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Abstract. We consider traveling wave phenomena for a viscoelastic generalization of Burgers’
equation. For asymptotically constant velocity profiles we find three classes of solutions corresponding
to smooth traveling waves, piecewise smooth waves, and piecewise constant (shock) solutions. Each
solution type is possible for a given pair of asymptotic limits and we characterize the dynamics in
terms of the relaxation time and viscosity.
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1. Introduction. Burgers’ equation

ut + uux = εuxx (1.1)

is perhaps the simplest model that couples the nonlinear convective behavior of flu-
ids with the dissipative viscous behavior. Introduced by Burgers [5] as a model for
turbulence, equation (1.1) and its inviscid counterpart

ut + uux = 0, (1.2)

are essential for their role in modeling a wide array of physical systems such as traffic
flow, shallow water waves, and gas dynamics [17, 18, 19, 23]. The equations also pro-
vide fundamental pedagogical examples for many important topics in nonlinear PDE
such as traveling waves, shock formation, similarity solutions, singular perturbation,
and numerical methods for parabolic and hyperbolic equations (see e.g., [9, 14, 20, 23]).

The parabolic equation (1.1) has the property that smooth initial data yields
smooth solutions for all t > 0. In contrast, smooth initial data for the hyperbolic
equation (1.2) can develop jump discontinuities in finite time (shock formation). One
technique for studying shock wave solutions of (1.2) is to study smooth traveling wave
solutions of (1.1) in the limit as ε → 0.

In this paper we consider how the addition of viscoelasticity affects traveling wave
solutions of Burgers’ equation. The equations we consider are

ut + uux = σx (1.3)
σt + uσx − σux = αux − βσ. (1.4)

The constitutive law (1.4) resembles a one-dimensional version of the upper convected
Maxwell model [11]. The relaxation time is λ = β−1, and α = µλ−1 can be interpreted
as the elastic modulus of the material if there were no relaxation of stress (β = 0). In
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the other limit of instantaneous relaxation of stress (λ → 0), equation (1.4) reduces
to σ = µux, and the system (1.3)-(1.4) is equivalent to Burgers’ equation (1.1) with
fluid viscosity µ = ε.

The remainder of the paper is organized as follows. In Section 2 we give a brief
introduction to viscoelastic fluids and explain the reduction and constitutive law for
our model. We show in Section 3 that traveling wave solutions to (1.3)-(1.4) exist
only when the viscosity (or elastic modulus) is above a certain threshold. As the vis-
cosity approaches this threshold, singularities in the derivative appear, and numerical
experiments suggest that shocks develop when the viscosity is below threshold. The
system (1.3)-(1.4) is nonconservative, and therefore the classical theory for systems
of conservation laws (cf. [9, 23]) cannot be used to analyze singular solutions. A gen-
eralized theory of weak solutions to nonconservative hyperbolic equations has been
developed for such problems [2, 7, 8].

We take a different approach and analyze the shock solutions by introducing an
additional viscosity to regularize the problem. Using singular perturbation theory,
we show in Section 4 that traveling waves exist for all parameters in the regularized
problem, and the waves limit to shock solutions as the additional viscosity goes to
zero. This method of vanishing viscosity is a well-known technique for analyzing
weak solutions of nonconservative hyperbolic equations, such as the Hamilton-Jacobi
equations [9]. Finally, in Section 5 we discuss the effect of different parameters on the
solution structure, how the results depend on the choice of one-dimensional reduction,
and a possible application of the results to numerical methods for viscoelastic flows.

2. Viscoelastic Fluids. In this section we discuss how the constitutive law in
(1.4) is related to a standard constitutive law for viscoelastic fluids. The discussion
here is not meant to be extensive. For more comprehensive treatments of viscoelastic
fluids, see [3, 4, 11, 12].

The incompressible Navier-Stokes equations are

ρ (ut + u · ∇u) = −∇p + µ∆u (2.1)
∇ · u = 0. (2.2)

The momentum equation (2.1), can be expressed as

ρ (ut + u · ∇u) = −∇p +∇ · σv, (2.3)

where the (Newtonian) viscous stress σv is defined by

σv = 2µD = µ
(
∇u +∇uT

)
. (2.4)

This Newtonian constitutive law means that the fluid stress is proportional to the
deformation rate tensor. In contrast, the stress in viscoelastic fluids includes some
time history of the deformation.

