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Abstract

In this paper we explore variations on the PTT closure for transient network mod-
els. These models are compared for the case of a steady shear flow using asymptotic
analysis for large shear rates and using numerical solutions for all shear rates. The
results show that including the changing number of junctions in the closure is nec-
essary to reproduce the behavior of the full model.
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1 Introduction

Models describing polymeric liquid follow two lines of development. In one
approach a constitutive equation for the stress is used to capture observed
rheological phenomena. This paper focuses on a very different approach in
which the interactions between polymers are modeled and the stress is com-
puted based on the arrangement of these polymers. This second approach
yields models with multiple spatial scales, making mathematical analysis and
numerical simulation difficult. By making the approximation that small-scale
quantities can be replaced by their spatially averaged values, one obtains a
constitutive equation that only depends on the large-scale. The goal of this
paper is to quantify the impact of such closure approximations for transient
network models.

Transient network models are a class of molecular models that describe poly-
mer interactions by tracking the distribution of junctions at each point in the
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fluid. Junctions can be crosslinks or entanglements. As the fluid motion de-
forms the network, new junctions form and existing junctions rupture. The
polymer chains which connect junctions stretch and produce stresses that are
transmitted to the surrounding fluid.

The first transient network theory, due to Green and Tobolsky [1], is based on
rubber elasticity. It is assumed in this model that when a junction ruptures, it
immediately reforms in an equilibrium configuration. Thus, the total number
of junctions is always constant. It is also assumed that the rate of breaking
of a junction is a constant, independent of the strain. If it is assumed that
each chain is a linear spring with zero resting length (equivalently, that the
free energy of a chain is Gaussian), this first network model reduces to the
Maxwell model for the stress. The Maxwell model predicts a constant shear
viscosity and an elongational viscosity that is unbounded at a finite elongation
rate [2].

Yamamoto [3] generalized the model of Green and Tobolsky to allow for chains
with arbitrary free energy functions and a breaking rate that depends on the
length of the chain. For a breaking rate that is a function of chain length,
Yamamoto [4] showed that the shear viscosity is not constant, as it is in the
Maxwell model. The behavior of the Yamamoto model was further explored
by Fuller and Leal [5] who evaluated the solution for a variety of flows, and
showed that when the breaking rate is a function of length, many more realistic
behaviors are possible. However, this assumption prevents the dependence on
the small scale from being eliminated, and the presence of two scales makes
the model difficult to use.

Numerical techniques have been developed to simulate models of polymeric
liquids containing two spatial scales. Many of these methods use stochastic
simulations for the behavior on the small scale [6–8]; others solve the distri-
bution equation on the small scale [9]. These simulations are computationally
expensive, and so it is desirable to obtain a closed constitutive law that cap-
tures the essential behavior of the multiscale model.

To eliminate the dependence on the small scale, while allowing a nonconstant
breaking rate, Phan-Thien and Tanner [10] assumed that the breaking rate
depends on the average chain length. The average chain length at a point in
space is proportional to the total energy in the stretched chains emanating
from that point. This model is often called the PTT model, after the authors’
initials. The closure assumption introduced in the PTT model leads to a con-
stitutive equation, independent of the small scale, that gives more physically
relevant predictions such as shear thinning and bounded extensional viscos-
ity. The PTT model also allowed the network move relative to the local fluid
velocity, but this nonaffine motion is not relevant to our current discussion.
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Mewis and Denn [11] point out that it is tacitly assumed in the PTT closure
model that the number of junctions remains constant. This is not the case in
the two-scale Yamamoto model with a nonconstant breaking rate, and Fuller
and Leal [5] point out that the changing concentration of junctions in the full
model is important in capturing nonlinear phenomena. In some more recent
network models the number of junctions plays a more prominent role. For
example, Tanaka and Edwards [12] present a model in which the formation
rate of chains decreases as a function of the concentration of active chains
(chains that make up the network). In a model by Vaccaro and Marrucci
[13] the concentrations of active and hanging chains are computed, and both
types of chains contribute to the stress. Fogelson [14,15] developed a model of
platelet aggregation which generalizes network models in that the formation
rate of interplatelet links (the analog of junctions) depends on a chemical
reaction which varies both spatially and temporally. In these types of models,
the restriction of a constant number of junctions is inappropriate, and the
original closure of the PTT model cannot be used.

In this paper we consider a more general type of PTT closure that takes into
account the changing number of junctions. This closure is compared with the
original PTT closure [10] and with the full model (no closure assumptions) in a
steady shear flow in the asymptotic limit of increasing shear rate. The models
are also compared numerically at other shear rates. The results demonstrate
the importance of including the concentration of junctions in the closure as
was done in [13] and [16].

The remainder of this paper is organized as follows. In section 2 the model
equations are presented and the various closures are discussed. In section 3,
we present the asymptotic analysis in the limit of large shear for both the
full model and the closure models, and in section 4 we explore numerical
comparisons for a wide range of shear rates.

