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Low-Reynolds-number swimming in viscous two-phase fluids
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The fluid media surrounding many microorganisms are often mixtures of multiple materials with very different
physical properties. The composition and rheology of the mixture may strongly affect the related locomotive
behaviors. We study the classical Taylor’s swimming sheet problem within a two-fluid model, which consists
of two intermixed viscous fluids with different viscosities, with both numerical experiments and analysis. Our
results indicate that both the swimming speed and efficiency may be decreased substantially relative to those for
a single-phase fluid.
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I. INTRODUCTION

Locomotion of microorganisms at low Reynolds number
occurs in numerous biological processes, from the propulsion
of Escherichia coli toward more favorable regions within
the intestine [1] to the motion of spermatozoa through
mucus in the female reproductive tract [2]. Swimming in a
Stokesian Newtonian fluid has been extensively studied and
the underlying physics is well understood. See Ref. [3] for a
review of low-Reynolds-number locomotion. Many biological
fluids such as mucus are mixtures of water and polymers that
are not appropriately described as Newtonian fluids. Recently,
there have been many theoretical studies on locomotion in
complex fluids [4–11].

Asymptotic analyses of infinitely long swimmers in a
viscoelastic fluid showed that swimming is hindered by
the addition of elastic stresses [5,6]. However, numerical
simulation of finite-length swimmers in a viscoelastic fluid
showed that under some conditions, the swimming speed
may be enhanced [9]. It was shown that swimming though a
Brinkman medium [8] results in enhanced swimming speeds.

For some complex materials, such as gels, there may be rel-
ative motion between the polymer network and the water, and
then describing the material as a single continuous medium is
inappropriate. The two-fluid model is a widely used approach
to describe gel mechanics, where both network and solvent
coexist at each point of space and each phase is modeled
as a continuum with its own velocity field and constitutive
law [12,13]. The classical problem of the swimming infinite
sheet was recently analyzed using the two-fluid model in the
case where the polymer network is modeled as an elastic or
viscoelastic solid [10,11].

In this paper, we study the swimming of an infinite sheet
within a two-fluid mixture, in which both the network and
solvent are described as viscous Newtonian fluids. Our aim is
to provide a theoretical understanding of how the composition
and rheology of a mixture of two viscous fluids can have a
profound effect on the swimming speed. Our work is relevant
for understanding these effects, e.g., in a colloidal suspension
(E. coli moving through milk) or for a polymeric solution
for which the viscoelastic relaxation time is sufficiently short
compared to the beating period of the swimmer.

We develop an extension of the immersed boundary method
[14] to the two-fluid model to study aspects of the problem that

are beyond the reach of asymptotic analysis alone. Using both
numerical simulations and perturbation methods, we show that
swimming in a viscous two-fluid mixture is always slower and
less efficient than swimming in a single viscous fluid and
that the composition of the mixture significantly affects the
swimming speed.

This paper is the third of which we are aware that
looks at the classic Taylor problem of an infinite undulating
sheet in the context of a mixture of two materials. The
others [10,11] examine swimming in a medium consisting
of a mixture of a Newtonian fluid and an elastic [10] or
viscoelastic [11] solid. While relative motion between the
materials plays a role in these studies, both take the solid
volume fraction to be vanishingly small and take the fluid
to be incompressible. Depending on the boundary conditions
imposed on the fluid at the undulating sheet, these studies
report that either (visco-)elasticity of the medium always
reduces the swimming speed [11] or reduces it for some
parameter regimes and increases it for others [10]. In contrast,
in the system we study, the volume fractions play a crucial role
in that the relative amounts of the more and less viscous fluids
strongly affects the swimming speed. In our system, in the
limit that one of the volume fractions becomes vanishingly
small, the single fluid swimming speed is recovered, but
for all other volume fractions, the swimming speed is lower
than for a single fluid. For the special case of no friction
between the fluids and with the volume fractions held fixed
in time, we show that the reduction in swimming speed is by
a factor μeff/μav, where μeff = μnμs/(θnμs + θsμn) is the
volume-fraction-weighted harmonic average of the viscosities
μn and μs of the network and solvent and μav = θnμn + θsμs

is the volume-fraction-weighted arithmetic average of the
viscosities. This highlights the critical role played by nonzero
volume fractions. Further, we show, through novel numerical
simulations, that time-dependent spatial variations in the
volume fractions also contribute to reducing the swimming
speed further.