One of the simplest constitutive laws for viscoelastic materials is the Maxwell
model. Consider a linear spring and dashpot in series, with spring constant k and
damping coefficient µ. The stress, σ, in the element is

λσ̇ + σ = µε̇, (2.5)

where ε is the strain in the element, and λ = k/µ is the relaxation time. The linear
Maxwell model for a continuum is

λσt + σ = 2µD. (2.6)
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However, this is not a valid constitutive law because it is not frame invariant [11].
That is, the stress depends on the reference frame. Frame invariance is achieved
by choosing an appropriate time derivative, akin to the material derivative for the
velocity field. One frame invariant time derivative is the upper convected derivative,
defined by

O
S = St + u · ∇S −∇u S − S∇uT. (2.7)

Replacing the partial time derivative in (2.6) with the upper convected derivative
gives the Upper Convected Maxwell (UCM) equation

λ
O
σ + σ = 2µD. (2.8)

The ij component in (2.8) satisfies

λ

(
∂σij

∂t
+ uk

∂σij

∂xk
− ∂ui

∂xk
σkj − σik

∂uj

∂xk

)
+ σij = µ

(
∂ui

∂xj
+

∂uj

∂xi

)
, (2.9)

where summation is over the repeated index k. Although there are many other frame
invariant derivatives, in this paper we consider a one-dimensional reduction, in which
case they yield identical reductions.

A one-dimensional version of the UCM equation is

λ (σt + uσx − σux) + σ = µux. (2.10)

However, there are other reasonable choices for a one-dimensional UCM equation. For
example, the equation for σ11 when u = (u1, 0, 0) is

λ (σt + uσx − 2σux) + σ = 2µux, (2.11)

where we have dropped the subscripts on the stress and velocity. The upper convected
derivative must be used in (2.8) because this is the time derivative of a tensor in a
moving continuum. In one-dimension, the stress is a scalar, so it would also be
reasonable to simply use the material derivative for the time derivative. In this case
the constitutive law is

λ (σt + uσx) + σ = µux. (2.12)

In this paper we analyze the first UCM equation (2.10). While all three models
have similar results, equation (2.10) is more robust, in that all of the phenomena that
occur in (2.11) and (2.12), also occur in (2.10). In Section 5 we discuss how the results
change if (2.11) or (2.12) is used instead.

Equation (2.10) is equivalent to (1.4). This is seen by dividing through by the
relaxation time λ to get

σt + uσx − σux = αux − βσ. (2.13)

where

α = µλ−1, (2.14)

β = λ−1. (2.15)
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The parameter α can be interpreted as the elastic modulus of the material if there were
no relaxation of stress (β = 0). It is somewhat arbitrary whether the constitutive law
is expressed in terms of the relaxation time (λ) and viscosity (µ) or elastic modulus
(α) and decay rate (β). In this paper we primarily use the later, but sometimes we
express results using both sets of parameters for additional insight.

In Section 4 we consider a modification to the Maxwell constitutive law (1.4). We
include a second viscous term, one without memory, so that the system becomes

ut + uux = σx + εuxx (2.16)
σt + uσx − σux = αux − βσ. (2.17)

The addition of the second viscous term can be considered as a one-dimensional
version of the Oldroyd-B constitutive law [12].

We note that the one-dimensional constitutive law studied in this paper is not
a physical reduction from the three dimensional UCM. It is a reduction in the same
sense that Burgers equation is a reduction. One may wonder what, if any, physical sig-
nificance there is to the problem that we analyze in this paper. Using high-resolution
Godunov schemes for the advection terms in the Navier-Stokes equations requires
solving Burgers equation [1]. Analogously, systems of the form (2.10) and (2.11) arise
in the application of wave propagation schemes to viscoelastic fluids [10, 22]. This was
the original inspiration for this study, but not the sole motivation. It it interesting
to explore what happens to traveling waves in Burgers equation (1.1) if the viscous
term is replaced by a viscoelastic term, and the most natural starting point is the
Maxwell model. Thus the one dimensional constitutive laws considered were chosen
to resemble the UCM equation.

3. Traveling Waves. To find traveling wave solutions to (1.3)-(1.4) we consider
solutions of the form u(x, t) = U(ξ) and σ(x, t) = S(ξ), where ξ = x − ct for some
constant c. In traveling wave coordinates, the system is

−cU ′ + UU ′ = S′ (3.1)
−cS′ + US′ − SU ′ = αU ′ − βS. (3.2)

We consider traveling waves that correspond to heteroclinic connections between two
equilibrium points with given velocity values at infinity. The equilibrium points of the
system correspond to all states with S = 0, thus we assume the following asymptotic
boundary conditions:

U(−∞) = u`, S(−∞) = 0, (3.3)
U(∞) = ur, S(∞) = 0. (3.4)

In the next section we examine for which values of u`, ur, α, and β do solutions of
this problem exist.