2 Model Equations and Closures

The motion of the polymeric fluid is described by the incompressible Navier-
Stokes equations with the addition of extra stress due to the presence of the
polymer. This is written as

ρ (ut + u · ∇u) = −∇p+ µf∆u + ∇ · σ, (1)

∇ · u = 0 (2)

where u is the velocity vector, p is the pressure, σ is the stress arising from
polymer interactions, ρ is the fluid density, and µf is the fluid viscosity (without
polymer). The network is described by a distribution function which depends
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on two spatial variables: x = (x1, x2, x3) is the spatial coordinate on which
the other fluid variables depend, and y = (y1, y2, y3) is a spatial variable that
is pertinent for the much smaller scale polymer interactions. Let ψ(x,y, t)dy
represent the concentration of chains that connect the point x to the point
x + y. This distribution satisfies the equation

ψt + u · ∇ψ + (y · ∇u) · ∇yψ = α (x, |y| , t) − β (x, |y| , t)ψ, (3)

where α represents the formation rate of junctions and β is the breaking rate,
and it is assumed that the length scale of the chains is much smaller than the
length scale associated with the fluid motion. This assumption implies that
the junctions are transported on the small scale by the linearized velocity field,
y · ∇u. See [17], for example, for a derivation of this equation. Equation (3)
can also be written as

ψt + u · ∇ψ + (y · ∇u) · ∇yψ = β (x, |y| , t) (ψ0 − ψ) , (4)

where

ψ0 =
α (x, |y| , t)

β (x, |y| , t)
. (5)

Assuming that the force in a chain is a linear function of its extension, the
stress due to the stretching of the chains is given by

σ = S0

∫

yyψ dy, (6)

where S0 is an effective stiffness parameter which depends on the temperature
and the molecular weight of the polymer [2]. The product yy is a tensor with
elements (yy)ij = yiyj.

Because of the presence of two spatial scales, this system is difficult to analyze
or to simulate. It is therefore desirable to obtain an equation for the stress
that does not depend on the small scale variable. Multiplying equation (3)
through by S0yy and integrating over all y gives

σt + u · ∇σ = σ∇u + ∇uTσ + a2δ −
∫

S0yyβψ dy, (7)

where

a2 =
∫

S0yyα (x, |y| , t) dy =
4π

3
S0

∫ ∞

0
α(x, r, t)r4 dr, (8)

and δ represents the identity tensor. If the breaking rate, β, is a function of
the length of the chain, this procedure does not yield an equation for the stress
that is independent of the small scale. However, if the breaking rate does not
depend on the length of the chain, equation (7) simplifies to

σt + u · ∇σ = σ∇u + ∇uTσ + a2δ − βσ, (9)
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and the small scale is eliminated. A similar derivation starting with equation
(4) gives

σt + u · ∇σ = σ∇u + ∇uTσ + β (σ0δ − σ) , (10)

where

σ0 =
∫

S0yyψ0 dy =
4π

3
S0

∫ ∞

0
ψ0r

4 dr. (11)

Even though equations (3) and (4) are equivalent, depending on the closure,
equations (9) and (10) may not be. This is discussed in more detail below.

A constant breaking rate, β = β0, is clearly one assumption that leads to a
closed constitutive law. In this case, equations (9) and (10) are equivalent, and
they reduce to the upper convected Maxwell equation (after the subtraction
of the equilibrium, isotropic stress) [2]. In order to produce a constitutive law
that is independent of the small scale without the restriction of a constant
breaking rate, Phan-Thien and Tanner [10] assumed that the breaking rate at
each point x depends on the trace of the stress at x rather than on the length
of the chain. The trace of the stress equals the total energy due to stretching
of chains emanating from x. Using this assumption, equation (9) becomes

σt + u · ∇σ = σ∇u + ∇uTσ + a2δ − β (Tr(σ)) σ, (12)

and equation (10) becomes

σt + u · ∇σ = σ∇u + ∇uTσ + β (Tr(σ)) (σ0δ − σ) . (13)

Equation (13) corresponds to the original PTT closure, and it is not equivalent
to equation (12). We refer to the constitutive equation (12) as PTT∗.

To see the difference in closure models and its consequences, consider the
concentration of junctions defined by

z =
∫

ψ dy. (14)

An evolution equation for z can be generated by integrating equation (3) or
(4) over all y, and using the PTT closure assumption. The resulting equations
are

zt + u · ∇z = a0 − β (Tr(σ)) z, (15)

from (3), and
zt + u · ∇z = β (Tr(σ)) (z0 − z), (16)

from (4), where

a0 =
∫

α (x, |y| , t) dy = 4π
∫ ∞

0
α(x, r, t)r2 dr, (17)

and z0 is defined similarly.
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Suppose that all variables and parameters are homogeneous in x and the
formation and breaking rates are independent of time. Assume also that the
network is initially at its equilibrium state without flow, and then the flow is
started. Under these conditions, equation (16) predicts that z ≡ z0 for all time,
and so the concentration of junctions does not change. On the other hand,
equation (15) implies that the concentration of junctions does not remain
constant for all time. This example demonstrates that the two constitutive
equations (12) and (13) are not equivalent, but does not show that the resulting
stresses differ significantly. The differences in the stresses are explored in detail
in the later sections of this paper.

One interpretation of the original PTT closure is that the breaking rate is
assumed to be a function of the average squared chain length rather than the
actual chain length. The average squared chain length, 〈y2〉, is given by

〈y2〉 =

∫

y2ψ dy
∫

ψ dy
=

1

S0

Tr(σ)

z
. (18)

Note that if z is constant, as it is in the original PTT closure, then Tr(σ) ∝
〈y2〉. However, if z is not constant as with the PTT∗ closure, then the average
squared length is not proportional to the trace of the stress. In this case a
possibly more appropriate closure is obtained by replacing equation (12) with
the equations

σt + u · ∇σ = σ∇u + ∇uTσ + a2δ − β

(

Tr(σ)

z

)

σ (19)

zt + u · ∇z = a0 − β

(

Tr(σ)

z

)

z (20)

This is the type of closure considered in [13] and [16] in network type models
for which the number of junctions must not be constant. We refer to this
closure as PTT-vj, the letters vj representing variable junctions, because the
concentration of junctions is allowed to vary and appears explicitly in the
closure.

