
Math 135B, Winter 2023.

Homework 7

Due: Mar. 3, 2023

1. Show that the Markov chain in Problem 1 of Homework 4 has a unique invariant distribution and
compute it. If, initially, both balls are in urn 1, approximate the probability that one of the urns is
empty at time 1000.

2. Consider the Markov chain in Problem 2 of Homework 4.

(a) Show that it has a unique invariant distribution and compute it. What does the matrix Pn look
like for large n?

(b) What proportion of time is the state of this chain strictly smaller than the previous state?

3. Consider the Markov chain in Problem 3 of Homework 4.

(a) Show that it has a unique invariant distribution and compute it.

(b) Compute the long-term proportion of tosses on which Alice uses coin 2.

(c) Compute the long-term proportion of tosses on which Alice tosses Heads.

(d) Compute the long-term proportion of tosses on which Alice tosses Heads with coin 2.

(e) Bob pays Alice $1 every time she tosses Heads with coin 1 and $2 every time she tosses Heads
with coin 2. Determine Alice’s long-term average winnings per toss.

4. (A Wall Street job interview question.) You roll a fair six-sided die repeatedly and sum the numbers
you roll. What is the expected number of rolls until the sum is a nonzero multiple of 4 for the first
time?

5. Currently, it is not public knowledge how Google ranks the web pages in its search algorithm. The
initial approach by S. Brin and L. Page in the mid 1990s, known as the PageRank algorithm, was
using Markov chains for this purpose. Form an oriented graph, with N vertices, which are the web
pages, in which an oriented edge goes from a web page x to a web page y if x contains a hyperlink to
y. This creates a graph as in the following example with N = 6.
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A random surfer begins at some page and then at every step chooses one of the outgoing arrows from
the current page uniformly at random and then follows it to the next page; if there are no such such
arrows, the surfer chooses one of the N pages uniformly at random and moves there. Let W be the
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transition matrix for the resulting Markov chain.

(a) Write down the matrix W for this example. Determine the classes and their recurrence or tran-
sience.

We see that the immediate problem is that the chain may not be irreducible. To deal with this
problem, we introduce “damping.” Pick a small ε > 0. Then, the surfer follows the above algorithm
with probability 1 − ε. Otherwise, with probability ε, it chooses a random state, i.e., evolves for one
step according to the N ×N transition matrix R that has all entries equal to 1/N . A typical choice
is ε = 0.15; assume this for the rest of the problem. This gives the transition matrix

P = (1− ε)W + εR.

Using this transition matrix, the surfer’s position has a unique invariant distribution, which is used to
rank pages: the more often, in the long run, the surfer visits a web page x, the higher the rank of x.

(b) Rank the pages for the given example using this algorithm.

One problem with this version of PageRank is its vulnerability to the Sybil attacks. (The name
comes from a famous, but possibly fictional, psychiatric case of a woman with multiple personality
disorder.) That is, the owner of a page x can improve its rank by creating a number of new web pages
x1, . . . , xk, with links x→ xi and xi → x, for all i = 1, . . . , k. In our example, say, the owner of page
5 creates a single new page 7 (so k = 1) with links 5→ 7 and 7→ 5 (but no other new links).

(c) Using PageRank , determine the new ranking of pages after the described Sybil attack in our
example.
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Math 135B, Winter 2023.

Homework 7 Solutions.

1. Show that the Markov chain in Problem 1 of Homework 4 has a unique invariant distribution and
compute it. If, initially, both balls are in urn 1, approximate the probability that one of the urns is
empty at time 1000.

Solution. As all entries of P 2 are nonzero, the chain is irreducible and aperiodic. In this case, P is a
symmetric matrix, so it is doubly stochastic and π =

[
1/4 1/4 1/4 1/4

]
. As n → ∞, Pn

ij → 1/4
for all states i and j, by the convergence theorem. Because

P (Xn is in state 1 (11) or 4 (22) | X0 = 1) = Pn
11 + Pn

14 → 1/4 + 1/4 = 1/2,

the probability is approximately 1/2.

2. Consider the Markov chain in Problem 2 of Homework 4.

(a) Show that it has a unique invariant distribution and compute it. What does the matrix Pn look
like for large n?

Solution. As all entries of P are nonzero, the chain is irreducible and aperiodic. The invariant
distribution is

π =
[
27/89 32/89 30/89

]
≈
[
0.3034 0.3596 0.3371

]
.

The powers Pn converge to 3× 3 matrix will all rows equal to π.

(b) What proportion of time is the state of this chain strictly smaller than the previous state?

Solution. The answer is

π3(P31 + P32) + π2P21 =
30

89
· 5

6
+

32

89
· 1

4
=

33

89
≈ 0.3708.

3. Consider the Markov chain in Problem 3 of Homework 4.

(a) Show that it has a unique invariant distribution and compute it.

Solution. Irreducibility holds because transitions 1→ 2→ 4→ 3→ 1 happen with positive probabil-
ity. Aperiodicity holds because 1 → 1 happens with positive probability. The invariant distribution
is

π =
[
49/117 28/117 28/117 4/39

]
≈
[
0.4188 0.2393 0.2393 0.1026

]
.

(b) Compute the long-term proportion of tosses on which Alice uses coin 2.

Solution. This is the same as proportion of time spent at the state 1 (HH), which is π1 = 49/117 ≈
0.4188.