3.1. Existence. Integrating equation (3.1) gives the stress in terms of the ve-
locity as

S =
U2

2
− cU + A, (3.5)
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where A is the integration constant. Applying the boundary conditions, the wave
speed and integration constant are

A =
u`ur

2
(3.6)

c =
u` + ur

2
. (3.7)

Note that if a traveling wave exists, then it moves with the same speed as traveling
waves in Burgers’ equation (1.1) and shock waves in inviscid Burgers’ equation (1.2).

We obtain the equation for the velocity profile, U , by using (3.1) and (3.5) to
eliminate S and S′ in (3.2) to get

U ′ =
−β

(
U (U/2− c) + A

)
U (U/2− c) + c2 −A− α

. (3.8)

Using (3.6) and (3.7), this simplifies to

U ′ =
−β(U − u`)(U − ur)

(U − u`)(U − ur) + 2
((

u`−ur

2

)2 − α
) . (3.9)

From the dynamics of this equation we extract conditions for the existence of traveling
waves. The two equilibrium points are clearly U = u` and U = ur, and a traveling
wave corresponds to a one-dimensional flow from one equilibrium point to the other.
There are two cases to consider: u` > ur and u` < ur.

First we suppose that u` > ur. For a traveling wave to exist, we need that U ′ < 0
for U ∈ (ur, u`). The numerator of (3.9) is positive in this interval. The maximum
value of (U − u`)(U − ur) is 0, and so the denominator is always negative provided
((u` − ur)/2)2 − α < 0, in which case U ′ < 0 for U ∈ (ur, u`).

Next, consider the case u` < ur. A traveling wave exists if U ′ > 0 for U ∈ (u`, ur).
As before, the numerator of (3.9) is positive for U ∈ (u`, ur), and thus we examine the
sign of the denominator. The minimum value of (U −u`)(U −ur) is − ((u` − ur)/2)2,
in which case it follows U ′ > 0 provided ((u` − ur)/2)2 − 2α > 0.

Combining these two cases, we have the following result: a traveling wave solution
to (1.3)-(1.4) with boundary conditions (3.3)-(3.4) exists if and only if

u` > ur and α >

(
u` − ur

2

)2

, (3.10)

or

u` < ur and 2α <

(
u` − ur

2

)2

. (3.11)

Equivalently, no traveling wave solutions exist if

(u` − ur)
2

8
≤ α ≤ (u` − ur)

2

4
. (3.12)

Using (2.14) to express this condition in terms of the relaxation time and viscosity,
we see that no traveling wave solution exists if

(u` − ur)
2

8
≤ µ

λ
≤ (u` − ur)

2

4
. (3.13)
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In comparison, for viscous Burgers’ equation (1.1), traveling waves with u` > ur exist
for any positive viscosity. By adding elasticity we see that, for a fixed relaxation time
λ, there is now a minimal viscosity required for such waves to exist. In the following
sections we explore what happens to these wave solutions when the viscosity is reduced
beyond this minimal viscosity.

3.2. Wave Profile. The shape of the wave is found by integrating (3.9). The
solution is

β (ξ − ξ0) =
2

((
u`−ur

2

)2 − α
)

u` − ur
log

∣∣∣∣U(ξ)− ur

U(ξ)− u`

∣∣∣∣− U(ξ). (3.14)

When a traveling wave exists, the profile is defined implicitly by (3.14). However,
when a traveling wave fails to exist, we can still plot the implicit solutions of (3.14).
In Figure 3.1 we plot the curve defined by (3.14) for four different value of α, while
keeping the other parameter values fixed at u` = 2, ur = 0, and β = 1. For these
parameter values, a traveling wave exists when α > 1. In Figure 3.1(a) the wave
profile is shown for α = 1.2. As α approaches 1, the wave profile approaches the
piecewise linear function shown in Figure 3.1(b). As α is decreased further, the curve
becomes multivalued and the asymptotic values are no longer satisfied. Figure 3.1(c)
shows the solution for α = 0.9. As α decreases even further, the solution of (3.14)
returns to being single-valued, but no longer yields a traveling wave solution with the
given asymptotic limits. This transition occurs at α = 1

2

(
u`−ur

2

)2, which corresponds
to when U ′ returns to being one-signed (now positive), corresponding to the lower
limit of equation (3.13). Figure 3.1(d) shows the solution for α = 0.25.