In the next section we compare the behavior of the three different PTT type
closures: the original PTT model from equation (13), the PTT∗ model from
(12), and the PTT-vj model from equations (19) and (20). The steady state
shear viscosity in the limit of large shear rate obtained from the three closures
is compared with that from the model without making additional closure
assumptions.
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3 Shear Flow – Asymptotic Analysis

In order to compare the different closures discussed in the previous section with
the full model (model without closure assumptions) we examine the predicted
shear viscosity in a steady state shear flow in the limit of a large shear rate.
Suppose that the velocity field is the steady, linear shear flow

u = (γx2, 0, 0) , (21)

where γ is the shear rate. The shear viscosity is defined as

µ =
σ12

γ
. (22)

Suppose that the network is homogeneous in x and the distribution is in steady
state. Additionally, assume that the formation and breaking rate functions
depend only on the length of the chain.

3.1 Full Model

Equation (3) for the distribution of junctions reduces to

γy2
∂ψ

∂y1

= α (|y|) − β (|y|)ψ. (23)

The solution to this equation can easily be expressed as an integral, and
asymptotic analysis can be performed in the limit of a large shear rate. This
analysis is performed in [4] and [16] for the cases when the breaking rate is
asymptotic to a monomial in the length of the chain. Suppose that the break-
ing rate can be written as

β = (κL |y|)
n + lower order terms. (24)

The constant κL represents a scale factor. The shear viscosity to leading order
is then

µ = Cnγ
−2n/(n+1) + o

(

γ−2n/(n+1)
)

, (25)

where

Cn =
κ
−2n/(n+1)
L

(n+ 1)(n−1)/(n+1)
Γ
(

2

n+ 1

)

4πS0(n+ 1)

(n+ 3)

∫ ∞

0
α (r) r

2n+4

n+1 dr. (26)

Although this asymptotic result is only available for polynomial breaking rates,
it can be shown that in the case where all chains must break before reaching
some critical length (the breaking rate has a vertical asymptote), the shear
viscosity behaves like

µ = O
(

γ−2
)

, (27)
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and this gives the maximum possible rate of shear thinning. We note that the
order of the shear viscosity in the limit of large shear was given in [18] using
scaling arguments, but the asymptotic constant was not computed.

3.2 Original PTT Model – Equation (13)

First we examine the original PTT closure model for which the concentration
of junctions is constant. The constitutive equation is

0 = σ∇u + ∇uTσ + β (T ) (σ0δ − σ) , (28)

where, for simplicity, we have denoted the trace of the stress by T . An isotropic,
constant stress proportional to σ0 can be subtracted from the stress. This
change only modifies the definition of the pressure, but does not change the
viscosity. Let

τ = σ − σ0δ. (29)

In terms of τ , equation (28) becomes

0 = τ∇u + ∇uTτ − β (T ) τ + σ0

(

∇u + ∇uT
)

. (30)

The equations in component form are

0 = 2γτ12 − β(T )τ11 (31)

0 = −β(T )τ22 (32)

0 = −β(T )τ33 (33)

0 = γσ0 + γτ22 − β(T )τ12, (34)

Since τ22 = τ33 = 0, the trace of this new stress is simply τ11. Solving for the
nonzero components in terms of β and γ gives

τ11 =
2σ0γ

2

β2
(35)

τ12 =
σ0γ

β
. (36)

Suppose that the breaking rate is a function of the trace of τ rather than σ,
and let T̂ denote this trace. The solution in terms of T̂ and γ is

τ11 = T̂ (37)

τ12 =
(

σ0

2

)1/2

T̂ 1/2, (38)

and so the viscosity is

µ =
(

σ0

2

)1/2

T̂ 1/2γ−1. (39)
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Without specifying the form of the breaking rate, equation (39) provides some
insight. Combining (35) and (37) and solving for γ2 gives

γ2 =
β2T̂

2σ0
. (40)

As γ → ∞, this equation shows that at least one of β or T̂ must grow without
bound. It is physically unreasonable that the breaking rate could become un-
bounded as the trace became small. Therefore the trace cannot approach zero
as γ gets large. Thus, equation (39) shows that the shear viscosity decreases
no faster than γ−1. Comparing this result with the full model shows that this
closure is incapable of capturing all the possible behaviors of the full model.

In Table A.1 we give the leading order term of the shear viscosity for three
types of breaking rates: power-law, exponential, and finite trace. The quantity
κT that appears in each of the models is simply scale factor for the trace
in the breaking rate function. In the finite trace breaking rate, the quantity
Tmax represents the upper bound for the trace. The details of the computation
are similar for the three closure models, and so we present them for PTT-vj
only. As can be seen from these results, a power-law breaking rate function
can give any power-law rate of shear thinning below maximal rate of γ−1.
The exponential and the finite trace breaking rates have similar asymptotic
behaviors, except that the viscosity predicted by the exponential breaking
decreases slightly more slowly than the maximal rate predicted by the finite
trace breaking. As stated before, this closure cannot reproduce the range of
shear viscosities from the full model.

The asymptotic shear viscosities for the original PTT model were also com-
puted by Tanner [19] for linear and exponential breaking rates. Our power-law
results agree with this result with the appropriate change in scale (κT = ε/µ0

and σ0 = µ0/λ). However the result given in [19] for the exponential breaking
rate is missing the logarithmic term that appears in the leading order term we
computed. How this logarithmic term arises can be seen in the computation
for the PTT-vj model in section 3.4.2.

