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Abstract

This article reviews multiphase descriptions of the fluid mechanics of cytoplasm in crawling

cells and growing bacterial biofilms. These two systems involve gels which are mixtures composed

of a polymer network permeated by water. The fluid mechanics of these systems is essential to

their biological function and structure. Mathematical descriptions of them must account for the

mechanics of the polymer, the water, and the interaction between these two phases. This review

focuses on multiphase flow models because this framework is natural for including the relative

motion between the phases, the exchange of material between phases, and additional stresses

within the network that arise from nonspecific chemical interactions and the action of molecular

motors. These models have been successful at accounting for how different forces are generated

and transmitted to achieve cell motion and biofilm growth, and they have demonstrated how

emergent structures develop though the interactions of the two phases. A short description of

multiphase flow models of tumor growth is included to highlight the flexibility of the model in

describing diverse biological applications.
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1 Introduction

Much of the past research in biological fluid mechanics has focused on problems of locomotion

and transport in Newtonian fluids. What is common to these problems is that they involve the

coupled dynamics of elastic structures (wings, fins, cilia, etc.) with the surrounding fluid (Lighthill,

1975). These classical problems continue to be actively researched, and modern computational

power has greatly expanded the types of problems that can be explored with modeling (Fauci and

Gueron, 2001). Many fluids in biology are mixtures of many different components with immersed

structures that are much smaller than the spatial scale of the flow leading to systems that are

not suitable for either classical or standard computational treatment. In this review we examine

two examples of gels in which the fluid mechanics of the mixture is essential to the biological

function: cytoplasm and biofilms. A gel is composed of a polymer network permeated by water.

The presence of the polymer network affects the rheological properties of the mixture. Because the

polymer network is chemically active, the stresses depend on the ionic environment as well as the

density and configuration of the network. Because of these additional stresses, these mixtures are

examples of complex fluids.

Understanding the behavior of complex fluids presents additional mathematical, modeling, and

computational challenges not encountered in classical fluid mechanics due to the multiscale and

multicomponent nature of the materials. What type of model to use depends on the spatial scale

of interest and the questions being asked. Some models resolve the individual components that

constitute the mixture. Such models are computationally expensive and are limited by the time

scales and spatial scales that can be simulated. There are many examples of such models, but this

is not the focus of this review. Rather than resolve all components of the mixture, an alternative

approach is to model the mixture with an appropriate constitutive equation at the continuum level.

There are some classical models of this type to describe viscoelastic materials such as the Maxwell

model or the Oldroyd-B model (Bird et al., 1987). An active area of research in biofluids is to

investigate how the presence of elastic stresses influence some classical biofluid problems such as

peristaltic transport (Teran et al., 2008) or propulsive motion (Normand and Lauga, 2008; Lauga,

2007; Fu et al., 2007).

The purpose of this review is to examine examples of complex fluids in biology which are

not adequately described as a single continuous medium. The failure of the single phase models to

capture the biological processes can occur for several reasons. First, the processes are often mediated

by the relative motion of the different components of the fluid. For example, during gel swelling

the network expands outward and draws the surrounding water inward, and this motion has been

linked to the redistribution of biomass in a developing biofilm. A second limitation of single phase
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descriptions is that the composition of the material may be dynamic. For example, there can be an

exchange of material between the solid and liquid states as in the polymerization/depolymerization

of actin network in cytoplasm or from the bacterial excretion of biofilm polysaccharide. In fact, all

of the examples detailed below require the composition to be dynamic on the relevant time scale

in order to coordinate the behavior that is observed.

We stress that, because the constituents are highly inter-mixed, it is not feasible to treat each

component in detail. This difficulty is amplified because of the broad scales of problem. The time

scale can range anywhere from the diffusive time scale (seconds) to biofilm growth scales (days-

weeks). The spatial scales can range from the size of the polymer (nanometers) to the size of cells

(microns) or the size of the biofilm colony (centimeters). We present examples of systems in which

it is important to consider the relative dynamics of the fluid and the structure, but it is not feasible

to resolve the individual components of the mixture. Modeling the fluid mechanics of this process

requires a description beyond a single velocity field and single stress tensor.

An appealing approach to describe these problems is the two-phase (multiphase) flow model, in

which each component of the mixture is a continuum with its own velocity field and constitutive

law. This type of model is sometimes called a two-fluid (multifluid) model or an interpenetrating

flow model. We briefly review the formulation of the equations in Section 2. In Sections 3 and 4

we review the applications of these models to cytoplasm and biofilms, respectively. We include a

short discussion of growing tumors in Section 5 to illustrate how diverse biological problems are

connected by the equations that describe them.

2 Equations of two-phase flow

The continuum theory of mixtures has been extensively developed over the past half century. The

purpose of this section is to give the basic form of the equations that are used in the models

discussed in later sections. For more comprehensive continuum treatments of multicomponent

fluids, see Truesdell (1969); Drew and Passman (1998); Ishii and Hibiki (2006).

In this review, we only consider models that involve two phases, and so we present the equa-

tions only for this case. The extension of the model equations to include more than two phases is

straightforward, although additional phases complicate the analysis of the model. For this discus-

sion we will call the two phases sol and network, which is appropriate for the description of gels. In

this model, it is assumed that each point in space is occupied by a mixture of sol and network. The

composition of the mixture at a given location is described by the volume fractions of the different
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phases. Each material is assumed to move with its own velocity field. Let φs(x, t) and φn(x, t)

denote the volume fractions of sol and network, respectively, and us(x, t) and un(x, t) denote the

velocity fields of the sol and of the network. Conservation of mass of each phase gives the equations

(ρsφs)t
+ ∇ · (usρsφs) = Jm

s , (1)

(ρnφn)t
+ ∇ · (unρnφn) = Jm

n , (2)

where ρi represents the mass density of phase i and Jm
i

represents the rate of creation and destruc-

tion of mass of phase i. These mass sources and sinks are needed to account for conversion between

the phases. Assuming that these terms only account for conversions (no external sources) it follows

that

Jm
s + Jm

n = 0, (3)

so that the total mass remains constant.

In the applications considered in this review, the density of each phase is constant and the

networked material is essentially neutrally buoyant. Thus, the two mass densities may be taken to

be equal so that ρs = ρn = ρ. In this case, the conservation of mass equations simply to

(φs)t
+ ∇ · (usφs) = −J, (4)

(φn)t
+ ∇ · (unφn) = J, (5)

where J = Jm
n /ρ = −Jm

s /ρ represents the conversion between the two phases. Because φs and φn

are volume fractions, they are related by

φn + φs = 1. (6)

Adding equations (4) and (5), and using (6) gives

∇ · (usφs + unφn) = 0, (7)

which means that the volumed-averaged velocity is incompressible (divergence-free). Note that even

though the density of each phase is constant, the two fluids are effectively compressible because

their individual velocities are not divergence-free.

In the applications considered in this review, inertia may be ignored so that the velocities are

determined from a balance of forces, i.e. the Reynolds number is very small. The balance of forces

in each phase is of the form

∇ · (φsT s) +M = 0 (8)

∇ · (φnT n) −M = 0, (9)
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where T i represents the stress tensor of phase i, and M accounts for the transfer of momentum

through the interaction of the two phases. It is useful to write the stress tensors as

T i = −PiI + σi, (10)

where Pi represents the pressure in phase i. The form of the stress tensor σi depends on the

constitutive law for phase i. For example, assuming the sol is a viscous fluid, this stress is

σs = µs

(

∇us + ∇u
T
s

)

+ λsI∇ · us, (11)

where µs is this shear viscosity and λs + 2µs/3 is the bulk viscosity. For the momentum transfer

between the two phases, we take the simplest from proposed by Drew and Segel (1971):

M = Psn∇φs − ξ (us − un) , (12)

where Psn is the interphase pressure and ξ is the drag coefficient. The first term represents the

force that is generated by the local interaction between the two phases, independent of the flow.

