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Abstract

An algorithm is presented for simulating the fluid and stress equations that arise in a continuum model of platelet aggregation [A.L.
Fogelson, R.D. Guy, Platelet–wall interactions in continuum models of platelet thrombosis: formulation and numerical solution, Math.
Med. Biol. 21 (2004) 293–334]. The model is equivalent to models of viscoelastic fluids with spatially and temporally varying material
parameters. A subsystem containing the elastic terms is handled using a wave propagation algorithm. Two different methods for prop-
agating waves are compared in computational tests. One method linearizes the equations about cell edges, and the other is based on the
propagation of waves in a heterogeneous elastic medium. When the viscoelastic fluid is in contact with a Newtonian fluid, the method
based on linearization about the edges gives more accurate results. No high Weissenberg number instabilities were observed. As long as
the time step is chosen to obey a CFL condition, the algorithm is stable and no unphysical oscillations appear in the solution.
� 2007 Elsevier B.V. All rights reserved.

PACS: 47.11.�j; 47.11.Df; 47.63.�b; 83.60.Df
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1. Introduction

The continuum model of platelet aggregation presented
in [1,2] treats aggregating platelets as a dynamic network of
immersed springs. The deformation of the network gener-
ates stresses which affect the motion of the fluid. The model
contains two spatial scales: the spatial scale of the fluid
flow, and the much smaller spatial scale of the platelet–
platelet interactions. By assuming that variables only
depend on averaged quantities, the dependence on the
platelet scale can be eliminated. The fluid–platelet mixture
is described by an equation for the stress that depends on
the concentration of crosslinking platelets. A similar type
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of model has been used for polymeric flows, and under cer-
tain assumptions these multiscale models reduce to stan-
dard constitutive laws for viscoelastic fluids [3]. In
Section 2, we show the platelet model is related to more
familiar viscoelastic fluids.

The numerical algorithm used in [1,2] to simulate the
platelet model involved alternating updates of the fluid
velocity and the platelet stress. In some simulations with
this algorithm, grid-scale oscillations appeared in some of
the components of the stress. These oscillations did not
grow significantly in time, so that the simulations remained
stable. The oscillations could be eliminated by reducing the
time step, however, it was not known a priori what time
step to use.

In this paper, we present an algorithm based on a differ-
ent splitting of the system. The advection and elastic terms
are handled using a wave propagation algorithm [4], in
which the fluid velocity and viscoelastic stresses are coupled.
e propagation algorithm for viscoelastic fluids with spatially ...,
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The other terms (viscosity and relaxation) are discretized
implicitly in time. The stability of this algorithm is governed
by a CFL constraint. The splitting used in this paper was
inspired by methods developed for high Reynolds number
[5], in which high-resolution finite volume methods were
used to handle the convection terms. Simulation results
comparing the algorithm presented in this paper with the
algorithm used in [1,2] show that no numerical oscillations
appeared as long as the time step was chosen to satisfy the
stability constraint. This means that a variable time step can
be used, which makes the simulations much more efficient.

The algorithm was developed for simulating the platelet
continuum model, but it can be applied to other models of
viscoelastic fluids. The platelet model differs from other vis-
coelastic flow models in that the material parameters
depend on the concentration of activated platelets. Visco-
elastic fluids with high Weissenberg numbers are notori-
ously difficult to simulate [6]. In computational tests, our
algorithm remained stable for all Weissenberg numbers,
but refinement studies suggest that the results at high
Weissenberg numbers may be inaccurate. In the platelet
model high Weissenberg numbers are not encountered, so
this does not pose a limitation on the algorithm’s utility
for simulating platelets.

2. Platelet continuum model as a viscoelastic fluid

In a companion paper [1] in this issue, a model of plate-
let aggregation is presented. It involves interactions among
a viscous incompressible fluid, nonactivated and activated
platelets, a chemical capable of activating platelets, and
‘cohesive links’ which can form between activated platelets.
These links generate extra stresses on the fluid beyond the
usual Newtonian pressure and viscous stress. The model
equations are

ut þ u � ru ¼ �rp þ mDuþr � rp; ð1Þ
r � u ¼ 0; ð2Þ
ð/nÞt þ u � r/n ¼ DnD� RðcÞ/n; ð3Þ
ð/aÞt þ u � r/a ¼ RðcÞ/n; ð4Þ
ct þ u � rc ¼ DcDcþ ARðcÞ/n � Kc; ð5Þ
rp

t þ u � rrp ¼ rpruþruTrp þ a2/
2
ad� brp; ð6Þ

zp
t þ u � rzp ¼ a0/

2
a � bzp: ð7Þ

Note that for the velocity gradients, we use the convention
that ðruÞij ¼ ouj=oxi.