3.3 PTT∗ – Equation (12)

The PTT∗ closure model is a slight variation on the original PTT model.
The main difference is that the concentration of junctions is not fixed. In
this section we show that this closure model gives different behavior from the
original PTT closure model. The constitutive equation is

0 = σ∇u + ∇uTσ + a2δ − β (T )σ, (41)
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The equations for the components of the stress are

0 = 2γσ12 + a2 − β(T )σ11 (42)

0 = a2 − β(T )σ22 (43)

0 = a2 − β(T )σ33 (44)

0 = γσ22 − β(T )σ12 (45)

Before specifying the form of the breaking rate function, it is useful to manip-
ulate these equations. Solving equations (42)–(45) for the stresses in terms of
β and γ gives

σ11 =
β2 + 2γ2

β3
a2 (46)

σ22 = σ33 =
a2

β
(47)

σ12 =
a2

β2
γ. (48)

The shear viscosity is

µ =
a2

β2
, (49)

and the trace is

T =
3β2 + 2γ2

β3
a2. (50)

Solving the last equation for γ2 gives

γ2 =
β3T

2a2
−

3

2
β2. (51)

Note that as γ2 → ∞, equation (51) shows that at least one of β or T must
grow without bound. We will assume that β grows without bound, but that
T may be bounded. For large enough γ, the second term in equation (51)
becomes small compared to the first. Ignoring this term gives

γ2 ≈
β3T

2a2
. (52)

Once the form of β is specified, equation (52) can be inverted to find T in
terms of γ. Also using equation (52), the stress can be expressed in terms of
T rather than β. Equations (46)–(49) become

σ11 ≈ T − (2a2)
−1/3γ−2/3T 1/3 ≈ T (53)

σ22 = σ33 ≈ 2−1/3a
2/3
2 γ−2/3T 1/3 (54)

σ12 ≈ 2−2/3a
1/3
2 γ−1/3T 2/3 (55)

µ ≈ 2−2/3a
1/3
2 γ−4/3T 2/3. (56)
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As was argued for the previous model, equation (56) shows that the viscosity
can decrease no faster than at a rate proportional to γ−4/3. The leading order
terms of the viscosity for three different forms of the breaking rate are shown
in Table A.2. As with the original PTT model, the quantity κT represents a
scale factor for the trace, and Tmax is the upper bound for the trace in the
finite trace breaking rate. The results are similar to those for the original PTT.
That is, the power-law breaking rate functions can produce shear thinning of
all powers below the maximal rate of γ−4/3, the finite trace model predicts
the maximum rate of shear thinning, and the exponential predicts an almost
maximal rate of shear thinning. This closure is also incapable of reproducing
the range of possible behaviors of the full model.

3.4 PTT-vj – Equations (19)–(20)

In the previous two sections we showed that the PTT closure and the PTT∗

cannot match the range of shear thinning rates of the full model. The PTT∗

does not fix the concentration of junctions, but this information is not included
in the closure as it is in the PTT-vj closure. In this section we analyze the
behavior of the the PTT-vj closure. The equations are

0 = σ∇u + ∇uTσ + a2δ − β
(

T

z

)

σ (57)

0 = a0 − β
(

T

z

)

z. (58)

The equations for the components are

0 = 2γσ12 + a2 − β
(

T

z

)

σ11 (59)

0 = a2 − β
(

T

z

)

σ22 (60)

0 = a2 − β
(

T

z

)

σ33 (61)

0 = γσ22 − β
(

T

z

)

σ12 (62)

0 = a0 − β
(

T

z

)

z. (63)

Equation (63) immediately relates the concentration of junctions to the break-
ing rate by

β =
a0

z
. (64)
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Using this relationship, the stresses and viscosity can be expressed as functions
of the concentration of junctions and the shear rate:

σ11 =
a2

a0

(

z +
2γ2

a2
0

z3

)

(65)

σ22 = σ33 =
a2

a0
z (66)

σ12 =
a2γ

a2
0

z2 (67)

µ =
a2

a2
0

z2. (68)

Equation (51) for the PTT∗ closure holds for this closure as well, and com-
bining this with equation (64) gives

γ2 =
a3

0T

2a2z3
−

3a2
0

2z2
. (69)

For the different forms of β, we use equation (64) to find the trace as a function
of z. Then equation (69) can be inverted to find z as a function of γ, and this
expression for z is substituted into equations (65)–(68) to find the stresses and
viscosity.

3.4.1 Power-Law Breaking

Suppose the breaking rate is of the form

β =
(

κ2
L

T

z

)n

. (70)

The constant κL represents a scale factor for length, as in the full model.
Because the trace per junction (T/z) has units of length squared, the quantity
κ2

L
appears as the scale factor in this model. Using equation (64) to find T as

a function of z gives

T =
a

1/n
0

κ2
L

z(n−1)/n. (71)

Plugging this into equation (69) gives

γ2 =
a

(3n+1)/n
0

2a2κ2
L
z(2n+1)/n

−
3a2

0

2z2
. (72)

The leading order solution to this equation is

z =

(

2a2κ
2
L

a
(3n+1)/n
0

)−n/(2n+1)

γ−2n/(2n+1) + o
(

γ−2n/(2n+1)
)

. (73)
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Using this expression in (68) gives the leading order behavior of the shear
viscosity

µ =





a0a
1/2n
2

2κ2
L





2n/(2n+1)

γ−4n/(2n+1) + o
(

γ−4n/(2n+1)
)

. (74)

Note that the range of shear thinning rates agrees with the range predicted
by the full model.