II. PROBLEM FORMULATION

The problem we study is the flow introduced by propagating
transverse waves of small amplitude on an infinite sheet
immersed in a viscous two-phase fluid. Similar problems in a
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single-phase Stokes fluid were studied by Taylor in an infinite
domain [15] and later by Reynolds in a finite domain [16].
In the reference frame moving with its swimming speed, the
extensible sheet has a waving profile

y = ε sin(kx − ωt), (1)

where εk � 1. We describe the fluid medium as a mixture
composed of two immiscible materials (more viscous network
phase labeled as n and less viscous solvent phase labeled as s),
with volume fraction of θn and θs and velocity un = (un,vn)
and us = (us,vs), respectively, where θn + θs = 1. The system
of equations for the velocities and volume fractions is

(θn)t + ∇ · (θnun) = 0, (2)

(θs)t + ∇ · (θsus) = 0, (3)

∇ · (θnσ n) − βθnθs(un − us) − θn∇p = 0, (4)

∇ · (θsσ s) − βθnθs(us − un) − θs∇p = 0. (5)

Here σn and σ s are viscous stress tensors and β is the friction
constant. The stress in both phases is given by the Newtonian
constitutive law,

σn,s = μn,s(∇un,s + ∇un,sT ) + (λn,s∇ · un,s)δ, (6)

where μn,s and λn,s are first and second viscosity coefficients
and δ is the identity tensor. In this paper we set λn,s =
−μn,s . From Eqs. (2) and (3) we obtain the incompressibility
condition for the mixture,

∇ · (θnun + θsus) = 0. (7)

No-slip boundary conditions are satisfied by both un and us

on the sheet.

III. NUMERICAL METHOD

We use the numerical method introduced in Ref. [17] to
solve the fluid equations. Given a distribution of network
volume fraction, the method uses the generalized minimal
residual method (GMRES) with a box-type multigrid scheme
preconditioner to solve collectively the momentum and in-
compressibility equations (4), (5), and (7) to get un, us , and
p. Then θn is updated by solving the transport equation (2)
using a high-resolution unsplit Godunov scheme as described
in Ref. [18]. All simulations were done in the laboratory frame.

To capture the coupled fluid-structure interactions between
the swimmer and the surrounding fluid mixture, we develop
an extension of the classical immersed boundary method [14].
Because of the existence of two velocity fields, we represent
the sheet by two immersed boundaries, denoted 	n and 	s

as illustrated in Fig. 1. Each of the immersed boundaries is
composed of an array of discrete Lagrangian points connected
by linear springs and communicates with only one of the fluids
in the mixture. That is, forces from 	n are spread only to
fluid n, and values of un are interpolated to points of 	n

to update their positions. Similarly, 	s interacts with fluid
s. Each immersed boundary point on each of 	n or 	s is
connected with its neighboring points by weak springs in order
to simulate an extensible sheet. The up and down motions of
the immersed boundary points are driven by linking them to
moving “tether” points through stiff springs with zero rest

nΓ

Γs

FIG. 1. IB representation of the swimming sheet.

length. The y coordinate of each tether point moves according
to y = ε sin(kx0 − ωt), where x0 is its initial x coordinate. The
springs to the tether points generate forces in the y direction
only. Penalty forces are introduced by adding stiff springs
between corresponding points on 	s and 	n. Each penalty
spring generates a force in the x direction whenever the x

coordinates of the points it connects differ. After the usual
immersed boundary spreading of forces to the Eulerian grid
used for the fluid dynamics variables, the spread contributions
from the penalty forces are scaled with the product of the
two volume fractions to ensure that there are no interphase
forces whenever one of the volume fractions goes to zero.
Spread contributions from forces within each phase are scaled
with the volume fraction of that phase. We denote the penalty
force by Fn,s

p , and the force from the springs to tether points
and neighboring immersed boundary points by Fn,s

o . In the
immersed boundary framework, Eqs. (4) and (5) have the form,

∇ · (θnσ n) − βθnθs(un − us) − θn∇p + fn = 0, (8)