More formally, it is derived by averaging the surface forces on the microscopic interfaces between

the two phases. This force may depend on the surface chemistry of the material in the network

phase. The second term is the frictional drag force that results from moving one phase through the

other. This is analogous to the drag term in the Brinkmann equation or Darcy’s law for porous

media flow.

With the above forms of the stress and drag terms, the equations are

∇ · (φsσs) −∇ (φsPs) + Psn∇φs − ξ (us − un) = 0 (13)

∇ · (φnσn) −∇ (φnPn) + Psn∇φn − ξ (un − us) = 0. (14)

As written there are three pressures in the equations, two intraphase pressures and one interphase

pressure. If one were able to measure the pressure inside the mixture, what pressure would be

recorded? Suppose that there is a single pressure that acts on both phases. We denote this

pressure by p, without a subscript. Redefining the two intraphase pressures and the interphase

pressures relative to p by

pi = Pi − p, (15)

for i = s, n, sn, equations (13) and (14) become

∇ · (φsσs) − φs∇p−∇ (φsps) + psn∇φs − ξ (us − un) = 0 (16)

∇ · (φnσn) − φn∇p−∇ (φnpn) + psn∇φn − ξ (un − us) = 0. (17)

Mathematically, the pressure p is determined by the constraint (7) (Alt and Dembo, 1999; Alt,

2003). Thus, it is analogous to the pressure in single-phase, incompressible flow. Physically it is
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the force required to keep the local volume constant. Constitutive equations for the other three

pressures must be specified.

In summary, the equations used to describe two-phase flows are of the form

∇ · (φsσs) − φs∇p−∇ (φsps) + psn∇φs − ξ (us − un) = 0 (18)

∇ · (φnσn) − φn∇p−∇ (φspn) + psn∇φn − ξ (un − us) = 0 (19)

∇ · (usφs + unφn) = 0 (20)

(φn)t
+ ∇ · (unφn) = J (21)

φn + φs = 1. (22)

Constitutive equations are required for the stresses in each phase and for the three pressures, all of

which may involve additional equations. The conversion rate between the phases, J , must also be

specified. The drag coefficient ξ may be a function of the volume fraction or other state variables

in the system. The forms of each of these functions depends on the application that is being

considered, and they are described when needed in the later sections.

3 Fluid mechanics of motile cells

Inside every eukaryotic cell is the nucleus, organelles, and the surrounding cytoplasm, which typi-

cally accounts for 50% of the cell volume. The cytoplasm is made up of two components: cytosol

and cytoskeleton. The cytosol is mostly water with dissolved ions and small proteins, and the

cytoskeleton consists of a filamentous network of actin, microtubules, and intermediate filaments.

The cytoskeleton maintains the structural integrity of the cell, and it is essential for biological func-

tions such as the changes in shape necessary for cell division and cell locomotion. The cytoplasm

is a very complex material which behaves as either a solid or fluid depending on the time scale

under consideration and the chemical state of the mixture. Because it is a polymer network made

up mostly of water, the cytoplasm is a gel, but the material properties of cytoplasm are much more

complicated than other gels. Unlike some other physiological gels, such as collagen or fibrin, the

material properties of cytoplasm are remarkably dynamic because the network is constantly turning

over and the material properties can change rapidly in response to chemical cues.

This section is focused on the role of the fluid mechanics of cytoplasm in cell crawling. Actin

is the primary cytoskeletal component involved in generating the forces of cell crawling. The actin

network is bound together with a variety of binding proteins, which can be signaled to solate

the gel yielding a very fluid material or to tightly crosslink the network making it behave more
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solid-like. The polymerization, depolymerization and swelling of the actin network are involved

in generating forces responsible for cell motion. Additionally, crosslinked within the network are

bipolar myosin motor protein filaments. These myosin motors generate active stresses within the

network by pulling on nearby filaments causing them to tend to slide past one another. Continuum

level descriptions for the constitutive laws for actin-myosin gels that account for the active nature

of these materials are currently being developed (Liverpool and Marchetti, 2005; Kruse et al., 2005;

MacKintosh and Levine, 2008). For a recent review of this subject which includes applications to

cell motility see Joanny and Prost (2009). In this review we restrict our attention to descriptions

of cytoplasm that employ the two-phase flow framework, because in some systems it is necessary

to explicitly account for the relative motion of the cytosol and the cytoskeleton.

Generically, cell crawling is achieved by protrusion at the front of the cell, adhesion to the sub-

strate, and pulling up the rear of the cell (Mitchison and Cramer, 1996; Lauffenburger and Horwitz,

1996). The term amoeboid motility is often used to describe cells that crawl by changing shape

by repeatedly extending and retracting appendages. The movements of many different cells fall

into this classification, but the forces involved and the types of protrusions can be very different.

For example, cells such as epithelial cells and fibroblasts extend lamellipodia, which are flat, sheet-

like extensions containing a dense actin meshwork. The force used to extend the lamellipodium is

thought to be generated by the polymerization of actin at the front of these appendages. Pseu-

dopodia are finger-like protrusions extended by neutrophils and amoeba extended by either the

polymerization of actin at the front, or by a pressure-driven flow generated by actin-myosin con-

traction. Blebs are pressure-driven bubble-like protrusions of the cell membrane that are initially

devoid of cytoskeleton. They are formed when the membrane locally separates from the cortex

and the intracellular pressure drives a flow of cytosol to inflate the detached membrane. Below

we present more detailed descriptions of some different forms of amoeboid motility and discuss the

significance of the fluid dynamics in each of these processes.

3.1 Different modes of cell crawling

Cytoplasmic streaming in giant amoeba such as Amoeba proteus and in the true slime mold

Physarum polycephalum have been studied for a long time (Allen and Allen, 1978; Kamiya, 1959),

because these large cells and the flows inside them are easy to observe. The relatively fast fluid

flow (up to 1 mm/s in Physarum) is involved in cell locomotion, but it is also needed to transmit

nutrients and chemical signals over the large spatial scales of these cells (greater than 100 microns).

The forces that drive the flows inside these cells is thought to be driven by intracellular pressure

gradients (Yanai et al., 1996) that are generated by actin-myosin contraction and solation/gelation
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of the cytoskeleton (Janson and Taylor, 1993). Understanding how these cells coordinate different

forces requires a multiphase description of the cytoplasm. A good example of this is the fountain

flows observed inside Amoeba proteus that are detached from a surface (Grebecki, 1994). The cy-

toskeleton continually moves rearward along the membrane, and the cytosol flows in the opposite

direction through a flow channel down the middle of the cell. Thus there is clear relative motion of

the cytosol and the cytoskeleton, and to maintain this steady-state flow there must be conversion

between the two phases. A multiphase flow model of this is discussed in Section 3.2.1. Despite the

fact that cytoplasmic streaming inside these cells has been studied for some time, there is continued

interest in this problem. Recently detailed flow and rheological measurements were performed on

these cells (Matsumoto et al., 2008; Rogers et al., 2008), and many experiments demonstrated the

importance of pressure driven flows in other motile cells (Charras and Paluch, 2008; Fackler and

Grosse, 2008).

Much recent research on cell crawling has focused on cells such as fibroblasts and keratocytes

which crawl by extending a lamellipodium. See Figure 1(a). The prevailing idea of this type of

movement is that the force of protrusion is generated by polymerization of actin at the front of

the membrane, which does not sound like a problem of fluid mechanics. However, the cytoskeleton

is observed to move backward relative to the advancing cell, which indicates that there is relative

motion between the cytoskeleton and the cytosol (Pollard et al., 2000; Watanabe and Mitchison,

2002). Experiments have shown there there is a significant flux of water through aquaporin channels

at the leading edge of protrusions in some cells (Loitto et al., 2002), and it has been shown that

the flux of water at the leading edge can significantly increase the speed of cell migration (Hu and

Verkman, 2006). How this fluid flow is involved in motility is still being explored and debated.