(c) Compute the long-term proportion of tosses on which Alice tosses Heads.
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Solution. This is
π1 + π3 = 77/117 ≈ 0.6581.

(d) Compute the long-term proportion of tosses on which Alice tosses Heads with coin 2.

Solution. (Not the product of (b) and (c)!) This is

π1 · 0.6 ≈ 0.2513.

(e) Bob pays Alice $1 every time she tosses Heads with coin 1 and $2 every time she tosses Heads
with coin 2. Determine Alice’s long-term average winnings per toss.

Solution. The answer is

2π1 · 0.6 + (1− π1) · 0.7 = 0.7 + 0.5π1 = 0.9094.

4. (A Wall Street job interview question.) You roll a fair six-sided die repeatedly and sum the numbers
you roll. What is the expected number of rolls until the sum is a nonzero multiple of 4 for the first
time?

Solution. If Xn is your sum modulo 4 after n rolls, then Xn is a Markov chain on the states 0, 1,
2, 3 and the question asks for the expected value of the return time to 0. If we can compute the
invariant distribution π =

[
π0 π1 π2 π3

]
, then the answer will be 1/π0. Modulo 4, the chain adds

to the current state: 0 with probability 1/6 (when you roll 4); 1 with probability 1/3 (when you roll
1 or 5); 2 with probability 1/3 (when you roll 2 or 6); and 3 with probability 1/6 (when you roll 3).
The transition matrix can be easily written down (see below), but one could see in advance that it
is doubly stochastic, as the matrix Rk of the deterministic chain that adds k is doubly stochastic for
any k (as a permutation matrix). So, π =

[
1/4 1/4 1/4 1/4

]
, and the answer is therefore 4. To

check directly that P is doubly stochastic:

P =
1

6
I +

1

3
R1 +

1

3
R2 +

1

6
R3 =


1/6 1/3 1/3 1/6
1/6 1/6 1/3 1/3
1/3 1/6 1/6 1/3
1/3 1/3 1/6 1/6

 .

5. Currently, it is not public knowledge how Google ranks the web pages in its search algorithm. The
initial approach by S. Brin and L. Page in the mid 1990s, known as the PageRank algorithm, was
using Markov chains for this purpose. Form an oriented graph, with N vertices, which are the web
pages, in which an oriented edge goes from a web page x to a web page y if x contains a hyperlink to
y. This creates a graph as in the following example with N = 6.
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A random surfer begins at some page and then at every step chooses one of the outgoing arrows from
the current page uniformly at random and then follows it to the next page; if there are no such such
arrows, the surfer chooses one of the N pages uniformly at random and moves there. Let W be the
transition matrix for the resulting Markov chain.

(a) Write down the matrix W for this example. Determine the classes and their recurrence or tran-
sience.

Solution. We have

W =



0 1/2 1/2 0 0 0
1/2 0 1/2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 1 0

 .

There are three transient classes: {1, 2}, {3} and {6}, and one recurrent class {4, 5}.

We see that the immediate problem is that the chain may not be irreducible. To deal with this
problem, we introduce “damping.” Pick a small ε > 0. Then, the surfer follows the above algorithm
with probability 1 − ε. Otherwise, with probability ε, it chooses a random state, i.e., evolves for one
step according to the N ×N transition matrix R that has all entries equal to 1/N . A typical choice
is ε = 0.15; assume this for the rest of the problem. This gives the transition matrix

P = (1− ε)W + εR.

Using this transition matrix, the surfer’s position has a unique invariant distribution, which is used to
rank pages: the more often, in the long run, the surfer visits a web page x, the higher the rank of x.

(b) Rank the pages for the given example using this algorithm.

Solution. The left eigenvector of P = 0.85 ·W + 0.15 ·R is, to 4 decimals:

π0 =
[
0.0435 0.0435 0.0620 0.4215 0.4046 0.0250

]
,

so that pages are ranked, from first to last: 4, 5, 3, (1, 2), 6 (with a tie between 1 and 2).

Note. Instead of solving for π0, the algorithm computes the power Pn for a suitably large n. It can
be shown1 that |Pn

ij − πj | ≤ (1− ε)n for all i, j, n, which, remarkably, is independent of the number of
web pages N . Even for billions of pages, taking n to be a few hundred suffices.

One problem with this version of PageRank is its vulnerability to the Sybil attacks. (The name
comes from a famous, but possibly fictional, psychiatric case of a woman with multiple personality
disorder.) That is, the owner of a page x can improve its rank by creating a number of new web pages
x1, . . . , xk, with links x→ xi and xi → x, for all i = 1, . . . , k. In our example, say, the owner of page
5 creates a single new page 7 (so k = 1) with links 5→ 7 and 7→ 5 (but no other new links).

(d) Using PageRank , determine the new ranking of pages after the described Sybil attack in our
example.

1See Proposition 10.5 in this book: E. Behrends, “Introduction to Markov Chains With Special Emphasis on Rapid
Mixing,” Springer, 2000.

5



Solution. Now,

π0 =
[
0.0373 0.0373 0.0531 0.2418 0.4124 0.0214 0.1967

]
,

so the new rank is: 5, 4, 7, 3, (1, 2), 6. The owner of the page 5 made sure that it is now well in the
first place.

6