Eqs. (1) and (2) are the Navier–Stokes equations for the
velocity uðx; tÞ and pressure pðx; tÞ of a fluid with constant
density and viscosity m. The ‘cohesion-stress’ tensor rpðx; tÞ
accounts for the stresses generated by interplatelet links.
Eqs. (3)–(5) for the concentrations of nonactivated platelets
/nðx; tÞ, activated platelets /aðx; tÞ, and activating chemical
cðx; tÞ describe their evolution because of transport and
activation reactions. Eq. (6) describes the evolution of the
cohesion-stress tensor and accounts for stresses generated
at a rate a2/

2
a because of the formation of new links
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between activated platelets, as well as a reduction in stress
at rate brp because of the breaking of existing links. Eq. (7)
describes the evolution of the concentration of links zpðx; tÞ
emanating from activated platelets at x as they move with
the fluid, are created at rate a0/

2
a and break at rate bzp.

Here we assume that this breaking rate is constant. See
[1,2] for more discussion of the assumptions underlying
the model and for examples of the model’s behavior.

This continuum model of platelet aggregation can be
described as a generalization of a multiscale model for
polymer melts called transient network theory [7,8], which
is similar to the theory of rubber elasticity. In some cases,
the constitutive law for the fluid is identical to standard
macroscopic descriptions of viscoelastic fluids [3]. The
platelet model differs from these network theories in that
the formation rate of links depends on the concentration
of activated platelets, which is a function of space and time.

We introduce a change of variables in the stress to make
this model resemble standard models of viscoelastic fluids.
Define the stress tensor s by

s ¼ rp � Gd; ð8Þ

where G is proportional to the number of links:

G ¼ a2

a0

zp: ð9Þ

As we show below, this quantity G represents the elastic
modulus of the material. By shifting the stress by an isotro-
pic tensor, we are effectively changing the pressure. Since
the fluid is incompressible, this does not change the result-
ing velocity field. This new stress satisfies the equation

st þ u � rs� sru�ruTs� GðruþruTÞ ¼ �bs: ð10Þ

Dividing through by b and rearranging gives

kðst þ u � rs� sru�ruTsÞ þ s ¼ 2lD; ð11Þ

where the relaxation time, k, and viscosity, l, are defined
by

k ¼ b�1; ð12Þ
l ¼ Gb�1 ð13Þ

and where the deformation rate tensor D is

D ¼ 1

2
ðruþruTÞ: ð14Þ

Eq. (11) is the upper convected Maxwell (UCM) equation,
except that the relaxation time and the viscosity are not
material parameters, but functions of other variables in
the model. Thus the continuum model of platelet aggrega-
tion can be thought of as a viscoelastic fluid with spatially
and temporally varying material properties. Note that in
the platelet model, the breaking rate, b, is also not con-
stant, so that the constitutive law is more like the PTT
model [9] which was generalized for this case in [10].

The UCM equation is typically written as in (11), but
the form (10) is equally valid. The quantity zp is propor-
tional to the concentration of crosslinks between platelets.
e propagation algorithm for viscoelastic fluids with spatially ...,
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Fig. 1. Regular finite volume grid in two dimensions. The value of qij rep-
resents the average value of the function of the cell ½xi�1=2; xiþ1=2� � ½yi�1=2;

yiþ1=2�.
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By relating this to the UCM equation, we see that we can
reinterpret this quantity as a scaled elastic modulus of the
fluid, G. For our purposes, it is more convenient to use
the form (10) for which the material parameters are the
elastic modulus, G, and the breaking rate, b.