Experimental and theoretical studies have suggested that this flow is important for the transport

of monomeric actin to the front of the cell (Zicha et al., 2003; Keren et al., 2009). It has also been

proposed that this flow pushes the membrane forward thus reducing the load on the the networked

actin and increasing the rate of polymerization.

Although recent research on cell crawling has focused on movement over a two-dimensional

surface, there is an increasing amount of work being done to understand how cells migrate in three-

dimensional fibrous environments (Even-Ram and Yamada, 2005). Some cells use blebbing to move

through these environments, which is driven by pressure-driven cytoplasmic streaming and shares

some similarities with the streaming in giant amoeba discussed above (Lämmermann and Sixt, 2009;

Charras and Paluch, 2008; Fackler and Grosse, 2008). See Figure 1(b). Cells may use blebs to move

in the same way that they use other appendages (extension, adhesion, retraction). Alternately, in

a confined environment such as in a three-dimensional fibrous matrix, blebbing may be used to

move without specific adhesions between the cell and the environment. Inflating blebs in tight
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spaces ahead of the cell generates a frictional force with the surrounding fibers, which allows the

cell to pull itself through the matrix. In the past blebbing was associated primarily with apoptosis,

but there is renewed interest in understanding how cells use blebbing for locomotion because some

recent experimental results show that some invading cancer cells are able to switch to this mode of

motility when their ability to degrade the surrounding extracellular matrix is blocked (Wolf et al.,

2003).

body
cell direction of motion

lamellipodium
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Figure 1: (a) Schematic of a cell crawling over a two-dimensional surface by extending a lamel-

lipodium in the direction of motion through actin polymerization at the front. (b) Some cells are

thought to use blebbing to migrate in three-dimensional fibrous environments. When the membrane

detaches from the cortex, intracellular pressure causes cytoplasm to stream towards the location of

detachment, which inflates the bleb in the direction of motion.

3.2 Two-phase flow models of motile cells

The use of the two-phase flow equations to describe the fluid mechanics of cytoplasm was pioneered

by Dembo and coworkers (Dembo and Harlow, 1986; Dembo et al., 1986; Dembo, 1986). This orig-

inal formulation has been further developed and used to explore streaming inside Amoeba proteus

(Dembo, 1989), cell division (He and Dembo, 1997), dynamics of the extension of lamellipodia (Alt

and Dembo, 1999; Kuusela and Alt, 2009; Oliver et al., 2005), and some different behaviors and

experiments involving neutrophils (Herant et al., 2003). In the studies cited above, the network

was modeled as a viscous fluid, but this assumption is not universally accepted. Elastic effects have

been included in some other two-phase models of cell crawling (Rubinstein et al., 2005; Zajac et al.,

2008) to describe the mechanics of the cytoskeleton in lamellipodia and in descriptions of pressure

propagation during blebbing (Charras et al., 2005, 2008). The models that treat the cytoskeleton

as a fluid are unified by the incorporation of the stresses that drive the motion into models of

the additional intraphase pressures. The models of crawling cells that describe the network as a

solid incorporate the active stresses differently, and in models of the pressure propagation during
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blebbing active stresses have not been included. These three types of models are described in more

detail in the sections that follow.

3.2.1 Fluid treatments of the cytoskeleton

The argument for treating the cytoskeleton as a viscous fluid is that the time scale for the turnover

of actin filaments is shorter than the time scale of cell crawling. The turnover of the network is

accounted for by the reaction term, J , in the continuity equations (4)-(5). The simplest form of

this term involves a constant relaxation to an equilibrium volume fraction of network:

J = kp (φeq
n − φn) , (23)

where kp represent the reaction rate and φeq
n represents the equilibrium volume fraction. Other

forms of this reaction rate that have been used are variations on this form. Kuusela and Alt (2009)

included a stochastic reaction term and Herant et al. (2003) assumed that the reaction rate was

a linear function of the network volume fraction and that the equilibrium volume fraction was

dependent on a chemical messenger that is produced near the cell membrane.

The force generation by the cytoskeleton is accounted for through the additional intraphase

pressures in (16) and (17). Following Dembo and Harlow (1986), the two stresses included are

the solvation stress and the contraction/swelling stress of the network. The solvation stress is the

difference in the sol pressure and interphase pressure and it accounts for nonspecific interactions

between the sol and the network. The network pressure includes the active contractile stresses gen-

erated by myosin as well as the osmotic swelling stress within the network. Through an appropriate

change of variables (Dembo and Harlow, 1986; Oliver et al., 2005; King and Oliver, 2005), these

stresses can be combined into a single effective pressure in the network equation, which we denote

by ψ in addition to the pressure needed to enforce incompressibility.

It is often assumed that the cytosol is inviscid because interphase drag force dominates the

viscous force in the sol. The viscosity of cytoplasm is much larger than that of water, and so the

viscosity of the network is not ignored. With the assumptions of a viscous network, inviscid sol,

and an additional effective network pressure, the two momentum equations (16)-(17) are

−φs∇p− ξ (us − un) = 0 (24)

∇ · (φnσ
v
n) − φn∇p−∇ (φnψ) − ξ (un − us) = 0, (25)

where σv
n represents the viscous stress in the network. The first equation is a generalization of

Darcy’s law for flow through a porous medium. This system can be interpreted as flow through a

porous medium in which the porous medium itself is flowing.
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It is interesting to consider what behaviors the additional pressure produces without considering

the specific form of this function. Let Ψ = φnψ. Consider the spatially homogeneous mixture with

no flow. A linear stability analysis of this state reveals that the sign of dΨ/dφn determines whether

this rest state is stable. With no conversions between network and sol, the mixture is stable if

dΨ/dφn > 0, but if dΨ/dφn < 0 the model predicts that the cytosol and cytoskeleton will phase

separate (Alt and Dembo, 1999; Oliver et al., 2005). The intuition for this phase separation is that

if an increase in the volume fraction causes a drop in pressure, then the network will tend to flow

towards this region of increased volume fraction. The inclusion of the conversion between phases

can stabilize the mixture if the time scale of the reaction rate is faster than the time scale of the

phase separation.

The tendency of the active pressure to produce spatial patterning is an interesting feature of

the model which cannot be described if there is only a single incompressible velocity field. Some

authors have argued that this active pressure has a ’cubic-like’ profile as a function of the volume

fraction (as in Figure 4(a)), so that low and high volume factions are stable with an intermediate

range of unstable volume fractions in between (Alt and Dembo, 1999; Kuusela and Alt, 2009). This

form of the network pressure is similar to what results from the classical Flory-Huggins theory of

gel swelling (Doi and Edwards, 1986).

If the chemical equilibrium volume fraction φeq
n in equation (23) is in the intermediate range of

unstable volume fractions then interesting dynamics result. The active network stress drives the

volume fraction away from its chemical equilibrium causing the network to bunch up, but as the

volume fraction increases the contractile stress reduces and the depolymerization drives the network

is driven back towards the chemical equilibrium. The dynamics of this process are described more

thoroughly in Alt and Dembo (1999); Kuusela and Alt (2009); Dembo (1986). In Alt and Dembo

(1999) it is speculated that these complex dynamics may be related to the repeating ruffling seen at

the front of advancing lamellipodia. However, a careful asymptotic analysis using thin-film theory

which accounts for the height of the cell shows that other chemical effects must be included in order

to generate bounded growth rates of the perturbations (Oliver et al., 2005; King and Oliver, 2005).