3.4.2 Exponential Breaking

Suppose that the breaking rate is

β = exp
(

κ2
L
T/z

)

. (75)

As for power-law breaking, we use equation (64) to find T as a function of z
to obtain

T =
z

κ2
L

ln
(

a0

z

)

. (76)

Substituting this expression for T into equation (69) gives

γ2 =
a3

0

2κ2
L
a2z2

ln
(

a0

z

)

−
3a2

0

2z2
. (77)

As γ → ∞, z must go to zero, and the second term on the right side of this
equation grows more slowly than the first. In order to find the leading order
behavior, it is sufficient to solve the equation

γ2 =
a3

0

2κ2
L
a2z2

ln
(

a0

z

)

(78)

to find z as a function of γ. Before doing this, we introduce a change of
variables

g2 =
2κ2

L
a2

a0
γ2; w =

a0

z
. (79)

The equation we wish to solve is

g2 = w2 ln (w) . (80)

We seek to solve this equation to leading order as w → ∞. Take the logarithm
of this equation and introduce the change of variables

h = ln(g); x = ln(w) (81)

to obtain
2h = 2x+ ln(x). (82)
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For large x, 2x dominates the right side of equation (82), and so we may write

x = h + h1, h1 = o(h). (83)

This is substituted into equation (82) in order to find an expansion of h1. After
some minor manipulations,

h1 = −
1

2
ln(h) −

1

2
ln

(

1 +
h1

h

)

. (84)

Because h1 = o(h), the second logarithm must go to zero as h gets large, and
so the two-term expansion is

x = h−
1

2
ln (h) + h2, h2 = o

(

ln (h)
)

. (85)

Note that the first two terms are large when h is large. We must continue
expanding until the last term goes to zero for large h. This is a consequence
of the change of variables, since the expansion must be exponentiated when
changing back to the original variables, and therefore transforms into a prod-
uct of exponentials. The only way the error terms can be ignored is if the
corresponding terms in the series for x go to zero in the asymptotic limit, so
that when exponentiated they multiply the asymptotic approximation by one.
Substituting (85) into (82) to find h2, we obtain after some manipulation

h2 =
ln (h)

4h
+ o

(

ln (h)

h

)

. (86)

Because h2 → 0 as h→ 0, no other terms are needed to find the leading order
behavior of the original variables.

The expansion of x is

x = h−
1

2
ln (h) +

ln (h)

4h
+ o

(

ln (h)

h

)

, (87)

and we wish to express this in terms of the original variables. First change
back to the variables w and g and exponentiate the series to get

w = g
(

ln(g)
)−1/2

exp





ln
(

ln(g)
)

4 ln(g)
+ o





ln
(

ln(g)
)

ln(g)







 . (88)

To leading order this gives,

w = g
(

ln(g)
)−1/2

+ O







g ln
(

ln(g)
)

(

ln(g)
)3/2





 . (89)
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Now changing back to the original variables of z and γ, we obtain

z =

(

a3
0

2κ2
L
a2

)1/2

γ−1

(

ln(γ) −
1

2
ln

(

a0

2κ2
L
a2

))1/2

+ O







ln
(

ln(γ)
)

γ
(

ln(γ)
)1/2





 . (90)

Using this expression for z in equation (68), the leading order behavior of the
viscosity is

µ =
a0

2κ2
L

γ−2

(

ln(γ) −
1

2
ln

(

a0

2κ2
L
a2

))

+ o
(

γ−2 ln(γ)
)

. (91)

3.4.3 Breaking at Finite Length

Suppose the breaking rate is of the form

β =
1

κ2
L
(L2

max − T/z)
. (92)

The quantity L2
max represents an upper bound for T/z. This notation is used

because T/z has units of length squared. Solving equation (64) for T in terms
of z gives

T = L2
maxz −

1

a0κ2
L

z2, (93)

and substituting this into equation (69) yields the relation between γ2 and z

γ2 =

(

a3
0L

2
max

2a2
−

3a2
0

2

)

1

z2
−
a2

0κ
2
L

2a2

1

z
. (94)

This equation is quadratic in z and can be solved exactly, but we solve for the
leading order term for large γ instead, and obtain

z =

(

a3
0L

2
max − 3a2a

2
0

2a2

)1/2

γ−1 + o
(

γ−1
)

. (95)

This implies that the leading order shear viscosity is

µ =

(

a0L
2
max − 3a2

2

)

γ−2 + o
(

γ−2
)

(96)

Note that here the maximal rate of shear thinning agrees with the maximal
rate predicted by the full model when the links are restricted to have finite
length. In summary the shear viscosities for the three different breaking rates
are given in Table A.3.
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4 Comparison

The asymptotic results from the previous section show that only the closure
PTT-vj, which includes the number of junctions, is capable of reproducing the
range of shear thinning rates predicted by the full model. In this section we
compare the results from the full model with the results of the PTT-vj closure.
First we examine the differences in the asymptotic result for the power-law
breaking rate for the two models, and second, we present numerical comparison
for a wide range of shear rates.

So far the results have been presented in terms of dimensional variables. The
number of parameters can be reduced by nondimensionalizing the equations,
and this makes the numerical comparison more straightforward. Let r0 rep-
resent the characteristic length scale of the links, and scale the microscale
lengths by this quantity. Let α0 and β0 represent characteristic formation rate
and breaking rate scales, respectively. For the full model, scale the junction
concentration by α0/β0 and the stress by S0r

5
0α0/β0. Finally scale the shear

rate by β0.

4.1 Asymptotic Comparison

We compare the asymptotic shear viscosities for the full model and the PTT-vj
closure model for the power-law breaking rates

βfull = (κLr)
2n ; βclose =

(

κ2
L

T

z

)n

. (97)

In the nondimensionalization the constant S0 is part of the stress scale, making
the quantity T/z equal to the nondimensional average squared link length, so
this comparison amounts to replacing squared link length with its average in
the breaking rate function.

The shear viscosities in (25) (with n replaced by 2n) and (74) show that the
two breaking rates in (97) produce the same shear thinning rate to leading
order but with different proportionality constants. In order to investigate what
influences the difference in the proportionality constants, we examine the ratio

µfull

µclose
= 61/(2n+1) (2n+ 1)

(2n+ 3)

(

2

2n+ 1

)(2n−1)/(2n+1)

Γ
(

2

2n+ 1

)

An, (98)

where

An =

∫

r(4n+4)/(2n+1)α(r) dr
(∫

r4α(r) dr
)1/(2n+1) (∫

r2α(r) dr
)2n/(2n+1)

. (99)
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The quantity An contains all the dependence on the formation rate function.