3.3. Numerical Simulations. In this section we consider numerical simula-
tions of the full PDE system (1.3)-(1.4). According to (3.10), when u` > ur there is
a minimal viscosity in order for traveling waves to exist. In numerical simulations of
this case, these traveling wave solutions appear to be stable and travel with the speed
c = (u` +ur)/2, as in (3.7). We found that for any initial data, as long the asymptotic
limits were maintained, the solution approached the traveling wave profile given by
(3.14). On the other hand according to (3.11), when u` < ur, traveling waves exist as
long as the viscosity is below a certain threshold. In simulations of the PDE system
for this case, these waves did not appear to be stable, rather the solutions always
rarefy. Accordingly, from this point on we consider only the stable case of u` > ur.

We next consider what happens when the viscosity is below the minimal value,
corresponding to the implicit plots shown in Figure 3.1(c)-(d). We solve the full
system (1.3)-(1.4) numerically by splitting the update at each time step into three
substeps. First we take a step including only the advection terms

ut + uux = 0 (3.15)
σt + uσx = 0, (3.16)

and use an upwinding method. Next we take a step including the elastic terms

ut = σx (3.17)
σt − σux = αux. (3.18)

We linearize the σux term in each grid cell by treating this term as σn
j ux through

the time step, where σn
j is the value of the stress at time step n at grid cell j. This



VISCOELASTIC BURGERS’ EQUATION 7

!4 0 4
0

0.5

1

1.5

2

!

U

(a)

!2 0 2
0

0.5

1

1.5

2

!

U

(b)

!1 0 1
0

0.5

1

1.5

2

!

U

(c)

!4 0 4
0

0.5

1

1.5

2

!

U

(d)

Fig. 3.1. Plots of the solution curves to (3.14). The parameters are u` = 2, ur = 0, β = 1.
Four different values of α are plotted: (a) α = 1.2, (b) α = 1, (c) α = 0.9, (d) α = 0.25. For these
values of u` and ur, no wave exists for α < 1.

linearized system is a variable coefficient wave equation, which we update by a wave
propagation method as described in [16]. Finally, we update the stress by taking a
step of

σt = −βσ. (3.19)

For the initial condition we set the velocity equal to the traveling wave profile cor-
responding to viscous Burgers’ equation with a given viscosity and set the stress to
zero.

As suggested by Figure 3.1(c)-(d), we find two distinct cases, corresponding to
whether

1
2

(
u` − ur

2

)2

< α <

(
u` − ur

2

)2

(3.20)

or

0 < α <
1
2

(
u` − ur

2

)2

. (3.21)



8 V. CAMACHO AND R.D. GUY AND J. JACOBSEN

In both cases we find that the solutions develop into traveling waves, however now
with jump discontinuities in the wave profile. These numerical solutions propagate
with the wave speed c = (u` + ur)/2, the same wave speed as smooth traveling wave
solutions. When α satisfies (3.20) the profile is piecewise smooth, with two shocks as
indicated in Figure 3.2-(a). We refer to this solution as the double-shock solution. As
α ranges between the limiting values of (3.20) the height of each jump discontinuity
ranges from 0 when α =

(
u`−ur

2

)2, to 1 when α = 1
2

(
u`−ur

2

)2, which yields a piecewise
constant solution. This piecewise constant solution persists when α satisfies (3.21),
as indicated in Figure 3.2-(b). This resembles a classic shock solution of the Riemann
problem for the inviscid Burgers’ equation.

7 7.5 8 8.5 9
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0.5
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1.5

2
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7 7.5 8 8.5 9
0

0.5
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1.5

2

x

u

(b)

Fig. 3.2. Plots of the wave profile found by solving (1.3)-(1.4) with smooth traveling wave initial
data. The simulations were run until the profile stabilized. The smooth waves develop apparent
jump discontinuities, whose type depends on whether α satisfies (3.20) or (3.21), and travel with
fixed speed. The parameter values are u` = 2, ur = 0, β = 1 and (a) α = 0.8; (b) α = 0.25.

When solving equations with discontinuities care must be taken in order to cap-
ture the correct solution. These numerical solutions may not be the correct solutions,
but they raise several questions that warrant further investigation. For example, as
the PDE is not given by a system of conservation laws, what is the ”correct” weak
solution? In the case of the double-shock solution, what determines the shock height?
What determines the shape of the solution between the two shocks? Why is that we
see a double-shock solution? In the next section we answer these questions by intro-
ducing a second viscous term to regularize the equations and analyzing the system in
the limit of small viscosity.

