Math 135B, Winter 2023. Feb. 3, 2023.

MIDTERM EXAM 1

NAME(print in CAPITAL letters, first name first):	KEY	
NAME(sign):		
ID#:		

Instructions: Each of the 4 problems has equal worth. Read each question carefully and answer it in the space provided. *You must show all your work to receive full credit*. Clarity of your solutions may be a factor when determining credit. Electronic devices, books or notes are not allowed. The proctors have been directed not to answer any interpretation questions: proper interpretation of exam questions is a part of the exam.

Make sure that you have a total of 5 pages (including this one) with 4 problems.

1	
2	
3	
4	
TOTAL	

$$\operatorname{Var}\left(\sum_{i=1}^{N}X_{i}\right) = \operatorname{Var}(X_{1})\cdot EN + (EX_{1})^{2}\cdot \operatorname{Var}(N)$$

1. Assume X_1, X_2, X_3, \ldots are your daily dollar winnings playing a certain game at a casino on days $1, 2, 3, \ldots$. The winnings X_i are independent and they all have values 1, 2, or 3, with the following probabilities: $P(X_i = 1) = 1/2$, $P(X_i = 2) = 1/3$, $P(X_i = 3) = 1/6$. (This sequence of random variables will appear again in Problems 2 and 4(a).)

Let N_n be the number of integers $i \in [1, n]$ such that $X_i = 1$ and $X_{i+1} = 2$, that is, the number of days, among the first n, such that you win 1 on that day, but you win 2 on the following day.

(a) Compute EN_n .

Let
$$T_i = T_i \times i = 1$$
, $X_{i+1} = 2j$. Then $ET_i = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$. $N_n = \sum_{i=1}^n T_i$, so $EN_n = \sum_{i=1}^n ET_i = \frac{n}{6}$

(b) Compute
$$Var(N_n)$$
. If $j \ge l+2$, I_i and I_j are Andersondert,

Var (N_n) = $\sum_{i=1}^{n} Var(I_i) + 2\sum_{i \ne j} Cov(I_i, I_j)$

$$= \sum_{i=1}^{n} (EI_i - (EI_i)^2) + 2\sum_{i \ne j} Cov(I_i, I_{i+1})$$

$$= n\left(\frac{1}{6} - \frac{1}{36}\right) + 2(n-1)\left(E(I_i, I_{i+1}) - \frac{1}{36}\right)$$

$$= \sum_{i \ne j} (n-1) \left(E(I_i, I_{i+1}) - \frac{1}{36}\right)$$

$$= \sum_{i \ne j} (n-1) \left(E(I_i, I_{i+1}) - \frac{1}{36}\right)$$

$$= \sum_{i \ne j} (n-1) \left(E(I_i, I_{i+1}) - \frac{1}{36}\right)$$

$$= \sum_{i \ne j} (n-1) \left(E(I_i, I_{i+1}) - \frac{1}{36}\right)$$

(c) Determine, with proof, the number c so that $\frac{N_n}{n} \to c$ in probability, as $n \to \infty$.

2. Assume X_1, X_2, X_3, \ldots are your daily winnings in problem 1, that is, X_i are independent and they all have values 1, 2, or 3, with the following probabilities: $P(X_i = 1) = 1/2$, $P(X_i = 2) = 1/3$, $P(X_i = 3) = 1/6$. Let $S_n = X_1 + X_2 + \ldots + X_n$ be the combined amount you win in the first n days. (a) Compute the moment generating function of X_1 .

(b) Compute the moment generating function of $S_3 = X_1 + X_2 + X_3$.