For the remainder of this paper, we focus on numerical
methods for the system of equations:

ut þ u � ru ¼ �rp þ mDuþr � s; ð15Þ
r � u ¼ 0; ð16Þ
st þ u � rs� sru�ruTs ¼ 2GD� bs; ð17Þ
Gt þ u � rG ¼ 0: ð18Þ

In the elastic modulus equation, we have assumed that the
formation and breaking of links is in equilibrium. We do
not explicitly nondimensionalize these equations because
the number of parameters is not reduced. When nondimen-
sionalized, the fluid viscosity, m, becomes the inverse of the
Reynolds number, the elastic modulus becomes the square
of the elastic Mach number, and the breaking rate becomes
the Weissenberg number. The Reynolds number is the ratio
of inertial stress to viscous stress. The elastic Mach number
is the ratio of elastic wave speed to convective flow speed,
and the Weissenberg number is the ratio of the flow time
scale to the relaxation time.

3. Numerical method

The method we present in this paper is inspired by meth-
ods developed for high Reynolds number flow based on
high-resolution finite volume methods for conservation
laws [5]. For viscoelastic fluids, the challenge in construct-
ing robust numerical schemes is often not because of a high
Reynolds number, but because of a high Weissenberg num-
ber or for strongly elastic flows. We use finite volume meth-
ods for a careful treatment of a hyperbolic subsystem
consisting of the advection and elastic terms, rather than
just the convection terms as in [5]. The system that arises
is very similar to the that presented for wave propagation
in a heterogeneous elastic medium [11].

3.1. Spatial discretization

In finite volume methods, the domain is discretized into
volumes or grid cells, and functions are represented by
their average value in each cell. We consider a uniform grid
in two dimensions, pictured in Fig. 1. The discrete quantity
qn

ij represents

qn
ij �

1

DxDy

Z yiþ1=2

yi�1=2

Z xiþ1=2

xi�1=2

qðx; y; tnÞdxdy: ð19Þ

Besides cell averages, the method makes use of quantities
defined at cell edges. For example an approximation to q

at the right edge of the cell indexed by ði; jÞ is labeled
qiþ1=2;j. Although we only consider two spatial dimensions
in this paper, all of the methods extend naturally to three
dimensions.
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3.2. Navier–Stokes

Before presenting the algorithm for viscoelastic fluids,
we first review solution of the Navier–Stokes equations.
The time-dependent incompressible Navier–Stokes equa-
tions are

ut þ u � ru ¼ �rp þ mDuþ f ; ð20Þ
r � u ¼ 0: ð21Þ

A common method for advancing the solution in time is a
fractional step approach that breaks one time step into
three substeps. A hyperbolic system is solved for the con-
vective terms, a parabolic system accounts for the fluid vis-
cosity, and the incompressibility constraint is taken into
account by performing a projection.

For high Reynolds numbers the solution may contain
sharp gradients, and it is imperative that the convection
terms be discretized carefully. In [5], a high-resolution
Godunov method is used to approximate the convection
terms which gives a robust methods for all Reynolds num-
bers. The method is based on methods for conservation
laws [12]. We briefly summarize the idea here.

The cell-centered velocities are extrapolated to the cell
edges. Limited differences are used in approximating the
spatial derivatives that arise in the extrapolation to prevent
oscillations. This procedure generates two sets of edge val-
ues, one extrapolated from each side. The velocity at the
edge is selected based on the solution to Riemann problems
for Burger’s equation

ut þ uux ¼ 0: ð22Þ

Once the edge values have been determined, the convection
terms are approximated by flux differencing in conserva-
tion form.
3.3. Viscoelastic flows

Simulating strongly elastic fluids presents similar chal-
lenges as simulating high Reynolds number flows in that
care must be taken to discretize the hyperbolic terms. For
e propagation algorithm for viscoelastic fluids with spatially ...,
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viscoelastic flows the hyperbolic terms include both the
convection and the elastic terms. The method described
in the previous section was adapted to viscoelastic fluids
using Lax–Wendroff in [13], and later using high-resolution
Godunov methods in [14]. These methods used adaptive
viscoelastic stress splitting similar to [15] to make the
method more robust. For a comprehensive discussion on
numerical methods for viscoelastic fluids, see [6]. The algo-
rithm presented in this paper differs from exiting methods
in that we consider fluids which are elastic in only a portion
of the domain and the remainder of the domain is filled
with Newtonian fluid.