∇ · (θsσ s) − βθnθs(us − un) − θs∇p + fs = 0, (9)

where fn,s = θn,sS(Fn,s
o ) + θnθsS(Fn,s

p ). S is the standard
force spreading operator for the immersed boundary method
[14] and Fn

p = −F s
p.

IV. SIMULATION RESULTS

Our numerical simulations are carried out in the domain
[0,1] × [−L,L], where L is the distance from the mean plane
of the waving sheet to the top wall. The boundary condition
in the x direction is periodic and that at y = ±L is no-slip.
Initially θn is set to the same constant value everywhere. The
swimming speed is calculated by averaging the x velocity over
all the immersed boundary points and over one wave period.
For the results presented in this paper, we use ε = 0.012 and
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FIG. 2. (a) Scaled swimming speed as a function of the initial θn

for various values of μn/μs , with ξ = 40. (b) Scaled swimming speed
as a function of the initial θn for various values of ξ , with μn/μs = 4.
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(a) network velocity (b) solvent velocity

FIG. 3. (Color online) Color field of θn distribution along with
the vector fields of un and us . θn(t = 0) = 0.2, ξ = 0 and μn/μs = 4.
||un||max = ||us ||max = 0.076.

k = ω = 2π . L = 0.5 unless stated otherwise. A 256 × 256
grid is used for a unit square computational domain. Our tests
show the results are essentially unchanged on finer grids. We
define a dimensionless friction constant ξ = λ2β/μn, where
λ = 2π/k is the wavelength. ξ measures the magnitude of the
friction force relative to the network viscous force.

First, setting μn = μs , we get a numerical swimming speed
of U = 3.2 × 10−3, which agrees well with the analytic speed
U0 = 3.3 × 10−3 + O(ε4) in a single fluid [16]. We next
test different parameter values with μn �= μs to see how the
swimming speed is affected. Figure 2(a) shows, for fixed
friction constant ξ = 40, the ratio of the swimming speed in the
mixture to that in a single fluid U/U0 as a function of initial θn

values for different viscosity ratios. The plot indicates that the
sheet always swims more slowly in the mixture than in a single
fluid. The swimming speed decreases as the viscosity ratio
increases. In Fig. 2(b), we see that for a fixed viscosity ratio and
different values of the friction constant ξ , the scaled swimming
speed remains less than 1, and that it increases with ξ . For each
value of ξ , the swimming speed is minimized for a value of
θn ∈ (0,1/2), so increases in the volume fraction of the more
viscous phase can cause slowing or speeding of the swimming.
The location of the minimum approaches θn = 1/2 as ξ → 0.

Figure 3 shows θn and the two velocity fields at t = 0.25
from a simulation, with the friction constant ξ set to zero.
There is a significant difference between un and us and spatial
inhomogeneities of θn have developed. Even with no friction
between the fluids, the two fluids are coupled through the
incompressibility condition (7) and this condition determines
a single pressure field felt by both fluids. Figure 4 shows θn

(a) (b)

FIG. 4. (Color online) μn/μs = 4. Color field of θn distribution
along with the vector field of the relative velocity un − us . θn(t =
0) = 0.2. (a) ξ = 0 and ||un − us ||max = 0.033 (b) ξ = 500 and
||un − us ||max = 0.005.
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FIG. 5. Scaled swimming speed from simulations with spatially
uniform and variable network volume fractions, with μn/μs = 4 and
ξ = 50.

and the relative velocity un − us distributions from simulations
with ξ = 0 and ξ = 500. The distribution of un − us is
consistent with the phase separation. It is also clear that with
a large friction constant, the two fluids tend to move together
and, thus, both the θn inhomogeneities and magnitude of the
relative velocity are greatly reduced. Our simulation results
suggest that U/U0 → 1 as the friction constant increases or the
viscosity ratio μn/μs approaches 1. As shown in the analysis
below, U/U0 indeed does go to 1 in these cases because, in
both of these limits, the fluid mixture behaves more and more
like a single fluid.