(c) Explain how you would get a good upper bound on $P(S_n \geq 2n)$, but do not carry out the computation. Is the probability $P(S_n \geq 2n)$ smaller than n^{-5} for large n?

$$I(2) = \sup \{t>0: 2t - lg f_{X_1}(t)\} > 0$$

(In fact, $I(2)$ 11 a bit larger that 0.0935)

then
$$P(Sn \ge 2n) \le e^{-T(2)n}$$
 , which is much smaller than n^{-J} for large n ,

- 3. Assume the random variable X is uniform on [0,1]. Given that X=x, the random variable T is exponential with expectation 1/x (that is, $f_T(t \mid X=x) = xe^{-xt}$ for $t \ge 0$).
- (a) Compute ET. $ET = \int_{0}^{\infty} E[T \mid X = X] dX = \int_{0}^{\infty} dX = \infty$
- (b) Compute the joint density f(x,t) of X and T

$$f(x,t) = \begin{cases} xe^{-xt} & x \in [0,1], t \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

(c) Compute the density of $f_T(t)$ of T. (You may use: $\int xe^{-tx} dx = -\frac{x}{t}e^{-tx} - \frac{1}{t^2}e^{-tx} + C$.)

$$\begin{aligned}
+T(t) &= \int xe^{-xt} dx \\
&= -\frac{x}{t}e^{-tx} - \frac{1}{t^2}e^{-tx} \Big|_{x=0} \\
&= -\frac{1}{t}e^{-t} - \frac{1}{t^2}e^{-t} + \frac{1}{t^2} \\
&= \frac{1 - (t+1)e^{-t}}{t^2} \qquad \text{for } t \ge 0
\end{aligned}$$

$$(a) \text{ otherwise}$$

(d) Compute the conditional density of X given T = t.

$$= \frac{xt^2e^{-xt}}{1-(t+1)e^{-t}}$$

$$= \frac{1-(t+1)e^{-t}}{1-(t+1)e^{-t}}$$

(o otherwise)

4. (a) Assume X_1, X_2, X_3, \ldots are your daily winnings in problem 1, that is, X_i are independent and they all have values 1, 2, or 3, with the following probabilities: $P(X_i = 1) = 1/2$, $P(X_i = 2) = 1/3$, $P(X_i = 3) = 1/6$.

Assume now that each day you also roll a fair die, which does not contribute to your winnings, but decides when the game ends: the day you roll a 1 or a 2 is the last day you play the game. Let W be the combined amount you win from all days you play, including the last. (For example, if your rolls on first two days are 4 and 1, and $X_1 = 3$, $X_2 = 2$, then W = 5.) Compute EW and Var(W). (You may use that geometric random variable with parameter p has expectation 1/p and variance $\frac{1-p}{p^2}$.)

$$N = \text{no. of days yn roll is Geometric (1/3)},$$

$$EN = 3, \quad \text{Vow}(N) = \frac{1 - \sqrt{3}}{\sqrt{9}} = 6$$

$$EX_1 = \frac{5}{3} \quad \text{Vou}(X_1) = EX_1^2 - (\frac{5}{3})^2 = \frac{1}{2} + \frac{4}{3} + \frac{9}{6} - (\frac{5}{3})^2$$

$$= \frac{30 - 25}{9} = \frac{5}{9}$$

$$EW = EN \cdot EX_1 = \frac{5}{9}$$

$$Vau(W) = \text{Vour}(X_1) \cdot EN + (EX_1^2 \cdot \text{Var}(N))$$

$$= \frac{5}{9} \cdot 3 + (\frac{5}{3})^2 \cdot 6 = \frac{55}{3}$$

(b) Now the casino chooses a random number U, which is chosen before the games begin, and then remains unchanged. The number U is uniform in [0,1/2]. Given U=u, your daily winnings are still independent, still have values 1, 2, or 3, but now the probabilities are: $P(X_i=1)=1/2$. $P(X_i=2)=u$, $P(X_i=3)=1/2-u$. Assume you play the game for exactly 8 days (so, unlike in (a), there is no die) and W is again the combined amount you win. Compute EW.

$$E[X_1 U = u] = \frac{1}{2} + 2u + 3(\frac{1}{2} - u) = 2 - u,$$

$$E[W|U = u] = 8(2 - u).$$

$$E[W] = \int_{0}^{1/2} E[W|U = u] 2 du = 16 \int_{0}^{1/2} (2 - u) du$$

$$= 16 \cdot (1 - \frac{1}{8}) = 14$$