We present an algorithm that is based on wave propaga-
tion methods [4] which generalize easily to nonconservative
systems. As with Navier–Stokes, the method is a fractional
step method that breaks the system of momentum equa-
tion, continuity equation, and viscoelastic constitutive
equation into three parts: a hyperbolic system for the con-
vective and elastic terms, a parabolic system for the fluid
viscosity term, and an elliptic problem in which the incom-
pressibility constraint is enforced by performing a
projection.

Beginning with the velocity, stress, and pressure at the
start of a time step, we advance a system that involves
the convection and elastic terms:

ut þ u � ru ¼ r � s; ð23Þ
st þ u � rs� sru�ruTs ¼ GðruþruTÞ: ð24Þ

An explicit wave propagation method is used, and this is
described in detail in Section 3.4. (For a nonconstant elas-
tic modulus, the elastic modulus Eq. (18) should also be in-
cluded in this system, but this does not change the
eigendecomposition presented below.) This step gives an
intermediate velocity field u� and intermediate stress s�.
Next the fluid viscosity, the stress relaxation, and external
forcing terms are accounted for by evolving the system

u�t ¼ rqþ mDu� þ f ; ð25Þ
s�t ¼ �bs�: ð26Þ

The value q is an approximation to the fluid pressure and is
held constant through the time step. This system is discret-
ized implicitly in time. These two steps give an approxima-
tion to the velocity and stress at the end of the time step,
but the velocity that is obtained, u�� is not divergence-free.
To complete the time step, the intermediate velocity u�� is
decomposed into a divergence-free field and a gradient field

u�� ¼ uþr/; ð27Þ
r � u ¼ 0: ð28Þ

This decomposition is performed by solving the Poisson
equation

D/ ¼ r � u��: ð29Þ

By splitting the system and solving one subsystem after the
other, we obtain a method which is at best first-order accu-
rate in time, regardless of the temporal accuracy of the dis-
Please cite this article in press as: R.D. Guy, A.L. Fogelson, A wav
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cretizations of the subsystems. If desired, Strang splitting
could be used to reduce the splitting error.

What is new about the method we propose in this paper
is the use of a wave propagation algorithm for advancing
the system (23) and (24). This system is of the form

qt þ AðqÞqx þ BðqÞqy ¼ 0; ð30Þ

where q ¼ ðu; v; s11; s12; s22Þ,

A ¼

u 0 �1 0 0

0 u 0 �1 0

�2ðs11 þ GÞ 0 u 0 0

0 �ðs11 þ GÞ 0 u 0

0 �2s12 0 0 u

2
6666664

3
7777775

ð31Þ

and

B ¼

v 0 0 �1 0

0 v 0 0 �1

�2s12 0 v 0 0

�ðs22 þ GÞ 0 0 v 0

0 �2ðs22 þ GÞ 0 0 v

2
6666664

3
7777775
: ð32Þ

Eq. (30) is hyperbolic if all of the eigenvalues of A and B

are real. The eigenvalues of A are u�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs11 þ GÞ

p
,

u�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs11 þ GÞ

p
, and u. Similarly, the eigenvalues of B are

v�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs22 þ GÞ

p
, v�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs22 þ GÞ

p
, and v. Provided

Gþ s11 P 0; ð33Þ
Gþ s22 P 0; ð34Þ

all the eigenvalues are real and (30) is hyperbolic. The
restrictions (33) and (34) always hold. This can be shown
by expressing the upper convected Maxwell equation as
an integral over past strains and using the fact that the
strain is positive definite [16].

The high-resolution Godunov method used in [5] for the
convection terms is based on methods developed for con-
servation laws. The system (23) and (24) is not conserva-
tive, and adapting these methods is not straightforward
[14]. Wave propagation methods developed by LeVeque
[4] were also developed for conservation laws, but they
extend naturally to systems that are not in conservative
form.

3.4. Wave propagation

We present the ideas of the wave propagation method
for the one-dimensional linear problem

qt þ Aqx ¼ 0; ð35Þ
where A is diagonalizable with real eigenvalues. We then
extend these ideas to the multidimensional problem

qt þ Aqx þ Bqy ¼ 0; ð36Þ

which is similar to Eq. (30), except that the matrices A and
B are taken to be constant. We first treat the linear case not
only for simplicity, but because the method we present for
e propagation algorithm for viscoelastic fluids with spatially ...,
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viscoelastic flows employs a linearization of (30). The
methods described here are discussed more thoroughly in
[4].