We thought initially that the slower swimming was due to
the development of nonuniform distributions of θn. In order
to test this, we also carried out simulations in which θn and
θs were held at their spatially uniform initial values for all
time. This can be thought of as the effect of introducing
large diffusion terms in Eqs. (2) and (3). Figure 5 shows
a comparison between the scaled swimming speeds in two
sets of simulations that differed only in whether θn changed
according to Eq. (2) or was held fixed in time. In both cases
the swimming speed in the mixture is smaller than the speed
in a single viscous fluid. The dependence of the swimming
speed on θn is similar, but the swimming speed is significantly
slower when θn evolves according to Eq. (2). Thus the phase
separation has a significant effect, but even without phase
separation, the swimmer moves more slowly in the mixture
than in a single fluid.

V. ANALYSIS: INFINITE DOMAIN AND WITH FRICTION

As shown above, the swimming speeds in the variable and
spatially uniform θn cases have similar profiles. To simplify
the analytical study of the problem, we solve the boundary
value problem of Eqs. (4), (5), and (7) for un, us , and p with
spatially uniform volume fractions. The domain is infinite in
both the x and y directions. We also assume that the sheet is
freely extensible and that it swims at an unknown speed U .
From the no-slip boundary conditions, in the reference frame
of the swimmer,

uj (x,ε sin(kx − ωt)) = 0, (10)

vj (x,ε sin(kx − ωt)) = −εω cos(kx − ωt), (11)

where j = n,s. To solve the problem, we use eigenfunction
expansions for the system in powers of ε and solve the
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FIG. 6. Comparison of the swimming speed from numerical
simulation (©, �, �, and ∗) and analysis (curves). μn/μs = 20.

equations order by order. (See the Appendix for details.) The
swimming speed is the opposite of the fluid velocity at infinity.
After some calculations, we find that to order ε2, the swimming
speed is

U = −ε2ωk

2

G − 1

G + 1
≡ U0

G − 1

G + 1
, (12)

where

G = β(μnθ
n + μsθ

s)(κ1κ2 − 1)

2k2θnθs(μn − μs)2(κ1 − 1)(κ2 − 1)
, (13)

with κ1
2 = 1 + β

k2(μnθs+μsθn) and κ2
2 = 1 + β(μnθ

n+μsθ
s )

k2μnμs
. U0 =

−ε2ωk/2 is the classical result given in Ref. [15] for a single
fluid. Note that as friction constant β → ∞, (G − 1)/(G +
1) → 1 and U → U0. Taking the limit of Eq. (12) as β → 0,
we have

U (β = 0) = U0
μnμs

(θnμs + θsμn)(θnμn + θsμs)
. (14)

Figure 6 compares the analytical scaled swimming speed
U/U0 = (G − 1)/(G + 1) with the results from numerical
simulations with θn held constant for a number of values of the
friction constant ξ . In the simulations, the boundary position
L is set to a value sufficiently large that the swimming speed
is essentially independent of it. The match is excellent.

VI. ANALYSIS: FINITE DOMAIN AND WITHOUT
FRICTION

Next we adopt a different strategy in the solution procedure
to get some physical insights into the reason the sheet always
swims more slowly in a two-fluid mixture. To simplify the
analysis, we also assume that β = 0, since from previous
results, the frictionless case always has the most significant
reduction of the swimming speed. For a Stokes swimmer, the
swimming speed is determined by a balance of thrust and
drag forces [3]. Here the thrust is defined as the anchoring
force applied so that the undulating sheet is prevented from
swimming and the drag is the force required to tow the sheet
at speed U with a frozen shape. In order to apply the force
balance condition, we put the infinite swimming sheet at the
center of a channel, with rigid walls at y = ±L. The analysis
is limited to the fluid domain above the sheet.