4. Vanishing Viscosity Solution. In this section we add a viscous regulariza-
tion term on the velocity:

ut + uux = σx + εuxx (4.1)
σt + uσx − σux = αux − βσ, (4.2)

for ε > 0. With the extra viscous term, this system can be viewed as a one-dimensional
version of the Oldroyd-B constitutive law [12]. To study the double-shock and shock
solutions of (1.3)-(1.4) we consider traveling wave solutions of this extended system
in the limit ε → 0.
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In traveling wave coordinates, the system becomes

−cU ′ + UU ′ = S′ + εU ′′ (4.3)
−cS′ + US′ − SU ′ = αU ′ − βS. (4.4)

Integrating (4.3), applying the asymptotic boundary conditions, and eliminating U ′

in (4.4) yields the system

εU ′ =
1
2
(U − u`)(U − ur)− S (4.5)

ε(U − c)S′ = (S + α)
(

1
2
(U − u`)(U − ur)− S

)
− εβS. (4.6)

This system has precisely two equilibrium points (u`, 0) and (ur, 0). A traveling wave
solution of the PDE system (4.1)-(4.2) corresponds to a heteroclinic orbit connecting
these two equilibrium points, as in Figure 4.1 (recall we are assuming u` > ur).

Note that if a traveling wave of the original system (1.3)-(1.4) exists (i.e., when
α > (u` − ur)2/4), then the wave corresponds to the trajectory in the phase plane
defined by (3.5), or equivalently,

S =
1
2
(U − u`)(U − ur). (4.7)

This is the U -nullcline from (4.5) (for all ε).

S

ur

U

u`

Fig. 4.1. Heteroclinic orbit corresponding to traveling wave solution of system (4.1)-(4.2).

The system (4.5)-(4.6) exhibits symmetric behavior about the line U = c, where
c = (u` + ur)/2 is the wave speed for the inviscid case (ε = 0). In particular, if
(Û(ξ), Ŝ(ξ)) solves (4.5)-(4.6) with Û > c for ξ ∈ (−b, ξ0) and Û(ξ0) = c, then
(U(ξ), S(ξ)) = (2c− Û(−ξ + 2ξ0), Ŝ(−ξ + 2ξ0)) solves (4.5)-(4.6) for ξ ∈ (ξ0, b + 2ξ0),
with U < c and U(ξ0) = c. This corresponds to the reflection of the trajectory
through the line U = c.

The Jacobian of the system at the equilibrium point (u`, 0) is

J = J(u`, 0) =
[ d

2ε − 1
ε

α
ε − 2(α+βε)

εd

]
, (4.8)

where d = u` − ur. Since det(J) = −β
ε < 0, it follows that (u`, 0) is a saddle point

for all ε > 0. Thus the reflection through U = c maps the unstable manifold of
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(u`, 0) to the stable manifold of (ur, 0). For this reason, to establish the existence
of a heteroclinic orbit connecting the two, it suffices to establish that the unstable
manifold of (u`, 0) crosses the line U = c.

The positive eigenvalue of J(u`, 0) is

λ` =
1

4εd

(
d2 − 4(α + βε) +

√
(d2 − 4(α + βε))2 + 16d2βε

)
, (4.9)

with an associated eigenvector

v` =

[
1,

d2 + 4α + 4βε−
√

(d2 + 4α + 4βε)2 − 16αd2

4d

]
. (4.10)

The expansion of λ` for small ε is

λ` =
1

4εd

(
(d2 − 4α) + |d2 − 4α|

)
+ O(1). (4.11)

Thus,

α >
d2

4
implies λ` = O(1) as ε → 0, (4.12)

and

α <
d2

4
implies λ` =

1
ε

(
d2 − 4α

2d

)
+ O(1) as ε → 0. (4.13)

This transition occurs precisely at the critical α value in equation (3.10), which
determines existence of traveling waves of the original system (ε = 0). Thus the onset
of the solutions containing shocks corresponds to the introduction of a fast dynamic
along the unstable manifold of (u`, 0) as ε → 0. Our motivation for introducing the
viscous regularization was to understand the behavior of the wave solutions in the
limit of ε → 0. Accordingly, we now focus on the case 0 < α < d2/4, the range for
which classical traveling waves of the original system (ε = 0) fail to exist. There are
two cases, depending on whether 0 < α < d2/8 or d2/8 < α < d2/4.

4.1. Case 1: d2/8 < α < d2/4. The U -nullcline is the parabola given by (4.7).
There are two distinct nullclines for S which correspond to the solutions of

(S + α)
(

1
2

(U − u`) (U − ur)− S

)
− εβS = 0. (4.14)

To plot the S-nullclines, we arrange equation (4.14) to

(U − c)2 = 2S +
d2

4
+

2βS

α + S
ε. (4.15)

When ε = 0, the curve

(U − c)2 = 2S +
d2

4
(4.16)

is identical to the U -nullcline given by equation (4.7).
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One S-nullcline is located above (in the U -S plane) the horizontal line S = −α,
and the other below this line. For −α < S < 0, the last term in (4.15), 2βS/(α + S),
is always negative. This decreases U2, meaning that there is an S-nullcline just above
the U -nullcline (just below for S > 0). As ε → 0, this S-nullcline converges to the
U -nullcline.