3.4.1. Upwinding in one dimension

We begin by defining some useful notation. Let R be a
matrix of eigenvectors of A and K be a diagonal matrix
with the eigenvalues of A on the diagonal, so that

A ¼ RKR�1: ð37Þ
Define the matrices Kþ and K� by

Kþ ¼ Kþ jKj
2

; ð38Þ

K� ¼ K� jKj
2

: ð39Þ

In Kþ, the positive eigenvalues are left alone and the the
negative eigenvalues are replaced by zero; similarly for
K�. Define Aþ, A�, and jAj by

Aþ ¼ RKþR�1; ð40Þ
A� ¼ RK�R�1; ð41Þ
jAj ¼ Aþ � A�: ð42Þ

The simplest method for discretizing (35) is based on the
upwind method for scalar equations. By changing into
coordinates of the eigenspaces of A, (35) is diagonalized,
and the problem reduces to scalar advection equations on
each eigenspace. Letting q̂ ¼ R�1q, and noting that
K ¼ Kþ þ K�, we see that q̂ satisfies the equation

q̂t þ Kþq̂x þ K�q̂x ¼ 0: ð43Þ
This equation can be easily discretized using the upwind
method as

q̂nþ1
j ¼ q̂n

j �
Dt
Dx

Kþ q̂n
j � q̂n

j�1

� �
� Dt

Dx
K� q̂n

jþ1 � q̂n
j

� �
: ð44Þ

Changing back to the original variable q, this discretization
is

qnþ1
j ¼ qn

j �
Dt
Dx

Aþ qn
j � qn

j�1

� �
� Dt

Dx
A� qn

jþ1 � qn
j

� �
: ð45Þ

The discretization in the original variable is more general,
because it can be used when A is spatially dependent.

The discretization (45) has another more general inter-
pretation in terms of wave propagation. Recall that the dis-
crete variable qn

j represents the average value of the
function qðx; tnÞ over cell j. There are many functions
qðx; tnÞ that when averaged will give the discrete values
qn

j . The simplest is the piecewise constant function which
has the value qn

j over cell j. At each cell interface this func-
tion is discontinuous. If we take this piecewise constant
function and evolve it according to the original equation
(35), the discontinuities propagate as waves into the neigh-
boring cells. The wave speeds are given by the eigenvalues
of A. These waves propagate as jumps in q proportional to
the corresponding eigenvectors. In (45), the term
Aþðqn

j � qn
j�1Þ is proportional to the amount that the cell
Please cite this article in press as: R.D. Guy, A.L. Fogelson, A wav
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average is changed due to right-moving waves originating
from the left edge, and similarly, the term A�ðqn

jþ1 � qn
j Þ is

proportional to the change due to left-moving waves orig-
inating from the right edge. This idea is made more explicit
by writing

Aþ qn
j � qn

j�1

� �
¼
X

k:kðkÞ>0

kðkÞaðkÞrðkÞ ¼
X

k:kðkÞ>0

kðkÞW ðkÞ
j�1=2; ð46Þ

where kðkÞ is the kth eigenvalue of A, and W
ðkÞ
j�1=2 ¼ aðkÞrðkÞ is

the component of qn
j � qn

j�1 in the kth eigenspace. Similarly
for the right edge

A� qn
jþ1 � qn

j

� �
¼
X

k:kðkÞ<0

kðkÞaðkÞrðkÞ ¼
X

k:kðkÞ<0

kðkÞW ðkÞ
jþ1=2: ð47Þ

In these terms, (45) becomes

qnþ1
j ¼ qn

j �
Dt
Dx

X
k:kðkÞ>0

kðkÞW ðkÞ
j�1=2 þ

X
k:kðkÞ<0

kðkÞW ðkÞ
jþ1=2

 !
:

ð48Þ
This wave propagation representation is more general

than (45) since it can be applied to linear and nonlinear
problems. To apply the method we must know the wave
structure that results from discontinuities at cell edges.