First, to find the thrust, we solve the boundary value
problem [Eqs. (4), (5), and (7)] in the laboratory frame (which
is also the swimming frame since the swimming speed in this

case is zero) with spatially uniform volume fractions, subject
to the boundary conditions

uj (x,ε sin(kx − ωt)) = 0, (15)

vj (x,ε sin(kx − ωt)) = −εω cos(kx − ωt), (16)

uj (x,L) = 0, (17)

where j = n,s. Defining the volume-fraction averaged veloc-
ity uav = θnun + θsus , multiplying Eq. (4) by μs and Eq. (5)
by μn, and then adding the two, we get

μeff
uav − ∇p = 0 and ∇ · uav = 0. (18)

The effective viscosity of the mixture μeff is defined by

μeff = μnμs

θnμs + θsμn

. (19)

We first solve Eq. (18) subject to the boundary conditions
of Eqs. (15)–(17) to find the pressure p and then solve the
Poisson equations (4) and (5) for the individual velocities un

and us . To order ε2, we find that the horizontal component
of the force (averaged over a wave period 2π/ω and a
wavelength) exerted by fluid j on the upper surface of the
sheet is −θj ε2μeffωkC(kL)/(2L), where C(Z) = [sinh2(Z) +
Z2]/[sinh2(Z) − Z2]. It follows that the total anchoring force
on the sheet (the thrust) is

FT = ε2μeffωk
C(kL)

2L
. (20)

Note that this is also the thrust generated in a single-phase
fluid whose viscosity has value μeff .

To find the drag, we solve the same set of equations as
above. In the reference frame of the sheet moving with speed
U , the boundary conditions are

uj (x,ε sin(kx)) = 0, (21)

vj (x,ε sin(kx)) = 0, (22)

uj (x,L) = −U, (23)

vj (x,L) = 0, (24)

for j = n,s. Using a similar solution procedure, we find that,
to leading order in ε, dragging the sheet induces a simple shear
flow for both fluids and un(x,y) = us(x,y) = (−Uy/L,0).
The horizontal component of the force on the upper surface of
the sheet from fluid j then is −θjμjU/L, and the total drag
force on the sheet is

FD(U ) = (θnμn + θsμs)
U

L
≡ μav

U

L
, (25)

where

μav = θnμn + θsμs (26)

is the volume-fraction averaged viscosity. Requiring that the
sum of the thrust and drag be zero, we find the swimming
speed

U = −1

2
ε2ωkC(kL)

μeff

μav
= μeff

μav
U0, (27)

where U0 = −ε2ωkC(kL)/2 is the swimming speed given by
Ref. [16] for a single fluid. Notice that C(kL) → 1 as L → ∞
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and, from the definitions of μeff and μav, Eq. (27) is consistent
with the previous result for an infinite domain (14). From the
definitions of μeff and μav, the speed ratio is given by

U

U0
= μeff

μav
= 1(

μn

μs
+ μs

μn
− 2

)[
1
4 − (

θn − 1
2

)2] + 1
. (28)

Several conclusions follow directly:
(i) When μn = μs , or θn = 0 or 1, μeff/μav = 1. That is,

the mixture essentially contains only one phase of fluid and
the results in Ref. [16] are recovered.

(ii) When μn �= μs , and θn is other than 0 or 1, μeff/μav < 1
and U < U0. Thus, the swimming speed in a mixture is always
less than that in a single fluid.

(iii) With fixed θn, the swimming speed decreases with
increasing viscosity ratio μn/μs .

(iv) With fixed viscosity ratio μn/μs , the minimum swim-
ming speed is achieved at θn = 1/2.

All these findings are consistent with numerical experi-
ments.