A two-phase flow description successfully reproduced the internal gel structures and fountain

flows of Amoeba proteus (Dembo, 1989). In this model the additional network stress was contractile,

but the strength of contraction was regulated by a generic messenger which was produced at the

boundary and degraded in the interior of the cell. The gradient of contraction combined with the

contractile activity controlled the spatial location of phase separation to produce the flow channel

in the middle of the cell. At the front of the cell, the network was free to pull off the boundary. The

contraction pulled the network backward along the membrane, which pushed the cytosol forward

through the flow channel in the middle of the cell. A schematic of this is shown in Figure 2. The
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essential ingredients to producing this complex flow pattern are somewhat simple when described

using a two-phase fluid model of the cytoplasm. This system presents an excellent example of how

these types of models naturally explain the complex fluid dynamics of mixtures.
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flow channel

ectoplasmic gel layer

Figure 2: Illustration of fountain flow inside Amoeba proteus. The arrows indicate the direction of

the cytosol motion. The contractile stress within the actin network concentrates the cytoskeleton

around the edges of the cell in the ectoplasmic gel layer. The cytoskeleton detaches from the front

of the cell, which causes the cytoskeleton backward along the edges of the cell. The cytosol is pulled

back along the wall by the motion of the cytoskeleton and it flows forward through the flow channel

along the center of the cell.

It seems reasonable to use an extra pressure term to account for the active forces in some cells

such as amoeba because it is thought that pressure is the driving force of the flow. However,

it is not immediately clear that this is the appropriate model when the active force is produced

by actin polymerization at the leading edge. Herant et al. (2003) showed that polymerization

stress at the front can be captured using an additional network pressure. In this model an active

pressure proportional to the polymerization due to a messenger was included. When the messenger

concentration is elevated locally near the boundary, the polymerization pressure drives the extension

of a pseudopod. Other models of extension are considered in the next section.

3.2.2 Elastic solid models of the cytoskeleton

Other two-phase flow models of crawling cells do not rely on the presence of an extra network

pressure to drive the motion of the cell. In a model of a crawling fish keratocyte, Rubinstein et al.

(2005) treat the cytoskeleton as a porous, elastic solid. The force at the leading edge is generated by

actin polymerization, and the rate depends on the elastic stress. A one-dimensional model of actin

and myosin is used at the rear of the cell to compute the contractile force. The sol is assumed to be

inviscid, and from the computed network velocity, the pressure and sol velocity are computed from

equation (24) and the mixture incompressibility (7). The primary role of the sol flow in this model
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is the transport of actin monomer, and the authors comment that this does not play a significant

role in regulating the motion of the cell.

Two recent models use a similar approach but show that the flow of cytosol has a significant

impact of the motility of the cell (Keren et al., 2009; Zajac et al., 2008); both of these models

account for the permeability of the membrane. Keren et al. (2009) measure the flow of cytosol in

lamellipodia of fish keratocytes using quantum dots. These measurements show that the cytosol

flow from the rear to the front of the lamellipodium at a velocity that is 40% faster than the

velocity of the cell. A simplified two-phase flow model is used to describe the measured flow. In the

model it is assumed that the network velocity is constant, the pressure at the rear (from myosin

contraction) is constant, the volume fraction of network is uniform, and the membrane is permeable.

The fluid velocity and pressure at the front of the cell are calculated as functions of these constants.

Experiments show that when the pressure gradient that drives the flow is eliminated by inhibiting

myosin contraction, the cell speed is reduced by about 40%. Based on the analysis of the model,

the authors hypothesize that the lack fluid flow in the treated cells is responsible for about half of

the reduction in speed due to decreased transport of actin monomer to the leading edge. Thus,

although fluid flow is not essential for this type of motility, it is certainly significant.

Zajac et al. (2008) use a two-phase flow model to explore the mechanics of crawling nematode

sperm. This cell crawls via protruding a lamellipodium, but the cytoskeleton is made of major

sperm protein (MSP), not actin. There are no motor proteins that bind to MSP to generate

contractile stress. The force at the front of the cell is thought to be driven by polymerization,

and the ’contractile’ stress need to bring up the rear of the cell is thought to be generated by

depolymerization of the cytoskeleton. The stress within the cytoskeleton is assumed to be the

anisotropic function of only the volume fraction of network

σn = −σ0 (φn − φ0)

(

1 0

0 α−1

)

, (26)

where σ0 is the stiffness, φ0 is the unstressed volume fraction, and α is a measure of the anisotropy.

The anisotropy is included because the cytoskeletal filaments are preferentially oriented in the

direction of the cell motion. With this constitutive law, the network behaves like an orthotropic

elastic material with negligible shear modulus. Only volume changes induce a stress within the

network. The network polymerizes at the front and flows rearward as it depolymerizes. This

generates the pressure gradient that drives the cytosol forward. Like Keren et al. (2009) the

membrane permeability is included and plays a significant role in generating in the fluid flow inside

the cell. The model shows that the force generated by the flow of cytosol accounts for roughly

36% of the driving force. These models highlight that even when the polymerization stresses at the

leading edge are driving the motion of the cell, the fluid dynamics should not be ignored.
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3.2.3 Blebbing - poroelastic cytoplasm

A bleb is initiated when a patch of cell membrane detaches from the cortex or when the cortex

locally ruptures. The intracellular pressure drives the cytosol towards this region which results in

inflating the bleb. Initially, the fluid inside the bleb does not contain any cytoskeleton. As the

growth of the bleb slows down, the cortex reforms and generates contractile stress which deflates the

bleb. Blebbing provides another example of relative motion between the cytosol and cytoskeleton.

Cortical contraction, cortical flow, cytoplasmic streaming, and intracellular pressure are all involved

in blebbing, but the relative contributions and coordination of each of these effects is not clear. To

account for all of the forces involved, a single phase description of the cytoplasm is inadequate.

In a series of papers, a multiphase description of cytoplasm is used to understand how pressure

is propagated inside the cell during blebbing (Charras et al., 2005, 2008; Mitchison et al., 2008). In

their models the cytoplasm is described as a mixture of a porous elastic solid and a viscous fluid.

This poroelastic description of the cytoplasm is closely related to the two-fluid model described

previously, and the equations are very similar to equations (24)-(25). A poroelastic description

of cytoplasm leads to an estimate of the time scale of pressure equilibration that depends on the

elastic stiffness and permeability of the network. By comparing experiments and scaling arguments,

these studies argue that the time scale of bleb formation is faster than the times scale of pressure

equilibration. These studies highlight the significance of considering the multiphase nature of

cytoplasm when considering not only the flow inside cells, but also in estimating the pressure.

4 Biofilm mechanics, growth and kinetics

Biofilms are another biological application for which multiphase approaches have proved useful.

Biofilms consist of a wide variety of microorganisms including bacteria, protozoa and algae. The

bacteria within a biofilm typically behave much differently than free-swimming, or planktonic,

bacteria when they are enmeshed in a biofilm. Many of the bacteria within a biofilm have undergone

a phenotypic change that causes them to lose their swimming motility and begin to produce higher

amounts of exo-polymeric substances (EPS). The EPS links the bacteria together and typically

connects the aggregate onto a solid surface that is exposed to flowing water. The ensemble of

microorganisms, EPS and other particulates is termed a biofilm and introduces a host of interesting

behavior that is not seen in other collections of bacteria.

Biofilms are the cause of many problems in clinical, industrial and environmental applications,

although there are also applications where biofilm growth is beneficial (Costerton, 2001; Davies,
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2003; Costerton et al., 1987). Since bacteria appear to preferentially form biofilms and biofilms

can form in almost any environment, the majority of bacteria exist in biofilm settings Therefore, if

the concern is to prevent contamination or corrosion, the goal is to remove the biofilm. However,

biofilms are notoriously difficult to eradicate. The biofilm serves as a source of several layers of

protection to the bacteria. So biofilms are ubiquitous, can be sources of corrosion or infections

and are extremely difficult to remove. Many of the research programs are aimed at controlling and

eliminating biofilm colonization.

It also should be noted that studying biofilms experimentally is quite difficult. Most experiments

are difficult to reproduce with any confidence and it is very difficult to measure many of the

constituents of the biofilm accurately (Characklis et al., 1982). This has lead to an interest in

mathematical modeling, where the underlying issues can be explored transparently and repeatedly.

