Math 135B, Winter 2023.

Homework 2

Due: Jan. 27, 2023

1. Assume that X_{1}, \ldots, X_{5} are independent random variables with the same density

$$
f(x)= \begin{cases}\frac{1}{e-1} e^{x} & x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute the moment generating function of X_{1}.
(b) Compute the moment generating function of $S=X_{1}+\ldots+X_{5}$.
(c) Compute the moment generating function of $Y=X_{1}+2 X_{2}$.
2. Assume that X is chosen at random from numbers $-1,0,1$, each with equal probability.
(a) Compute the moment generating function of X.
(b) Let X_{1}, X_{2}, \ldots be independent and all distributed as X, and let $S_{n}=X_{1}+\ldots+X_{n}$. Show that, for every $\epsilon>0, P\left(S_{n} \geq \epsilon n\right)$ and $P\left(S_{n} \leq-\epsilon n\right)$ are for large n smaller that n^{-10}.
(c) Let X_{1}, X_{2}, \ldots be as in (b) and let M_{n} be the maximal absolute value of the sum of some n consecutive terms of $X_{1}, \ldots, X_{n^{2}}$. Show that $M_{n} / n \rightarrow 0$ in probability.
3. (I got this problem from a high-school student. This is a harder problem, and you do not have to turn it in.) The median of a sequence of $2 n+1$ numbers is the element a of the sequence such n other elements are at least a and n other elements are at most a; that is, it is the middle number after the sequence is ordered. Roll a fair die $2 n+1$ times and let M_{n} be the median of the numbers rolled. Approximate $E M_{n}^{2}$ for large n and find an upper bound for the error in your approximation. (Hints. The distribution of M_{n} is symmetric. With high probability, M_{n} is 3 or 4. Use Problem 4 in Chapter 10.)

Math 135B, Winter 2023.

Homework 2 Solutions.

1. Assume that X_{1}, \ldots, X_{5} are independent random variables with the same density

$$
f(x)= \begin{cases}\frac{1}{e-1} e^{x} & x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute the moment generating function of X_{1}.

Solution. By definition,

$$
\phi_{X_{1}}(t)=\frac{1}{e-1} \int_{0}^{1} e^{x} e^{t x} d x=\frac{e^{t+1}-1}{(e-1)(t+1)} .
$$

(b) Compute the moment generating function of $S=X_{1}+\ldots+X_{5}$.

Solution. By independence and (a),

$$
\phi_{S}(t)=\phi_{X_{1}}(t)^{5}=\left(\frac{e^{t+1}-1}{(e-1)(t+1)}\right)^{5}
$$

(c) Compute the moment generating function of $Y=X_{1}+2 X_{2}$.

Solution. By independence and (a),

$$
\phi_{Y}(t)=\phi_{X_{1}}(t) \phi_{2 X_{2}}(t)=\phi_{X_{1}}(t) \phi_{X_{2}}(2 t)=\left(\frac{e^{t+1}-1}{(e-1)(t+1)}\right)\left(\frac{e^{2 t+1}-1}{(e-1)(2 t+1)}\right) .
$$

2. Assume that X is chosen at random from numbers $-1,0,1$, each with equal probability. (a) Compute the moment generating function of X.

Solution. By definition,

$$
\phi_{X}(t)=\frac{1}{3}\left(e^{-t}+1+e^{t}\right) .
$$

(b) Let X_{1}, X_{2}, \ldots be independent and all distributed as X, and let $S_{n}=X_{1}+\ldots+X_{n}$. Show that, for every $\epsilon>0, P\left(S_{n} \geq \epsilon n\right)$ and $P\left(S_{n} \leq-\epsilon n\right)$ are for large n smaller that n^{-10}.

