frac{1}{e-1} e^{x} & x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute the moment generating function of X_{1}.
(b) Compute the moment generating function of $S=X_{1}+\ldots+X_{5}$.
(c) Compute the moment generating function of $Y=X_{1}+2 X_{2}$.
2. Assume that X is chosen at random from numbers $-1,0,1$, each with equal probability.
(a) Compute the moment generating function of X.
(b) Let X_{1}, X_{2}, \ldots be independent and all distributed as X, and let $S_{n}=X_{1}+\ldots+X_{n}$. Show that, for every $\epsilon>0, P\left(S_{n} \geq \epsilon n\right)$ and $P\left(S_{n} \leq-\epsilon n\right)$ are for large n smaller that n^{-10}.
(c) Let X_{1}, X_{2}, \ldots be as in (b) and let M_{n} be the maximal absolute value of the sum of some n consecutive terms of $X_{1}, \ldots, X_{n^{2}}$. Show that $M_{n} / n \rightarrow 0$ in probability.
3. (I got this problem from a high-school student. This is a harder problem, and you do not have to turn it in.) The median of a sequence of $2 n+1$ numbers is the element a of the sequence such n other elements are at least a and n other elements are at most a; that is, it is the middle number after the sequence is ordered. Roll a fair die $2 n+1$ times and let M_{n} be the median of the numbers rolled. Approximate $E M_{n}^{2}$ for large n and find an upper bound for the error in your approximation. (Hints. The distribution of M_{n} is symmetric. With high probability, M_{n} is 3 or 4. Use Problem 4 in Chapter 10.)