For the Gaussian formation rate

α(r) = exp
(

−r2
)

, (100)

the value of An is

An =
2(2n+2)/(2n+1)

31/(2n+1)π1/2
Γ
(

6n+ 5

4n+ 2

)

. (101)

Note that this quantity is independent of the scale of the formation rate and of
the width of the Gaussian. A plot of (101) is displayed in Fig.A.1, and shows
that for n ≥ 1, An is an increasing function of n, which approaches 1 as n
grows. We also computed An for breaking rates of the form

α(r) =
(

1 − rb
)

H(1 − r), (102)

where H(x) is the Heaviside function, and found the results similar to those
for the Gaussian. Therefore for sharply increasing breaking rates, the form of
the formation rate function does not significantly affect the value of An.

Now compare the portion of the the ratio in (98) that is independent of the
formation rate function. Its value ranges between 1 and approximately 1.3 and
approaches 1 for large n. The closure model results from replacing squared
length with average squared length. We could instead replace squared length
by some multiple of average squared length, the multiple being chosen so that
the asymptotic behavior of the shear viscosity is identical to that of the full
model. Call the multiplicative constant Ca, so that the closure model results
from the substitution

r2 −→ Ca〈r
2〉. (103)

This modifies the closure breaking rate (97), so that

βclose = Cn
a

(

κ2
L

T

z

)n

. (104)

Assuming that An ≈ 1, meaning the closure is nearly independent of the
geometry of the formation rate function, and then defining

Ca =

(

µclose

µfull

)(2n+1)/2n

, (105)

would produce a closure whose asymptotic shear viscosity matches that of the
full model.
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4.2 Numerical Comparison

First we verify the asymptotic shear viscosities (25) and (74) for the case of a
quadratic breaking rate. Other power laws were verified as well, but the results
are not presented. For simplicity of computation we use the formation rate

α(r) =











1 if r ≤ 1

0 if r > 1
. (106)

It is a reasonable assumption that the breaking rate should vary little over
the range of lengths at which links form, but increase as a power law for large
r. A simple breaking rate satisfying these requirements is

β(r) =











1 if r ≤ 1

r2 if r > 1
. (107)

For the full model, we computed the shear viscosity numerically by first solv-
ing (23) for ψ and then integrating the result to find the shear stress. For
the closure model, equations (59)–(63) are solved for each shear rate using
Newton’s method. The breaking rate used for the closure is

β
(

T

z

)

=











1 if T/z ≤ 1

T/z if T/z > 1
. (108)

The asymptotic results are compared with the numerical results in Fig.A.2 for
both models. These plots verify the asymptotic forms for the shear viscosities
derived in the paper. The asymptotic viscosity is very close to the actual
viscosity for the full model for shear rate above about 30 (nondimensional)
and for the closure model above shear rate 10.

Next we compare the shear viscosity obtained from the full model and the
closure model to each other for shear rates both large and small. Fig.A.3 shows
these results. Note that both models show the same power-law dependence on
the shear rate, as predicted by the asymptotics, but the constant multiple is
larger for the full model, also predicted by the asymptotics. The results are
notably different around shear rate 1. The full model begins shear thinning at
a much lower shear rate than the closure model.

To understand why the full model and closure model begin shear thinning at
different rates, we examine the closure model at low shear. Equations (57) and
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(58) at zero shear rate give the trace and concentration of junctions as

T = 3a2/β (T/z) (109)

z = a0/β (T/z) . (110)

Note that the ratio T/z is independent of the breaking rate function. Using
the formation rate (106) and the definitions of the constants a2 and a0 given
by (8) and (17) respectively, the average bond length at zero shear rate is

〈r2〉 =
T

z
=

∫ ∞

0
α(r)r4 dr

∫ ∞

0
α(r)r2 dr

=
3

5
. (111)

Rather than simply replacing the squared length with the average squared
length in (107), we try the closure breaking rate

β
(

T

z

)

=











1 if T/z ≤ 3/5

1 + T/z − 3/5 if T/z > 3/5
. (112)

The full model breaking rate (107) is constant below the length at which links
form, and the closure (112) results from assuming that the closure breaking
rate is constant up to the average length at which links form. The shear
viscosity from this closure are compared with the full model in Fig.A.4. This
breaking rate shows much better agreement with the full model and low and
moderate shear rates compared to the closure with breaking rate (108).

Finally we compare the shear viscosities produced by the exponential breaking
rate. The formation rate used is again (106). For the full model the breaking
rate tested is

β(r) =











1 if r ≤ 1

exp
(

0.5(r2 − 1)
)

if r > 1
. (113)

The result is compared with the shear viscosity produced by the closure model
with breaking rate

β(r) =











1 if T/z ≤ 3/5

exp
(

0.5 (T/z − 3/5)
)

if T/z > 3/5
. (114)

The results are displayed in Fig.A.5. The asymptotic approximation is in ex-
cellent agreement with the closure model. The full model viscosity is slightly
larger than that of the closed model at high shear. Recall this was also the
case with the power-law breaking rate. Overall there is excellent agreement
between the closure model and the full model at all shear rates.
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5 Conclusions

In this paper we examine variations on the PTT closure for transient network
models. The original PTT model forces the concentration of junctions to re-
main constant, but this is not the case for the multiple scale model without
closure assumptions for a nonconstant breaking rate. We examine variations
on the original closure in which the number of junctions does not remain con-
stant. Each of these closures produces different results, as is demonstrated by
the asymptotic analysis of the shear viscosity for large shear rate.