3.4.2. Second-order corrections
The methods described above were originally developed

for conservation laws and are often described in this way.
Up to this point we have purposely avoided this perspective
because the viscoelastic flow problem is not a conservation
law. However, for moving from first-order upwinding to a
second-order method this perspective is helpful. The first-
order method presented above is described in terms of
piecewise constant waves propagating from interfaces.
Note that these waves only change the value in the cell into
which they move. One can interpret second-order correc-
tions as the propagation of piecewise linear waves. These
corrections modify both the cell into which they move
and the cell from which they originated. Because of this
it is useful to think of including them by adding corrective
fluxes at the edges of the cells.

Eq. (35) can be written in conservation form as

qt þ ðAqÞx ¼ 0: ð49Þ

Numerical methods for conservation laws are typically of
the form

qnþ1
j ¼ qn

j �
Dt
Dx
ðF jþ1=2 � F j�1=2Þ; ð50Þ

where Fj�1=2 represents the numerical flux function between
cell j� 1 and cell j. The numerical flux function for the up-
wind method is

Fupwind
j�1=2 ¼ Aþqj�1 þ A�qj: ð51Þ

Using this flux in (50) gives (45).
A familiar second-order method is the Lax–Wendroff

method. It is derived by using finite differences to match
e propagation algorithm for viscoelastic fluids with spatially ...,
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the terms of a Taylor series up to second-order. The
method can also be described as a finite volume method.
The numerical flux function for Lax–Wendroff is

FLW
j�1=2 ¼ ðAþqj�1 þ A�qjÞ þ

1

2
jAj I � Dt

Dx
jAj

� �
ðqj � qj�1Þ;

ð52Þ
which looks like the upwind flux plus a second-order cor-
rection. The second-order correction is in terms of the dif-
ference in q across the cell edge. In presenting the upwind
method as a wave propagation method, this very quantity
was decomposed into the eigenvectors of A. The correction
term to the flux can thus be interpreted as a second-order
correction to the waves propagating from the interface:

1

2
jAj I � Dt

Dx
jAj

� �
ðqj � qj�1Þ

¼
X

k

1

2
jkðkÞj I � Dt

Dx
jkðkÞj

� �
W ðkÞ

j�1=2: ð53Þ
Written this way, the flux correction terms appear as cor-
rection waves that affect the values in the cells on both sides
of the edge.

Combining the method from Section 3.4.1 with the sec-
ond-order corrections, we obtain the second-order wave
propagation method

qnþ1
j ¼ qn

j �
Dt
Dx

X
k:kðkÞ>0

kðkÞW ðkÞ
j�1=2

 
þ
X

k:kðkÞ<0

kðkÞW ðkÞ
jþ1=2

!

� Dt
Dx
ðF jþ1=2 � Fj�1=2Þ; ð54Þ

F j�1=2 ¼
X

k

1

2
jkðkÞj I � Dt

Dx
jkðkÞj

� �
W
ðkÞ
j�1=2: ð55Þ
3.4.3. Stability

For the wave propagation method to be stable, the time
step must satisfy the CFL condition:

Dt 6
Dx

max jkðkÞj
: ð56Þ

Conceptually this means that during one time step waves
cannot propagate farther than one grid cell.
3.4.4. High-resolution

The upwinding method is diffusive. When it is applied to
problems with sharp interfaces, it causes the interface to be
progressively smeared. Adding the second-order correc-
tions eliminates the numerical diffusion, but at a cost. Near
sharp gradients in the solution numerical oscillations can
develop. The idea behind high-resolution methods is to
exploit the advantages of both first-order and second-order
methods. Where the solution is smooth the method should
Please cite this article in press as: R.D. Guy, A.L. Fogelson, A wav
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be second-order, but near sharp gradients the order is
reduced to prevent numerical oscillations.

For conservation laws we can replace the Lax–Wendroff
flux, (52), by one of the form

F ¼ Fupwind þ UðFLW � FupwindÞ; ð57Þ

where U represents a limiter function. When U ¼ 0 the
method reduces to upwinding, and when U ¼ 1 this gives
Lax–Wendroff. For the wave propagation algorithm, the
limiter appears in the second-order correction waves. For
more details on different choices of limiter functions and
their application in wave propagation, see [4].
3.4.5. Accuracy

For constant coefficient linear problems, the method
without limiters is second-order in space and time. With
limiters the accuracy is reduced in regions with sharp gra-
dients in the solution. In fact, even without limiters the
method is only first-order accurate for variable coefficient
problems.