One of the outcomes of experimental investigations is increasing evidence that the biofilm mode of

existence introduces a variety of important properties. The biofilm proper acts as a hydrogel, which

means that the material properties are quite complicated and include viscoelastic effects (Klapper

et al., 2002) and stresses mediated by the chemical environment (Sutherland, 2001).

The material properties of the biofilm gel, as well as the interaction with chemical and fluid

forces can induce several types of heterogeneity that are biologically important. One type of

heterogeneity concerns the spatial distribution of cell genotypes and phenotypes within the biofilm.

This plays a role protecting the bacteria from disinfection. It has been clearly demonstrated that

essentially every biocide reacts with the EPS, limiting the ability of the biocide to kill the bacteria

(Stewart, 1996; Stewart et al., 2001). However, it has also been shown that this alone does not

explain the tolerance to disinfection (Cogan et al., 2005; Sanderson and Stewart, 1997). A second

type of heterogeneity concerns the spatial distribution of the biofilm proper. It is commonly noted

that biofilms consist of clusters, towers and channels. This is thought to enhance the growth of the

bacteria and to be a function of the fluid and nutrient regimes, although there is much debate about

the mechanisms by which the structures are formed. These may include fluid/structure interaction

via sloughing events, growth limitation or other more complicated kinetic regulation.

Many of the different behaviors observed during biofilm formation and development are medi-

ated by the gel environment in which the bacteria reproduce. One of the most important obser-

vations is that the biofilm alters the nutrient distribution. Rather than having access to nutrient

that is dissolved throughout the flowing fluid, the nutrient must reach the bacteria by diffusing

through the biofilm. At the same time the bacteria consume the nutrient, introducing gradients

in nutrient concentrations throughout the biofilm. Thus the growth rate of an average bacteria is

typically lower in a biofilm setting than in a planktonic state. Since the biofilm consists of multiple

species of bacteria, this can also lead to stratification of bacterial species with the aerobic bacteria
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surviving and reproducing near the outer rim of the biofilm while anaerobic bacteria exist deeper

within the biofilm (Costerton et al., 1995).

To understand the process of growth, disinfection and structural development, it is necessary

to understand the coupled motion of the fluid and the biofilm. Because the EPS, bacteria and fluid

exist throughout the biofilm and because the fluid within the biofilm moves relative to the solid

(and further contains the nutrients) multiphase models are a natural mathematical framework to

study the behavior.

4.1 Mechanical and chemical forces

Minimal models of the growth and development of a biofilm require some treatment of the mechanics

of the redistribution of produced biomass as well as the the coupled motion of the external bulk flow

and the biofilm. Experimental observations indicate that the the spatial structure of the biofilm is

affected by the flow rate (regime) as well as the nutrient load. In slowly flowing water, the biofilm

can appear essentially flat, if there is ample nutrient, or consist of towers, clusters and channels,

if the nutrient load is low. As the flow rate increases the biofilm tends to become more compact

and regular, presumably because of erosion or detachment of the biofilm. This is inherently a

mechanical process, where the dominant forces that act on the biofilm (e.g. chemical and physical)

are mediated by the complex interaction between the gel and the fluid.

One of the forces that manage the spread of newly produced material is due to the chemically

active nature of the polymer network. The EPS consists a wide variation of components (Suther-

land, 2001), but is is generically hydrophilic. Thus local compression of the EPS, due to production,

induces motion as the EPS expands drawing solvent into the gel. Likewise, local expansion of the

gel tends to expel water compressing the gel. This behavior can also be mediated by the ionic

environment. This is referred to osmotic swelling and deswelling, respectively and is handled as an

additional pressure. Osmotic swelling has been observed in biofilms (Mitchell et al., 2008; Hentzer

et al., 2001) as well as in agarose hydrogel models of EPS (Strathmann et al., 2001).

This redistribution also interacts mechanically with the biofilm, since motion of the polymeric

network alters the mechanical stresses. Biofilms, like all hydrogels, are viscoelastic materials;

however, if one is primarily concerned with the developing structure via colony growth, the elastic

stresses can often be neglected since the relaxation time for the biofilm network has been estimated

to be on the order of seconds to minutes, while the growth of a single bacteria occurs on the scale

of hours (Klapper et al., 2002; Shaw et al., 2004). The growth of the biofilm proper occurs on an

even longer time scale of at least days. It is argued that, on the longer time-scale, the biofilm can
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be treated as a viscous material.

Along with neglecting the elastic properties, a second simplification occurs if the external flow

is negligible. Because the growth processes occur much more slowly than the redistribution of

material stresses (assuming a force balance on the growth time scale), it seems reasonable that the

interphase drag is likely to be very small. These assumptions together allow for a tractable model

that can describe the development of various observed structures. However, this simplification

restricts the behavior that can be captured by the model. In particular, there is no mechanism that

can address the large scale sloughing events that are observed in biofilm systems. These sloughing

events, where large portions of the biofilm are shed by the biofilm, are of primary importance in

many industrial and clinical settings since this can lead to recolonization or infection downstream.

Sloughing is intimately related to the flow regime although in a quite complicated manner. Typical

events are often observed when there is an abrupt change in the fluid flow, for example during

periodic flow reversal. This underlies the fact that biofilm processes are inherently dynamic in both

time and space.

In the models of motile cells described in Section 3, the cytoplasm interacts with the cell

membrane, but the fluid environment outside the cell does not play a significant role. This is very

different in biofilm applications where the interface between the multiphase material and the fluid

is dynamic and depends heavily on the external flow. To fully capture the behavior one also needs

to address the external flow which leads to a very complicated fluid/structure problem relating

the external velocity to the interface geometry. There are many ways to address this including

brute force computations of the momentum equations, simplifying assumptions on the fluid flow

and simplifying assumptions on the coupling between the fluid and the biofilm. Using scaling

arguments this can be treated as a sharp interface problem (or a two immiscible fluids problem)

(Cogan, 2007); however, this requires substantial simplification of the material properties of the

biofilm. One advantage of the multiphase approach is that the dynamics of the surrounding fluid

and the biofilm are united since the equations are based on the same physical principle of Newton’s

laws. The different forces occur as a consequence of the different physical make-up. This also

connects the well-developed theory of diffuse interfaces to the multiphase approach. One can argue

that the phases are specific examples of an order parameter that is a continuous variable that has

sharp transitions between phases. Because the equations can be posed throughout the domain and

have a form that is similar to Navier-Stokes equations, one can avoid front tracking and remeshing.

By following the development and refinement of biofilm models it is apparent that there has

been incremental steps towards capturing the physics of the biofilm/fluid interactions. We note

that in each of these one of the unknown quantities is the location of the interface between the fluid

and the biofilm although the details are quite different. The simplest ignore exchange of material,
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or the relative motion of the materials (Wanner and Gujer, 1986; Cogan et al., 2005). The next

generation of models were proposed to explain much of the physical structure exhibited by biofilms

(Cogan, 2004; Dockery and Klapper, 2002; Eberl and Sudarsan, 2008). Several mechanisms that

lead to the development of isolated towers or mushrooms were tied to the growth and biomass

redistribution. There was an important extension of continuum models to include multiple phe-

notypes (Alpkvist and Klapper, 2007). Finally, there have been several attempts at including the

collected fluid/structure interaction between the biofilm and the bulk fluid (Cogan and Keener,

2004; Klapper et al., 2002; Cogan, 2008; Eberl and Sudarsan, 2008).

4.2 Structural development

There have been several multiphase models developed to understand the active process of structural

development. These models highlight the interaction between the chemically generated (osmotic

pressure) and mechanically generated (viscous, viscoelastic) forces. In these models, the primary

driving force of the heterogeneity occurs because of the interaction between biomass production and

biomass redistribution. In each of these investigations, it is recognized that the biofilm material

consists of both fluid and solid components. This interaction can lead to internal heterogeneity

(e.g. between bacterial phenotypes) or geometric heterogeneity (e.g. channels, clusters, surface

changes due to sloughing).