Solution. Observe that $E X=0$. By Theorem $10.2, P\left(S_{n} \geq \epsilon n\right)$ is exponentially small, and therefore smaller than n^{-10}. By the remark after that theorem, the same is true for $P\left(S_{n} \leq-\epsilon n\right)$.
(c) Let X_{1}, X_{2}, \ldots be as in (b) and let M_{n} be the maximal absolute value of the sum of some n consecutive terms of $X_{1}, \ldots, X_{n^{2}}$. Show that $M_{n} / n \rightarrow 0$ in probability.

Solution. There are less than n^{2} sums of n consecutive terms, and each of these sums has the same distribution as S_{n} from (b). Therefore, as $M_{n} \geq 0$,

$$
P\left(M_{n} \geq \epsilon n\right) \leq n^{2} P\left(\left|S_{n}\right| \geq \epsilon n\right)=n^{2}\left(P\left(S_{n} \geq \epsilon n\right)+P\left(S_{n} \leq-\epsilon n\right)\right)
$$

which goes to 0 by (b).
3. (I got this problem from a high-school student. This is a harder problem, and you do not have to turn it in.) The median of a sequence of $2 n+1$ numbers is the element a of the sequence such n other elements are at least a and n other elements are at most a; that is, it is the middle number after the sequence is ordered. Roll a fair die $2 n+1$ times and let M_{n} be the median of the numbers rolled. Approximate $E M_{n}^{2}$ for large n and find an upper bound for the error in your approximation. (Hints. The distribution of M_{n} is symmetric. With high probability, M_{n} is 3 or 4 . Use Problem 4 in Chapter 10.)

Solution. Let $p_{i}=P\left(M_{n}=i\right), i=1, \ldots, 6$. By symmetry, $p_{i}=p_{7-i}$. Also, $p_{1}+\ldots+p_{6}=1$, and so $p_{3}=1 / 2-p_{1}-p_{2}$. Then the expected value is

$$
\begin{aligned}
E M_{n}^{2} & =p_{1}+4 p_{2}+9 p_{3}+16 p_{4}+25 p_{5}+36 p_{6} \\
& =37 p_{1}+29 p_{2}+25 p_{3} \\
& =12.5+12 p_{1}+4 p_{2} \\
& =12.5+8 p_{1}+4\left(p_{1}+p_{2}\right)
\end{aligned}
$$

Next we observe that

$$
\begin{aligned}
p_{1} & =P(\text { no. of } 1 \mathrm{~s} \geq n+1) \\
& =P(\operatorname{Binomial}(2 n+1,1 / 6) \geq n+1) \\
& \leq P(\operatorname{Binomial}(2 n, 1 / 6) \geq n)
\end{aligned}
$$

and

$$
\begin{aligned}
p_{1}+p_{2} & =P(\operatorname{combined} \text { no. of } 1 \mathrm{~s} \text { and } 2 \mathrm{~s} \geq n+1) \\
& =P(\operatorname{Binomial}(2 n+1,1 / 3) \geq n+1) \\
& \leq P(\operatorname{Binomial}(2 n, 1 / 3) \geq n) .
\end{aligned}
$$

By the answer to Problem 4, when $p=1 / 3$ and $a=1 / 2$,

$$
I(a)=\frac{1}{2} \log \frac{3}{2}+\frac{1}{2} \log \frac{3}{4}
$$

so that

$$
P(\operatorname{Binomial}(2 n, 1 / 3) \geq n) \leq e^{-I(a) \cdot 2 n} \leq e^{-0.1177 \cdot n} .
$$

Similarly, when $p=1 / 6$ and $a=1 / 2$,

$$
I(a)=\frac{1}{2} \log 3+\frac{1}{2} \log \frac{3}{5}
$$

so that

$$
P(\operatorname{Binomial}(2 n, 1 / 6) \geq n) \leq e^{-0.5877 \cdot n} .
$$

We conclude that

$$
12.5 \leq E M_{n}^{2} \leq 12.5+8 e^{-0.5877 \cdot n}+4 e^{-0.1177 \cdot n} .
$$

For $n \geq 38$, for example, $E M_{n}^{2}$ equals 12.5 to the first decimal.