The hydrodynamic efficiency is defined as the ratio of the
power required to drag the swimmer with a frozen shape at
speed U to the average rate of work done by the swimmer [3].
From the solutions given above, the efficiency of the swimming
sheet is found to be

η = μeff

μav
D

kε2

4L
= μeff

μav
η0, (29)

where D = [sinh2(kL)+k2L2]
2

[sinh2(kL)−k2L2][cosh(kL) sinh(kL)+kL]
and η0 =

Dkε2/(4L) is the corresponding single fluid efficiency. Thus,
swimming in a two-fluid mixture is less efficient than in a
single fluid.

From Eq. (25), we define the drag coefficient as γ = FD(1).
The swimming speed then is given by U = −FT /γ . In Fig. 7,
we plot the thrust force and drag coefficient from numerical
simulations with spatially uniform θn. We also plot the
analytical solutions given by Eqs. (20) and (25), multiplied
by a factor of 2 since the analysis is limited to the fluid domain
above the sheet. It is clear that simulations with ξ = 0 give
thrust forces and drag coefficients in good agreement with the
analytical results. The plot shows that the drag coefficient is
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FIG. 7. μn = 15, μs = 2.5, and L = 0.5, spatially uniform θn.
(a) Thrust force as a function of the initial θn for various values of ξ .
(b) Drag coefficient as a function of the initial θn for various values
of ξ .
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FIG. 8. μn = 15, μs = 2.5, ξ = 0, and L = 0.5. (a) Thrust force
for constant and variable θn. (b) Drag coefficient for constant and
variable θn.

insensitive to the friction constant. It is proportional to μav and,
thus, a linear function of θn. The thrust force is a strictly convex
function of θn; it is always less than the thrust generated in a
single-phase medium with viscosity μav. With other conditions
the same, swimming in a fluid mixture with a larger friction
constant can generate a larger thrust force.

Figure 8 compares the thrust force and drag coefficient
from two sets of simulations that differed only in whether
θn was allowed to vary or was held fixed in time. Fig-
ure 8(b) indicates that even when θn is allowed to change,
the numerical drag forces agree well with Eq. (25). In the
simulations used to calculate the numerical drag, only small
pressure gradients develop, and the two velocities un and
us remain very close, and so, in fact, θn changes little.
As shown in Fig. 8(a), the thrust force from variable θn

simulations is smaller than that from constant θn simulations,
which leads to a smaller swimming speed as indicated by
Fig. 5.

VII. DISCUSSION

In a single Newtonian fluid, the speed of translation for
Taylor’s swimming sheet is independent of the fluid viscosity.
This is because both the thrust force generated by the sheet
and the drag force exerted on it by the fluid are proportional
to the single viscosity. The results presented in this paper
show that the swimming speed of the sheet in a two-fluid
mixture depends on the viscosities of both fluids and the
compositions of the mixture. Numerical simulations show that
the swimming speed in a mixture of two fluids with different
viscosities is always less than that of a single fluid. From the
simulation results, we see that the drag force increases linearly
with the volume fraction of the more viscous fluid, while the
thrust varies in a more complex way as the volume fractions
change. We obtained insight into the origin of this behavior
by analyzing the special case in which there is no friction
between the two fluids, and the volume fractions were held
fixed in time. That analysis shows that the drag force scales
with μav = θnμn + θsμs , while the thrust force scales with
μeff = μnμs/(θnμs + θsμn), and that the swimming speed in
the mixture equals the single fluid swimming speed multiplied
by the ratio μeff/μav, which is always less than 1. Because
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of the different dependence of these two viscosities on the
volume fractions of the mixture, the swimming speed is also
a function of these volume fractions, as well as the individual
viscosities of the two fluids. Comparison of numerical results
from simulations of this special case and of the case in which
the volume fractions evolved according to the appropriate
continuity equations shows that the swimming speed is further
reduced when spatial variations in the volume fraction are
allowed to develop.