The first continuum model of a biofilm was developed in the mid 80’s (Wanner and Gujer,

1986). The main goal of the effort was to understand the dynamics and spatial variation of the

various microbial species within the biofilm. The model was restricted to one spatial dimension

(perpendicular to the solid surface on which the biofilm was growing). The model was the earliest

to break the biofilm into subcompartments described as phases. The biofilm consists of n species

each with volume fraction φn. Because biofilms encapsulate a lot of fluid, there is an additional

phase describing the water. One of the main assumptions is that there is no interaction between

the phases – in fact there is neither mass nor momentum transfer. The multiphase equations

are particularly simple: there is no momentum, instead the biofilm/fluid interface moves with a

velocity that is determined by the net production of all species. It is also notable that one of the key

constituents that governs the behavior of a biofilm, namely the EPS, is absent in this model. The

densities and volume fractions are constant throughout the biofilm so this reduces to integrating

the production of mass,

dL

dt
=

∫

z

o

µ(N,B) dz′,

where L is the depth of the biofilm and µ represents the production of biomass that depends on

the nutrient, N , and the bacterial density, B. Although this is a very simplified model, it is still
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being applied in various engineering settings. Clearly there are difficulties in interpreting this model

since many of the quantities that are dynamic are assumed to be static. Although the multiphase

nature of the biofilm was incorporated, the simplifying assumptions regarding the production and

exchange of material and the lack of chemical or physical forces that govern the redistribution of

biomass, restrict any application to geometric homogeneity.

Cogan (2004) was one of the first to revisit a multiphase model where the EPS, interphase inter-

actions and mass exchange/production was included while viscoelastic effects and fluid/structure

interactions were neglected. The osmotic pressure leads to additional terms in the stress tensor:

σn = µn

(

∇un + ∇u
T
n

)

− ψ(φn) I, (27)

where ψ is the osmotic pressure and depends on the network volume fraction. In (Cogan and

Keener, 2004; Klapper and Dockery, 2006), a functional form of ψ is developed based on theo-

retical experiments. Namely, it is typically observed that when a blob of biofilm is placed in a

solvent, it does not dissolve. Instead it swells or deswells (depending on the original distribution

of φn) (Strathmann et al., 2001; Mitchell et al., 2008; Hentzer et al., 2001). This means that the

mathematical equations should produce stable, steady solutions with a uniform, non-zero, network

volume fraction, surrounded by pure solvent. Simple phase-plane analysis indicates that the ψ

should be a cubic with maximum and root at φn = 0 and a minimum at a non-zero reference

value (see Figure 4). We note that this is similar in nature to the effective pressure in cytoplasm

described in Section 3.2.1; however, the pressure in biofilms does not involve molecular motors and

arises only from osmotic swelling.

The osmotic pressure leads to a pattern formation process since EPS is constantly produced by

the bacteria within the biofilm. Although little is known about the details, it is thought that EPS

is produced and transported within vesicles in a highly compressed state (Sutherland, 2001). When

the vesicle docks with the bacterial membrane the EPS is released. Therefore production of EPS

by the bacteria lead to local compression of the network and an increase in osmotic pressure. This

leads to a physically motivated mechanism for the redistribution of mass within a growing biofilm.

One observes that a one-dimensional, flat, interface may or may not be stable, depending on the

osmotic pressure. This is some similarity to the phase separation instability in cytoplasm models

described in Section 3.2.1. An important difference is that the network is constantly being produced

from growth of the biofilm, and it is the interaction of growth and swelling that produce the spatial

patterning. Linearizing the equations about the uniform steady-state and deriving a dispersion

curve indicates that the flat interface is stable if there is ample nutrient, while competition for

nutrients leads to an instability that is reminiscent of a fingering instability (Cogan, 2004). A

snapshot of this is shown in Figure 3. The results from this model explain the mechanism behind
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Biofilm

Nutrient

Figure 3: Snapshots of the solution to the multiphase equations, neglecting external flow. The

nutrient diffuses from the top (in the blue region) and is consumed by the bacteria within the

biofilm region. The colormap shows regions of high growth (red) in the tips of the initial colony.

The higher growth leads to higher osmotic pressure which, in turn, moves the biofilm region. Since

the tips have access to more nutrient (via diffusion), the perturbation is reinforced leading to a

highly heterogeneous structure. The arrows represent the interface velocity.

the experimental observation that nutrient starved biofilms tend to be much rougher and channeled

than those in nutrient rich environments. This is in accord with other models that simplify the

physical mechanism of mass redistribution (Dockery and Klapper, 2002; Picioreanu et al., 1998)

More detailed models also incorporate different bacterial types and kinetics by further subdivid-

ing the solid phase (Alpkvist and Klapper, 2007). By extending the multiphase approach to include

phases representing different phenotypes of bacteria, the dynamics of the phenotypic distribution

can be explored by extending the equations governing conservation of mass. In this study, the

momentum equations were lumped into a single Darcy flow, but there was still dynamic variation

in the species distribution. This reflects experimental observations that the phenotypes and/or

genotypes of bacteria tend to fill specialized niches within the biofilm (for example aerobic bacteria

near the surface and anaerobic bacteria deeper within the biofilm). Although this had been ad-

dressed in discrete settings (Kreft, 2004), using a multiphase approach leads to a physically-based,

deterministic model.

4.3 Fluid/structure interaction

In Cogan and Keener (2004), a two-phase flow model is used to demonstrate how externally imposed

fluid forces can work together with the internal mechanical and chemical stresses to produce spatial

patterning in biofilms. They examined a pressure-driven flow through a gel filled channel. In a

Newtonian fluid, this forcing results in the familiar Poiseuille flow, but a novel bifurcation occurs
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(see Figure 4) at a critical pressure in the two-fluid model. Here, the elasticity is not negligible since

the time scale is much shorter than of a growing biofilm. The elastic stresses couple the horizontal

and vertical motion of the network, and the faster flow in the middle pushes the network towards

the walls. For large pressure gradients, the thinning of the network induces a phase separation

instability that is driven by the osmotic stress. This leads to a channeled solution, with an interior

layer that is free of network surrounded by a compressed gel near the channel walls.

A different approach to describing the coupled motion of the external flow and the deforming

biofilm is presented in Zhang et al. (2008a,b). A single momentum equation is used to find the

average velocity, and the velocities of the individual phases are recovered by examining the energy

of mixing. This treatment is similar to phase-field models that approximate sharp interfaces with

diffuse interfaces; however, unifying the momentum equations and relating the different velocities

to the average velocity yields a much simpler model. The free energy of mixing, f , has two terms:

f = kT
(γ1

2
||∇φn||

2 + γ2Φ
)

, (28)

where γ1 and γ2 are the strengths of the distortional and bulk mixing free energies, respectively;

k is the Boltzmann constant and T is the absolute temperature. The distortional free energy

accounts for the surface tension at the solvent-biofilm interface. The bulk free energy comes from

the classical Flory-Huggins theory of mixtures:

Φ =
φn

N
lnφn + (1 − φn) ln(1 − φn) + χφn(1 − φn), (29)

The mixing parameter, χ, governs the tendency of the gel to separate from the solvent. N denotes

the polymerization index (or measure of the molecular weight of a typical polymeric strand).

The advantage to this formulation is that a single velocity can be used to describe the system

and the velocities of the individual phases can be recovered by subtracting the excessive velocity

from mixing. With a single velocity that is valid throughout the domain, standard Navier-Stokes

solvers can be applied in numerical simulations (Zhang et al., 2008b). This formulation was used

to study the stability of the flat interface (as before) and viscoelastic effects. This model captured

large scale sloughing events that were caused by the interaction with the flow and the biofilm

(Zhang et al., 2008b).