The closure in which the breaking rate depends on the ratio of the trace of the
stress to the concentration of junctions, called PTT-vj in this paper, amounts
to replacing length with average length. This is also true in the original PTT
closure, but PTT-vj does not fix the concentration of junctions. The PTT-vj
closure is the only closure that is capable of reproducing all of the possible
shear thinning rates predicted by the full model. Numerical tests show that
this closure can capture the shear viscosity predicted by the full model for all
shear rates, provided the closure breaking rate is chosen appropriately.

In some recent variations on network models, the number of junctions appears
as an essential part of the model. The results of this paper demonstrate the
importance of utilizing the number of junctions in closure approximations for
transient network type models. The closure model that included the num-
ber of junctions did an excellent job of reproducing the shear viscosity of the
full model. Further analysis and explorations of the performance of the clo-
sure model under different conditions, such as transient flows and elongational
flows, are necessary to fully understand the limitations and utility of such clo-
sures. Some numerical comparisons are made in [16] for transient elongational
flows in which the concentration of polymer varies spatially.

Similar closure problems arise in other multiscale models of complex fluids.
One such example is the FENE (Finitely Extensible Non-linear Elastic) dumb-
bell model [17]. In the FENE model the closure problem arises due to a nonlin-
ear force law. The idea of replacing length squared with average length squared
is used in these models as well, giving the FENE-P model. This closure repro-
duces some behavior of the full FENE model in steady flows, but shows some
differences in transient flows [20,21]. Lielens et al. [22,23] developed a closure
model that improves on the FENE-P model in that the closure depends on
average quantities in addition to the average length. Similar ideas may be
extended to transient network models in the future. We note that a major
difference between network models and dumbbell models is that the number
of dumbbells does not change in time. As we have argued in this work, the
number of junctions must be included in closure models for network models.
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A Full Model– Power-Law Breaking

A sketch of the derivation of equation (25) is presented in this appendix. More
detailed arguments are presented in [16].

We begin by assuming that the formation function α (|y|) has compact sup-
port, meaning that there is some radius beyond which no links form. Let
r = |y|. Scale the lengths by the size of the support of α(r), denoted by
r0. Let β0 represent a characteristic breaking rate scale, and let α0 represent
the characteristic formation rate. Scale the distribution of junctions, ψ, by
α0/β0, the stress by S0α0r

5
0/β0, and the shear rate by the breaking rate. The

dimensionless equations for the junction concentration and shear stress are

γy2
∂ψ

∂y1

= α (|y|) − β (|y|)ψ (A.1)

σ12 =
∫

y1y2 ψ (y) dy. (A.2)

Because of symmetry, the equation for ψ only need be solved for y2 > 0, and
so it is assumed below that y2 is positive. For notational convenience, define

rs =
√

s2 + y2
2 + y2

3, (A.3)

and the functions b and b1 by

b (y2, y3) =
√

1 − y2
2 − y2

3 (A.4)

b1 (y3) =
√

1 − y2
3. (A.5)

Equation (A.1) can be integrated to give

ψ =















































∫ y1

−b

α (rξ)

γy2
exp

(

−
1

γy2

∫ y1

ξ
β (rs) ds

)

dξ, for |y1| ≤ b

∫ b

−b

α (rξ)

γy2
exp

(

−
1

γy2

∫ y1

ξ
β (rs) ds

)

dξ, for y1 > b

0 otherwise

. (A.6)
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Split σ12 into the stress due to short bonds and the stress due to long bonds,
where short bonds are defined as those whose length is less than 1, which is
the radius of support of the formation function.

σ12 = σs
12 + σl

12 =
∫

r<1
y1y2 ψ dy +

∫

r≥1
y1y2 ψ dy. (A.7)

The stress is split in this manner because short and long bonds have different
asymptotic behaviors. If fact, for short bonds the form of the breaking rate
need not be specified to determine the leading order behavior of the stress.

A.1 Short Bonds

First we determine the contribution from short bonds to the shear stress. We
now show that the shear stress due to short bonds is order γ−1, making an
order γ−2 contribution to the shear viscosity.

Using the expression for ψ from (A.6) in the definition for short bonds gives

σs
12 = 2

∫ 1

−1

∫ b1

0

∫ b

−b

∫ y1

−b

y1α (rξ)

γ
exp

(

−
1

γy2

∫ y1

ξ
β (rs) ds

)

dξdy1dy2dy3. (A.8)

Because the formation rate and breaking rate must be finite for short bonds,
it is sufficient to take α and β equal to one to determine the order of the stress
due to short bonds. This could be argued formally by bounding these functions
above and below by piecewise constant functions, but this is unnecessary for
the present discussion.

With α and β set to one, equation (A.8) simplifies to

σs
12 = 2

∫ 1

−1

∫ b1

0

∫ b

−b
y1y2

(

1 − exp

(

−γ−1 y1 + b

y2

))

dy1dy2dy3 (A.9)

Note that for any finite K,

1 − exp
(

γ−1K
)

= γ−1K + O
(

γ−2
)

. (A.10)

It is tempting to expand the integrand in (A.9) in a Taylor series, but this
cannot be done because y2 is not bounded away from zero. However, it is
shown in [16] that this problem can be circumvented by splitting the domain
of integration so that a Taylor series can be applied over part of the domain.
Then taking the proper limit,

σs
12 = O

(

γ−1
)

. (A.11)

Therefore the shear viscosity for short bonds is order γ−2. This result is espe-
cially relevant when there are no long bonds present, as would be the case if
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the bonds had a maximal length at which they break. It is shown in the next
section that the shear viscosity for long bonds is lower order, and therefore the
short bonds do not contribute to the leading order behavior of the viscosity.