Research on swimming in two-fluid media is just beginning,
and early theoretical works have yielded some surprising
results. For example, the infinite swimmer is slowed by
elastic stresses in a single-phase fluid [5,6], but relative
motion between the swimmer and the elastic phase may
increase the swimming speed [10,11]. For a given deformation,
swimming in a single-phase viscous fluid is independent
of the viscosity, but as we have shown here, in a mixture
of two viscous fluids, the swimming speed depends on
the viscosities. Numerical simulations are essential to fully
explore more realistic problems of locomotion in complex
biological fluids. Including effects such as swimmers of
finite length, large-amplitude deformations, and nonuniform
network concentrations is straightforward with our numerical
method, and it can be readily adapted to include different
rheological properties for the network, as well as more general
network boundary conditions on the swimmer surface, and is
the subject of ongoing work.
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APPENDIX

In this Appendix, we provide additional details of
the analytical solutions described above. Two of the problems
we solve have time-dependent boundary conditions, but
because the partial differential equations are independent of
time, the force averaged over a wavelength and swimming
speeds are independent of time as well. As formulated in Secs.
V and VI, all the problems we solve have boundary conditions
of the form

uj (x,ε sin(kx)) = 0, (A1)

vj (x,ε sin(kx)) = −εω cos(kx), (A2)

uj (x,L) = −u0, (A3)

vj (x,L) = 0, (A4)

with different values of ω, u0, or L. Here j = n,s. To solve
these problems we use perturbation methods, seeking solutions
as power series in ε of the form,

uj = εuj

1 + ε2uj

2 + · · · . (A5)

Expanding the boundary conditions in powers of ε, we find
the requirements

u
j

1(x,0) = 0, v
j

1 (x,0) = −ω cos(kx), (A6)

u
j

2(x,0) = − sin(kx)
∂u

j

1

∂y
(x,0),

(A7)

v
j

2 (x,0) = − sin(kx)
∂v

j

1

∂y
(x,0).

In the discussions below, we assume θn and θs are spatially
uniform constants and take λn,s = −μn,s .

1. Infinite domain with friction

In the case that the domain is infinite (L = ∞), our goal is
to find the quantity

V =

⎛
⎜⎜⎜⎜⎜⎝

un

vn

us

vs

p

⎞
⎟⎟⎟⎟⎟⎠

, (A8)

which satisfies the equations

μnθ
n
un − βθnθs(un − us) − θn∇p = 0, (A9)

μsθ
s
us − βθnθs(us − un) − θs∇p = 0, (A10)

∇ · (θnun + θsus) = 0, (A11)

with θn and θs constant, subject to the boundary conditions
of Eqs. (A1) and (A2), with the additional restriction that the
solution is bounded in the limit y → ∞. For this problem, the
swimming speed is the −un,s(x,y → ∞).

The solution is formed as the superposition of
eigenfunctions,

φ1(x,y) =

⎛
⎜⎜⎜⎜⎜⎝

sin x

cos x

sin x

cos x

0

⎞
⎟⎟⎟⎟⎟⎠

e−y, (A12)

φ2(x,y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

[−2dμ + β

k2 (−1 + 2y)
]

sin x[−2dμ + β

k2 (1 + y)
]

cos x[
2dμ + β

k2 (−1 + 2y)
]

sin x[
2dμ + β

k2 (1 + 2y)
]

cos x

4 β

k2 (μnθ
n + μsθ

s) cos x

⎞
⎟⎟⎟⎟⎟⎟⎠

e−y, (A13)

φ3(x,y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−θn sin x

−κ1θ
s cos x

θn sin x

κ1θ
n cos x

β

k2
dμθsθn

(θnμs+θsμn) cos x

⎞
⎟⎟⎟⎟⎟⎟⎠

e−κ1y, (A14)

φ4(x,y) =

⎛
⎜⎜⎜⎜⎜⎝

−κ2μsθ
s sin x

−μsθ
s cos x

κ2μnθ
n sin x

μnθ
n cos x

0

⎞
⎟⎟⎟⎟⎟⎠

e−κ2y, (A15)
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where

κ2
1 = 1 + β

k2

1

(μnθs + θnμs)
, κ2

2 = 1 + β

k2

(μnθ
n + θsμs)

μnμs

,

(A16)

and dμ = μn − μs . In addition, there are solutions indepen-
dent of x of the form

φ5(y) =

⎛
⎜⎜⎜⎜⎜⎝

θsμs

0

−θnμn

0

0

⎞
⎟⎟⎟⎟⎟⎠

e−κsy (A17)

φ6(y) =

⎛
⎜⎜⎜⎜⎜⎝

1

0

1

0

0

⎞
⎟⎟⎟⎟⎟⎠

, (A18)

where κs = β
μsθ

s+μnθ
n

μnμs
.