On the second S-nullcline, S < −α. In this region, the last term in (4.15) is
always positive, and for S close to −α it dominates the linear term. The minimum
value of S on the U -nullcline is −d2/8. Since α > d2/8, this second S-nullcline is
below the U -nullcline and bounded away from it as ε → 0. A sample plot of all three
nullclines is shown in Figure 4.2.

0 0.5 1 1.5 2
!1

!0.8

!0.6

!0.4

!0.2

0

U

S

U!=0
S!=0

Fig. 4.2. Typical nullclines for system (4.5)-(4.6) with d2/8 < α < d2/4. Here the parameter
values are u` = 2, ur = 0, β = 1, α = 0.6, ε = 0.1.

To find a traveling wave solution, we show that the unstable manifold of (u`, 0)
flows to the line U = c. The eigenvector v` from (4.10) is tangent to the unstable
manifold at (u`, 0). Expanding this eigenvector for small ε yields

v` =
[
1,

2α

d

]
+ ε

[
0,

−8αβ

d(d2 − 4α)

]
+ O(ε2). (4.17)

Thus, in the limit as ε → 0 the eigenpair (λ`,v`) → (∞, [1, 2α/d]). The slope of the
U -nullcline at (u`, 0) is d/2 (independent of ε) and the slope of the S-nullcline at
(u`, 0) is d/2(1 + βε/α)−1 = d/2(1− βε/α) + O(ε2). Thus, for ε < α/β, the unstable
manifold enters the region above both the S- and U -nullclines whenever α < d2/4.
Moreover, as ε → 0 the speed with which it enters the region approaches infinity.

The trajectories of the system (4.5)-(4.6) satisfy

dS

dU
=

(S + α)F (U, S)− εβS

(U − c)F (U, S)
(4.18)

where F (U, S) = 1
2 (U−u`)(U−ur)−S. Note that F (U, S) = 0 defines the U -nullcline

and is the leading order approximation of the S-nullcline above it. The unstable
manifold quickly flows away from these nullclines into the region where F (U, S) =
O(1). In this case, the curves defined by (4.18) are approximated by

dS

dU
=

(S + α)
(U − c)

. (4.19)

The solutions of (4.19) are lines of the form |S +α| = A(U − c). The solution passing
through the equilibrium (u`, 0) has slope A = 2α/d, which is precisely the slope of
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the unstable manifold as ε → 0. Therefore the leading order approximation to the
unstable manifold is

S =
2α

d
(U − c)− α, (4.20)

which is a valid approximation as long this trajectory remains away from the nullclines.
The line (4.20) eventually intersects the S-nullcline. To leading order, this intersection
occurs at

U∗ =
4α

d
+ ur, (4.21)

S∗ =
2α

d2

(
4α− d2

)
. (4.22)

Since α > d2/8, it follows U∗ > c at the point of intersection. Near the nullclines, the
solution to the system (4.5)-(4.6), can be approximated by the quasisteady solution

S =
1
2
(U − u`)(U − ur) + O(ε). (4.23)

This trajectory intersects the line U = c. Thus, by the symmetry of the system, this
solution is part of a heteroclinic orbit connecting the points (u`, 0) and (ur, 0), and
corresponds to a traveling wave solution of (4.1)-(4.2).

The above analysis explains the double-shock solution. When α < d2/4, the dy-
namics near the point (u`, 0) on the unstable manifold are very fast (O

(
ε−1

)
). Leaving

the equilibrium point, the unstable manifold moves away from the nullclines, but even-
tually this trajectory approaches the nullclines near the point (U∗, S∗) away from the
equilibrium point. This path in phase space (in the limit ε → 0) corresponds to the
shock. Once near the nullclines, the solution flows along the nullclines, to the line
U = c. The flow between the point (U∗, S∗) and its reflected point (2c−U∗, S∗) cor-
responds to the smooth portion of the double-shock solution between the two shocks.
Figure 4.3(a) shows the path of the heteroclinic orbit in phase space corresponding to
a double-shock solution. The path shown was generated by integrating (4.5)-(4.6) for
ε = 10−3. The trajectory is very close to our asymptotic solution, which is not shown
because it is indistinguishable from the numerical solution on this scale. In Figure
4.3(b) we show the wave profile for decreasing values of ε. The solutions were gener-
ated by integrating (4.5)-(4.6) for U > c and using the symmetry condition for U < c.
For finite ε the wave is smooth, but as the figure indicates, the profile approaches the
double-shock solution as ε → 0.