A.2 Long Bonds

For long enough bonds, we consider breaking rates of the form

β = (κLr)
n + lower order terms. (A.12)

Since we have assumed that the formation rate has compact support and the
flow is only in the y1-direction, the largest contribution to the length of a long
bond is from stretching in the y1-direction. For simplicity we assume that

β = (κLy1)
n . (A.13)

This assumption is not necessary to perform the analysis [16], but it greatly
simplifies the computation and the leading order result is unchanged.

For y1 > b, using the breaking rate (A.13), the distribution of the junctions
given by (A.6) can be expressed as

ψ (y1, y2, y3) = exp

(

−κn
L

γy2(n+ 1)

(

yn+1
1 − bn+1

)

)

ψ (b, y2, y3) . (A.14)

The shear stress due to long bonds is

σl
12 = 2

∫ 1

−1

∫ b1

0

∫ ∞

b
y1y2 ψ (y1, y2, y3) dy1dy2dy3 (A.15)

= 2
∫ 1

−1

∫ b1

0
exp

(

κn
L
bn+1

γy2(n + 1)

)

y2ψ (b, y2, y3) I1 dy2dy3, (A.16)

where

I1 =
∫ ∞

b
y1 exp

(

−κn
L
yn+1

1

γy2(n+ 1)

)

dy1. (A.17)

The general form of ψ (b, y2, y3) is

ψ (b, y2, y3) =
1

γy2

∫ b

−b
α (rξ) exp

(

−1

γy2

∫ b

ξ
β (rs) ds

)

dξ. (A.18)

To leading order

ψ (b, y2, y3) ∼
1

γy2

∫ b

−b
α (rξ) dξ, (A.19)

where we have taken the exponential to be one to leading order. As with short
bonds this approximation can be shown to be valid even though y2 is not

23



bounded away from zero. Similarly, we take the exponential appearing in the
integrand of (A.16) to be one to leading order by the same arguments, so that

σl
12 ∼ 2

∫ 1

−1

∫ b1

0

1

γ

∫ b

−b
α (rξ) dξ I1 dy2dy3. (A.20)

Using Watson’s Lemma [24] the leading order behavior of I1 is

I1 ∼
κ
−2n/(n+1)
L

(n+ 1)(n−1)/(n+1)
Γ
(

2

n+ 1

)

γ2/(n+1)y
2/(n+1)
2 . (A.21)

Combining (A.20) and (A.21) gives

σl
12 ∼ γ(1−n)/(1+n) κ

−2n/(n+1)
L

(n + 1)(n−1)/(n+1)
Γ
(

2

n+ 1

) ∫

r<1
y

2/(n+1)
2 α(r) dy. (A.22)

The integral may be simplified to

∫

r<1
y

2/(n+1)
2 α(r) dy = 4π

(n+ 1)

(n+ 3)

∫ 1

0
α(r)r(2n+4)/(n+1) dr. (A.23)

Converting back to dimensional quantities and extending the upper limit of
integration gives the proportionality constant (26). The leading order term of
the stress is proportional to γ(1−n)/(1+n), and the leading order term for the
shear viscosity is proportional to γ−2n/(n+1).
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Fig. A.1. Plot of An for the Gaussian formation rate given by (101).
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Fig. A.2. Comparing the asymptotic results for the shear viscosity with the com-
puted solution for (a) the full model and (b) the PTT-vj closure.
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Fig. A.3. Comparison of the shear viscosity for the full model with breaking rate
(107) and the PTT-vj closure with breaking rate (108) for a wide range of shear
rates. The closure breaking rate results from simply replacing squared length with
average squared length.
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Fig. A.4. The closure model with breaking rate (112) is compared to the full model
with breaking rate (107). The two models show excellent agreement for all shear
rates.
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Fig. A.5. The closure model with the exponential breaking rate (114) is compared
to the full model with the exponential breaking rate (113).

30



Table A.1
Results of the analysis for the PTT closure model

breaking rate viscosity

β =
(

κT T̂
)n

µ =

(

σn+1
0

2nκn
T

)1/(2n+1)

γ−2n/(2n+1)

β = exp
(

κT T̂
)

µ =

(

σ0

2κT

)1/2

γ−1
(

ln
(

(2σ0κT )1/2γ
))

+ o
(

γ−1 (ln(γ))1/2
)

β =
1

κT

(

Tmax − T̂
) µ =

(

Tmaxσ0

2

)1/2

γ−1 + o
(

γ−1
)

Table A.2
Results of the analysis for the closure model PTT∗

breaking rate viscosity

β = (κT T )n µ =

(

an+1
2

22nκ2n
T

)1/(3n+1)

γ−4n/(3n+1) + o
(

γ−4n/(3n+1)
)

β = exp (κT T ) µ =

(

a2

9κ2
T

)1/3

γ−4/3
(

ln
(

(3a2κT )1/2γ
))2/3

+ o
(

γ−4/3 (ln (γ))2/3
)

β =
1

κT (Tmax − T )
µ =

(

a2T
2
max

4

)1/3

γ−4/3 + o
(

γ−4/3
)

Table A.3
Results of the analysis for the closure model PTT-vj

breaking rate viscosity

β =
(

κ2
L
T/z

)n
µ =

(

a0a
1/2n
2

2κ2
L

)2n/(2n+1)

γ−4n/(2n+1) + o
(

γ−4n/(2n+1)
)

β = exp
(

κ2
L

(T/z)
)

µ =
a0

2κ2
L

γ−2

(

ln(γ) −
1

2
ln

(

a0

2κ2
L
a2

))

+ o
(

γ−2 ln(γ)
)

β =
1

κ2
L

(L2
max − T/z)

µ =

(

a0L
2
max − 3a2

2

)

γ−2 + o
(

γ−2
)
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