These models show the importance of coupling the fluid mechanics, material properties and

mechanisms of biomass production. Incorporating these processes in the multiphase framework,

these models have made strides towards including the dominant biological details such as biomass

production, material properties and fluid/structure interactions.
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Figure 4: A schematic of the channeling bifurcation that arises from the interplay of the mechanical

and chemical stresses in pressure driven flow through a gel-filled tube. (a) Schematic of an osmotic

pressure function for which at high volume fractions the chemical stress keeps the mixture of fluid

and network stably mixed (solid line), and at low volume fractions this chemical stress drives the

mixture to phase separate (dashed line). (b) For modest pressure gradients (i.e. flow rates) the

spatially uniform phase moves with a typical velocity that depends only on the vertical position.

The faster flow in the middle of the channel causes a stretching of the network in the middle and

a compression of network along the edges. (c) At a critical pressure, the network in the middle is

stretched to the point when osmotic pressure induces phase separation, which further compresses

the network on the edges and opens a flow channel in the middle that is devoid of network. The

fluid velocity is much higher in the channel because the fluid is free to move without the additional

interphase drag.
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5 Tumor growth and mechanics

The mechanics of growing tumors have been described using multiphase flow models. These models

of tumors have many similarities with the models of cytoplasm and biofilms, even though fluid

mechanics does not play a significant role in tumor development. We include a brief description here

to demonstrate how diverse applications in biology are unified by their mathematical descriptions.

The fundamental issues that arise are the heterogeneity of the tumor, the transport of nutrients

and the growth of the tumor cells.

A tumor is initiated by a cluster of cells that have either increased their reproduction rates or

lowered their rate of death (presumably via a mutation). Initially, these cells reproduce essentially

uniformly in space and the colony grows as a spherically symmetric mass. Once the colony increases

in size, the cells in the center of the colony become nutrient limited and a necrotic core is formed

(Sutherland, 1988). The tumor is then a rim of growing cells surrounding a necrotic core with

a region of quiescent cells loosely separating the two regions. At some point the tumor recruits

vasculature and transitions into a rapidly growing and spatially heterogeneous tumor. Because of

the difficulty in treating, removing or containing vascular tumors, much of the research focuses on

this process. In particular, many of the investigations consider the process of encapsulation that

prevents the tumor from becoming spatially heterogeneous and malignant.

Multiphase models are a natural framework since the tumor itself is characterized by different

cells types with different spreading mechanisms, reproductive rates, material properties and bio-

chemical processes. Although there are distinct cell types, they are not localized to distinct regions

of space. Rather, they are intermixed and interact in a variety of ways. Separating the tumor

into several phases (such as normal and cancer cells, ECM etc.) also allows the investigation to

include the biologically passive extra-cellular matrix (ECM) which surrounds and interpenetrates

the tumor and the vasculature.

One focus of tumor models is the interaction between growth, expansion and ECM concen-

tration, before vascularization. A standard assumption is that there is a solvation stress that is

the difference between the hydrostatic pressure and the interphase pressure (Lubkin and Jackson,

2002; Breward et al., 2002; Byrne and Preziosi, 2003; Jackson and Byrne, 2002). There is also a

contractile stress that acts on the cell phase and is the difference between the hydrostatic pressure

and the cell phase pressure. This is very similar to the treatment of the extra stress in cytoplasm

as described in Section 3.2.1. Jackson and Byrne (2002), the ECM is included specifically and

the solvation and contractile stresses are developed differently than those for the cell phase. Once

the vasculature has been incorporated into the tumor there is much faster expansion and irregular
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spread of the tumor. In Breward et al. (2003) the stress within each of the phases is modeled using

an isotropic pressure, neglecting the mechanics of the cells and ECM.

We note that we have only touched on the range of multiphase models that have been applied

to tumor mechanics. Other studies include the transport of fluid within solid tumors (Netti et al.,

1997) and drug treatment (Norris et al., 2006). These models have successfully incorporated much

of the biology and shown how the interaction between the exchange of mass between phases and

interactions can lead to capsule and vasculature formation as well as differential growth and tumor

architecture.

6 Discussion

Many biological systems involve heterogeneous mixtures of materials that interact on many scales.

Describing the fluid mechanics of these complex materials presents challenges that are new to the

classical treatment of biofluid problems. These challenges include describing the relative motion of

the different phases, the exchange of materials between phases, and the generation of active stresses

which depend on the local composition and state of the material.

In this review we have detailed two biological systems involving active fluid-gel dynamics which

are crucial for biological function: cytoplasm mechanics in motile cells and biofilm dynamics. Both

of these systems involve a polymer network (cytoskeleton and EPS, respectively) that is perme-

ated by water which generates active stresses either through the action of molecular motors or by

chemical (osmotic) stress. These gels are not static materials; the cytoskeleton is constantly being

polymerized and depolymerized while EPS is being produced and destroyed in response to chemical

cues. We have focused on mixture theory models because this is natural framework for accounting

for all of these features in the fluid dynamics.

In addition to biogels, multifluid models have been applied to many other biological systems such

as soft tissue (Mow et al., 1984; Barocas and Tranquillo, 1997; Lemon et al., 2006), the collective

motion of dense motile bacterial colonies (Wolgemuth, 2008), bacterial propulsion (Wolgemuth

et al., 2002, 2004), and the ionic transport in within cells (Ateshian et al., 2006). We included a

brief description of models of growing tumors to demonstrate how these diverse applications are

unified by the mathematical framework used to describe their mechanics. Each material is treated as

a continuum with its own constitutive law and equations of mass and momentum balance. Although

each of the equations is similar to the classical treatment of a single-phase fluid (e.g. Navier-Stokes),

the interaction between the the phases leads to a more representative description of the biology.
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Additionally, this framework is needed to explain emergent structural development such as the

’mushroom’ structures in growing biofilms and the complex spatial cytoskeleton organization.

Although multiphase models are a powerful tool for describing a variety of systems, they are

not without their limitations. Fluid structure problems are computationally challenging for even

a single fluid, and these difficulties are amplified when multiple fluids are involved (Spilker and

Suh, 1990; Yang and Spilker, 2007; Wright et al., 2008). Another challenge is identifying suitable

parameters and constitutive laws from experimental data. The material properties of the mixture

can be measured, but it is not clear how to take measurements from the mixture and identify

parameters in each of the phases. Although there has been some recent work that uses two-phase

flow models in combination with microrheology experiments to understand the rheology of actin

gels including the effect of myosin contraction (Levine and MacKintosh, 2009). Mulitscale models

provide another approach to determining constitutive equations for the mixture. This approach uses

simulations on the microscale (on the scale of mixture components) to determine the appropriate

macroscale stresses in continuum descriptions. These types of models have been used successfully

for other complex fluids (Laso and Öttinger, 1993), and could be used in combination with mixture

theory.

A quote that is often attributed to Einstein states that “everything should be made as simple as

possible, but not simpler”. Although multiphase flow models are more complicated that traditional

continuum models of fluids, a compelling reason for using multiphase flow models is that in some

cases a single-phase description is too simple to capture the relevant biological behavior. By keeping

the mathematical framework of the physics that has been built over the past several centuries and

adding the interaction between the intermixed quantities, the models have been shown to be very

powerful and explanatory.
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Laso, M. and Öttinger, H. (1993). Calculation of viscoelastic flow using molecular models: the

connffessit approach. J. Non-Newton. Fluid, 47:1 – 20.

Lauffenburger, D. A. and Horwitz, A. F. (1996). Cell migration: A physically integrated molecular

process. Cell, 84(3):359 – 369.

Lauga, E. (2007). Propulsion in a viscoelastic fluid. Phys. Fluids, 19(8):083104.

Lemon, G., King, J. R., Byrne, H. M., Jensen, O. E., and Shakesheff, K. M. (2006). Mathematical

modelling of engineered tissue growth using a multiphase porous flow mixture theory. J. Math.

Biol., 52(5).

Levine, A. J. and MacKintosh, F. C. (2009). The mechanics and fluctuation spectrum of active

gels. J. Phys. Chem. B, 113(12):3820–3830.