The solution then takes the form

V = ε

4∑
i=1

aiφi(kx,ky) + ε2
4∑

i=1

biφi(2kx,2ky)

+ ε2b5φ5(y) + Uφ6. (A19)

Following an extended calculation in which the coefficients
are determined so the boundary conditions are satisfied, we
find the swimming speed U as reported in Eq. (12).

2. Finite domain without friction

To find the thrust, we solve the boundary value problem,

μnθ
n
un − θn∇p = 0, (A20)

μsθ
s
us − θs∇p = 0, (A21)

∇ · (θnun + θsus) = 0, (A22)

subject to the boundary conditions [Eqs. (A1)–(A4)] with
u0 = 0.

We solve this as follows. First, setting uav = θnun + θsus

and uav = (uav,vav), we find

μeff
uav − ∇p = 0, (A23)

where μeff = μnμs

θnμs+θsμn
. We set uav = ∂ψ

∂y
and vav = − ∂ψ

∂x
, so

ψ satisfies the biharmonic equation ∇4ψ = 0. We solve this
to find the pressure p and then solve the Poisson equations
(A20) and (A21) for the individual velocities.

To solve the biharmonic equation, we take ψ = εψ1 +
ε2ψ2, where

ψ1 = [(a0y + b0)eky + (c0y + d0)e−ky] sin(kx) (A24)

and

ψ2 = [(a1y + b1)e2ky + (c1y + d1)e−2ky] cos(2kx)

+ s1y(2L − y). (A25)

From this we find

p = −2εμeff(a0e
y + c0e

−ky) cos(kx)

+ 4ε2μeff(a1e
2ky + c1e

−2ky) sin(2kx). (A26)

Then, for each of Eqs. (A20) and (A21), we set

u1 = [(A0y + B0)eky + (C0y + D0)e−ky] sin(kx), (A27)

v1 = [(A1y + B1)eky + (C1y + D1)e−ky] cos(kx), (A28)

and

u2 = [(A3y + B3)e2ky + (C3y + D3)e−2ky] cos(2kx)

+ S2

μj

(y − L), (A29)

v2 = [(A4y + B4)e2ky + (C4y + D4)e−2ky] sin(2kx). (A30)

The spatially averaged value of the total shear force on the
wall at y = L is ε2S2, which, after an extended calculation,
we find to be

S2 = μeffωk

2L
C(kL), (A31)

where

C(L) = sinh2(L) + L2

sinh2(L) − L2
. (A32)

By the divergence theorem, the horizontal component of the
force exerted on the sheet by the fluids is −ε2S2. It follows
that the thrust force must be ε2S2 to satisfy the force balance
condition on the sheet, namely

FT = ε2μeffωk
C(kL)

2L
. (A33)

The second problem is to find the drag. This is found by
solving the partial differential equations (A20)–(A22) subject
to the boundary conditions [Eqs. (A1)–(A4)] with ω = 0. For
this problem the solution of the biharmonic equation takes the
form ψ = ψ0 + εψ1 + · · · , where

ψ0 = −u0

2

y2

L
(A34)

and the individual velocities are

u
j

0 = −u0
y

L
, v

j

0 = 0, (A35)

where j = n,s. Thus the shear force exerted on the sheet by
fluid j with volume fraction θj is −μj u0

L
θj . Since the drag

force required to pull the sheet with speed u0 has to balance
the total shear force, we have

FD = (θnμn + θsμs)
u0

L
. (A36)
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