The height of each of the shocks in the double-shock solution is given by

[u] = u` − U∗ =
d2 − 4α

d
. (4.24)

Below α = d2/4 smooth traveling waves no longer exist, and at this value of α the
shock height is zero. As α decreases from this value, the height of the shocks increases.
When α = d2/8, the height of each shock is d/2 so that the two shocks come together,
and the double-shock solution as analyzed in this section no longer exists. What
happens below this value of α is considered in the next section.

4.2. Case 2: 0 < α < d2/8. Much of the analysis from the previous section
applies to this case. However, one exception is that the S-nullcline above the U -
nullcline no longer converges to the U -nullcline as ε → 0. As before, one of the
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Fig. 4.3. (a) Path of the heteroclinic orbit for the double-shock traveling wave. The double
arrows indicate that the dynamics are much faster along these paths which correspond to the shocks
in the limit ε → 0. The trajectory shown is for ε = 10−3 generated by integrating (4.5)-(4.6). The
solution is indistinguishable from the asymptotic solution on the scale shown. (b) For finite ε, the
wave profile is smooth, but as ε→ 0, the solution approaches the double-shock wave. The parameter
values are u` = 2, ur = 0, β = 1, α = 0.65.

S-nullclines is located above the line S = −α and the other below. Recall that the
U -nullcline is the parabola (4.7), and the minimum value of S on this nullcline is
−d2/8. When α < d2/8, the line S = −α intersects the U -nullcline, so that as ε → 0
the S-nullcline above the U -nullcline remains bounded away from the U -nullcline for
a range of U values. This S-nullcline limits to

S =

{
1
2 (U − u`)(U − ur) (U − c)2 > d2−4α

8

−α (U − c)2 ≤ d2−4α
8 .

(4.25)

A sample plot of the nullclines is shown in Figure 4.4 for small ε.

0 0.5 1 1.5 2
!1

!0.8

!0.6

!0.4

!0.2

0

U

S

U!=0
S!=0
S= !"

Fig. 4.4. Typical nullclines for system (4.5)-(4.6) with 0 < α < d2/8. Here the parameter
values are u` = 2, ur = 0, β = 1, α = 0.25, ε = 0.05.

As before, the unstable manifold of (u`, 0) flows into the region above the S-
nullcline, and once the trajectory is O(ε) away from the equilibrium point the dynam-
ics are fast (O(ε−1)). This unstable manifold is again approximated by the line (4.20).
The unstable manifold eventually brings the flow back to the S-nullcline (4.25). These
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two curves intersect at the point (U, S) = (c,−α), and by symmetry the stable man-
ifold of (ur, 0) also flows from this point. Thus the solution does not travel along the
S-nullcline at all because the region of fast dynamics leaving (u`, 0) connects with the
region of fast dynamics entering (ur, 0). Figure 4.5(a) shows the path of the hetero-
clinic orbit connecting (u`, 0) and (ur, 0) corresponding to the single-shock traveling
wave. This solution was generated by integrating (4.5)-(4.6) for ε = 0.02. The asymp-
totic solution is indistinguishable from the numerical solution on this scale. Figure
4.5(b) shows the wave profile for decreasing values of ε. For finite ε the wave profile
is smooth, but it approaches a single shock as ε → 0.

The numerical simulations from Section 3.3 suggested that for α < d2/8 the
traveling wave solution was the shock solution from the inviscid Burgers’ equation.
This analysis confirms this, but provides more information on the structure of this
shock for small viscosity. This shock is really a degenerate double-shock solution in
that the two shocks meet in the middle of the wave profile.
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Fig. 4.5. (a) Path of the heteroclinic orbit for the single shock traveling wave that occurs when
α < d2/8. The double arrows indicate the fast dynamics along these paths which correspond to the
shocks in the limit ε→ 0. This solution was generated by integrating (4.5)-(4.6) for ε = 0.02. On this
scale the asymptotic solution is indistinguishable from the numerical solution. (b) For finite ε the
wave profile is smooth, but as ε→ 0 the solution approaches the single-shock wave. The parameter
values in both plots are u` = 2, ur = 0, β = 1, α = 0.25.

5. Discussion. For given asymptotic values of the velocity, u` and ur with u` >
ur, the viscoelastic Burgers’ model (1.3)-(1.4) has three different types of traveling
wave solutions, depending on the value of the elastic modulus α. For α > d2/4,
smooth traveling waves exist, where d = u` − ur. When d2/8 < α < d2/4, the profile
of the traveling wave is piecewise smooth with two jump discontinuities, and when
α < d2/8 the wave solution is a single shock. In all three cases the wave travels with
unique speed c = (u` + ur)/2.