Lighthill, J. (1975). Mathematical Biofluiddynamics. SIAM, Philadelphia.

Liverpool, T. B. and Marchetti, M. C. (2005). Bridging the microscopic and the hydrodynamic in

active filament solutions. Europhys. Lett., 69(5):846–852.

Loitto, V.-M., Forslund, T., Sundqvist, T., Magnusson, K.-E., and Gustafsson, M. (2002). Neu-

trophil leukocyte motility requires directed water influx. J. Leukoc. Biol., 71(2):212–222.

29



Lubkin, S. R. and Jackson, T. (2002). Multiphase mechanics of capsule formation in tumors. J.

Biomech. Eng., 124:237–243.

MacKintosh, F. C. and Levine, A. J. (2008). Nonequilibrium mechanics and dynamics of motor-

activated gels. Phys. Rev. Lett., 100(1):018104.

Matsumoto, K., Takagi, S., and Nakagaki, T. (2008). Locomotive mechanism of Physarum plas-

modia based on spatiotemporal analysis of protoplasmic streaming. Biophys. J., 94:2492–2504.

Mitchell, A. C., Phillips, A. J., Hamilton, M. A., Gerlach, R., Hollis, W. K., Kaszuba, J. P., and

Cunningham, A. B. (2008). Resilience of planktonic and biofilm cultures to supercritical CO2.

J. Supercrit. Fluid, 47(2):318–325.

Mitchison, T., Charras, G., and Mahadevan, L. (2008). Implications of a poroelastic cytoplasm

for the dynamics of animal cell shape. Semin. Cell Dev. Biol., 19(3):215 – 223. Cell Shape and

Tissue Morphogenesis.

Mitchison, T. J. and Cramer, L. P. (1996). Actin-based cell motility and cell locomotion. Cell,

84(3):371 – 379.

Mow, V. C., Holmes, M. H., and Lai, W. M. (1984). Fluid transport and mechanical properties of

articular cartilage: A review. J. Biomech., 17(5):377 – 394.

Netti, P. A., Baxter, L. T., Boucher, Y., Skalak, R., and Jain, R. K. (1997). Macro- and microscopic

fluid transport in living tissues: Application to solid tumors. AlChE J., 43(3):818–834.

Normand, T. and Lauga, E. (2008). Flapping motion and force generation in a viscoelastic fluid.

Phys. Rev. E, 78(6):061907.

Norris, E., King, J. R., and Byrne, H. M. (2006). Modelling the response of spatially structured

tumours to chemotherapy: Drug kinetics. Math. Comput. Model., 47(7-8):820–837.

Oliver, J. M., King, J. R., McKinlay, K. J., Brown, P. D., Grant, D. M., Scotchford, C. A., and

Wood, J. V. (2005). Thin-film theories for two-phase reactive flow models of active cell motion.

Math. Med. Biol., 22:53–98.

Picioreanu, C., van Loosdrecht, M. C. M., and Heijnen, J. J. (1998). Mathematical modeling of

biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnology

and Bioengineering, 58(101-117).

Pollard, T. D., Blanchoin, L., and Mullins, R. D. (2000). Molecular mechanisms controlling actin

filament dynamics in nonmuscle cells. Annu. Rev. Bioph. Biom., 29(1):545–576.

30



Rogers, S. S., Waigh, T. A., and Lu, J. R. (2008). Intracellular microrheology of motile Amoeba

proteus. Biophys. J., 94:3313–3322.

Rubinstein, B., Jacobson, K., and Mogilner, A. (2005). Multiscale two-dimensional modeling of a

motile simple-shaped cell. Multiscale Model. Simul., 3:413–439.

Sanderson, S. S. and Stewart, P. S. (1997). Evidence of bacterial adaption to monochloramine

in Pseudomonas aeruginosa biofilms and evaluation of biocide action model. Biotechnol. and

Bioeng., 56(2):201 – 209.

Shaw, T., Winston, M., Rupp, C., Klapper, I., and Stoodley, P. (2004). Commonality of elastic

relaxation times in biofilms. Phys. Rev. Lett., 93(098102):1–4.

Spilker, R. and Suh, J.-K. (1990). Formulation and evaluation of a finite element model for the

biphasic model of hydrated soft tissues. Comput. Struct., 35(4):425 – 439. Special Issue: Frontiers

in Computational Mechanics.

Stewart, P., Rayner, J., Roe, F., and Rees, W. (2001). Biofilm penetration and disinfection efficacy

of alkaline hypochlorite and chlorosulfamates. J. Appl. Microbiol., 91(3):525–532.

Stewart, P. S. (1996). Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob.

Agents Ch., 40(11):2517–2522.

Strathmann, M., Griebe, T., and Flemming, H. (2001). Agarose hydrogels as eps models. Water

Sci. Technol., 43(6):169–74.

Sutherland, I. (2001). Biofilm exopolysaccharides: a strong and sticky framework. Microbiology,

147:3–9.

Sutherland, R. (1988). Cell and environment interactions in tumor microregions: the multicell

spheroid model. Science, 240(4849):177–184.

Teran, J., Fauci, L., and Shelley, M. (2008). Peristaltic pumping and irreversibility of a stokesian

viscoelastic fluid. Phys. Fluids, 20(7):073101.

Truesdell, C. (1969). Rational Thermodynamics. McGraw-Hill, New York.

Wanner, O. and Gujer, W. (1986). A multispecies biofilm model. Biotechnol. Bioeng., 28(3):314–

326.

Watanabe, N. and Mitchison, T. J. (2002). Single-Molecule Speckle Analysis of Actin Filament

Turnover in Lamellipodia. Science, 295(5557):1083–1086.

31



Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U. H., Deryugina, E. I., Strongin,

A. Y., Brocker, E.-B., and Friedl, P. (2003). Compensation mechanism in tumor cell migra-

tion: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol.,

160(2):267–277.

Wolgemuth, C., Hoiczyk, E., Kaiser, D., and Oster, G. (2002). How myxobacteria glide. Curr.

Biol., 12(5):369 – 377.

Wolgemuth, C. W. (2008). Collective swimming and the dynamics of bacterial turbulence. Biophys.

J., 95(4):1564–1574.

Wolgemuth, C. W., Mogilner, A., and Oster, G. (2004). The hydration dynamics of polyelectrolyte

gels with applications to cell motility and drug delivery. Eur. Biophys. J., 33(2):146–158.

Wright, G. B., Guy, R. D., and Fogelson, A. L. (2008). An efficient and robust method for simulating

two-phase gel dynamics. SIAM J. Sci. Comput., 30(5):2535–2565.

Yanai, M., Kenyon, C. M., Butler, J. P., Macklem, P. T., and Kelly, S. M. (1996). Intracellular

pressure is a motive force for cell motion in Amoeba proteus. Cell Motil. Cytoskel., 33:22–29.

Yang, T. and Spilker, R. L. (2007). A lagrange multiplier mixed finite element formulation for

three-dimensional contact of biphasic tissues. J. Biomech. Eng., 129(3):457–471.

Zajac, M., Dacanay, B., Mohler, W. A., and Wolgemuth, C. W. (2008). Depolymerization-driven

flow in nematode spermatozoa relates crawling speed to size and shape. Biophys. J., 94:3810–

3823.

Zhang, T., Cogan, N. G., and Wang, Q. (2008a). Phase-field models for biofilm. I. Theory and 1-D

simulations. SIAM J. Appl. Math., 69(3):641–669.

Zhang, T., Cogan, N. G., and Wang, Q. (2008b). Phase-field models for biofilms. II. 2-D Numerical

simulations of biofilm-flow interaction. Commun. Comput. Phys., 4(1):72–101.

Zicha, D., Dobbie, I. M., Holt, M. R., Monypenny, J., Soong, D. Y. H., Gray, C., and Dunn, G. A.

(2003). Rapid Actin Transport During Cell Protrusion. Science, 300(5616):142–145.

32