We address the physical significance of the threshold in the elastic modulus α
for traveling waves to exist. For simplicity, consider the case in which u` = −ur, so
that the speed of the traveling wave is 0. The condition α > d2/4 for a wave to exist
reduces to α > u2

` , or
√

α > u`. The system linearized about u = u`, σ = 0 is

ut + u`ux = σx (5.1)
σt + u`σx = αux − βσ, (5.2)
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which can be written in the form

qt + Aqx = Bq, (5.3)

where q = (u, σ)T. The wave speeds of this linearized system are u`±
√

α. The waves
speeds are the sum of the advective speed u` and the elastic wave speeds ±

√
α. The

advection terms tend to steepen the wave, which generates elastic forces that oppose
this steepening. As long as the elastic wave speed is faster than the advective wave
speed, smooth traveling waves exist. In the viscous Burgers equation (σ = εux), the
viscous stresses propagate instantaneously, but in the viscoelastic model the elastic
stresses propagate at a finite speed. Thus, the smooth traveling wave breaks down
when the advective speed surpasses the elastic speed.

Recall that α = µ/λ, where µ and λ are the viscosity and relaxation time, re-
spectively. For a fixed relaxation time, each of the three types of wave solutions is
possible, depending on the size of the viscosity. For large enough viscosity, the smooth
traveling wave results, and as the viscosity is decreased the solution transitions to the
double-shock wave and then to the single-shock wave. Equivalently, for a fixed viscos-
ity, the type of wave depends on the size of the relaxation time. The progression from
the smooth wave to the double-shock wave to the single-shock wave occurs as the
relaxation time increases. The regions of parameter space where the different wave
solutions occur is illustrated in Figure 5.1.

re
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n 
tim

e 
(  

 )λ

viscosity (  )µ

double shock

single shock

smooth wave

µ = d2

4 λ

µ = d2

8 λ

Fig. 5.1. The values of the relaxation time λ and the viscosity µ determine the type of traveling
wave solution. In parameter space the line µ = d2λ/4 is the boundary between smooth waves and
double-shock solutions, and the line µ = d2λ/8 is the boundary between double shocks and single
shocks.

For λ = 0, only the smooth traveling wave is possible. In the limit that λ → 0
for fixed µ, the constitutive law reduces σ = µux, and the model becomes Burgers’
equation (1.1). This limit corresponds to the constitutive law for a viscous fluid.
Taking the limit β → 0 for a fixed value of α, the constitutive law limits to that of an
elastic solid. The transitions between the different wave types are independent of the
value of β. Had we nondimensionalized the problem, the value of β−1 = λ determines
the time scale of the problem, which is related to the steepness of the wave profiles.
As β gets smaller, the wave profiles steepen, meaning that as β → 0, all wave solutions
tend to shocks.
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In Section 2, we presented several different one-dimensional reductions of the
UCM equation, and in the remainder of the paper presented an analysis based on
equation (2.10). However, the techniques employed apply to all three constitutive
laws. Repeating the analysis for (2.11), we find that again there are smooth traveling
waves for α > d2/4, but for α < d2/4, only the single-shock solutions occur. For
(2.12) there is a transition from a smooth traveling wave to a double-shock solution
at α = c2, and the single shock solution is approached as α → 0. Because (2.10)
exhibits all three behaviors, we chose to present this case.

There are many different constitutive laws for viscoelastic fluids. In this paper
we used the UCM model (Oldroyd-B when ε 6= 0) because it is perhaps the simplest
differential constitutive law and it has been extensively studied in the past. Others
have studied viscoelastic generalization of Burgers’ equation [13, 21], and it would be
interesting to explore how the behavior of the wave solutions analyzed in this paper
are affected by different constitutive laws.

The problem in this paper is interesting in part because of its classical nature,
but the analysis of one-dimensional waves in viscoelastic generalizations of Burgers’
equations could also be used to develop numerical schemes for viscoelastic fluids.
High-resolution finite-volume methods have been used successfully in simulating high
Reynolds number flows [1]. The algorithm for discretizing the convection terms in
[1] is based on numerical methods for conservation laws [6]. These methods require
solving one-dimensional Riemann problems, and it is not clear how to adapt this
approach to nonconservative systems. Wave propagation algorithms [15] are more
easily adapted to nonconservative problems, but these methods also require being
able to solve one-dimensional Riemann problems. Recently finite-volume methods for
viscoelastic flows have been proposed [10, 22]. The techniques from this paper could
be adapted to solve the Riemann problems that arise in these methods.

Acknowledgements. The authors would like to thank Andy Bernoff and Jim
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their insightful comments.
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