One may wonder why we bother to include the second-
order corrections if we can only achieve a first-order accurate
method. Upwinding produces large numerical diffusion,
which causes the solution profile to be smeared. Adding
the second-order terms reduces this smearing. Even though
limiters reduce the formal order of accuracy, they produce
better resolved solutions, which is more important than the
rate of convergence.
3.4.6. Multiple dimensions, transverse waves

Extending the wave propagation algorithm to multiple
dimensions is straightforward. Consider the two-dimen-
sional problem

qt þ Aqx þ Bqy ¼ 0: ð58Þ

One could simply apply the one-dimensional algorithm in
each direction. This approach is easy, but it has three draw-
backs. First, this splitting does not include all the second-or-
der terms so that the resulting scheme is diffusive. Second, it
will fail to accurately capture waves that propagate diago-
nal to the grid. Third the time step required for stability is
more restrictive than an unsplit method. These problems
are alleviated by including transverse propagation.

The first step of the algorithm proceeds as in one dimen-
sion and accounts for the waves normal to each interface.
These so called increment waves are then decomposed into
waves moving in the transverse direction. This is illustrated
in Fig. 2. These transverse waves affect the value in the cell
from which they originate as well as the cell into which they
are traveling. Thus, as with the one-dimensional second-
order corrections, they are included in a flux term. For
example the cell indexed by i; j is changed by waves moving
across its left edge by an amount proportional toX
k:kðkÞ>0

kðkÞW ðkÞ
i�1=2;j ¼ Aþ qn

i;j � qn
i;j�1

� �
: ð59Þ
e propagation algorithm for viscoelastic fluids with spatially ...,
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Fig. 2. (a) Normal propagation of a wave across the left edge of a cell. (b) Transverse propagation of normal wave increment affects both the cell from
which the wave originates and the cell to which it is traveling.
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To account for transverse propagation, this quantity is
decomposed into waves across the top interface and the
flux function at that interface is updated by

Gi;jþ1=2 :¼ Gi;jþ1=2 þ
Dt

2Dx
BþAþ qn

i;j � qn
i;j�1

� �
: ð60Þ

Similarly, the same amount is decomposed into waves
across the bottom interface and the flux function is updated
by

Gi;j�1=2 :¼ Gi;j�1=2 þ
Dt

2Dx
B�Aþ qn

i;j � qn
i;j�1

� �
: ð61Þ

For linear systems multiplication by Bþ or B� is equivalent
to decomposing a vector into its upward or downward
moving components. However, in practice, these matrices
are never formed, but are used here for simplicity of nota-
tion. In the algorithm, a wave decomposition is performed
to find the upward and downward moving components.
This is more general and can be done for nonlinear
systems.

4. Wave propagation for viscoelastic fluids

In Section 3.3, we described how to split Eqs. (15)–(18)
to obtain a hyperbolic subsystem containing the advection
and elastic terms, Eqs. (23) and (24). The difficult part in
applying the wave propagation algorithm to this system
is performing the wave decompositions. For conservation
laws, this is achieved by solving Riemann problems (or
approximate Riemann problems). Since our system is not
a conservation law, it is not evident how to perform the
wave decompositions. We compare two approaches. The
first is based on linearizing about the edges, and the second
is based on wave propagation for heterogeneous elastic
media [11].

Consider first the linearization about the edges. The idea
is to choose edge values qedge ¼ ðue; ve; se

11; s
e
12; s

e
22Þ at every

edge, and perform the decomposition into waves according
to the eigenspaces of AðqedgeÞ and BðqedgeÞ. For any reason-
able choice of edge values, we find that this algorithm is
Please cite this article in press as: R.D. Guy, A.L. Fogelson, A wav
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unstable, particularly in the case when the viscoelastic fluid
is confined to a subset of the domain and the remainder is
filled with Newtonian fluid (i.e. G ¼ 0 in parts of the
domain).

To understand why, consider the increment waves prop-
agating in the x-direction (across a vertical edge). We com-
pute a biorthogonal set of right eigenvectors, rðkÞ, and left
eigenvectors, ‘ðkÞ, for the matrix AðqedgeÞ. These vectors
satisfy

ArðkÞ ¼ kðkÞrðkÞ; ð62Þ
AT‘ðkÞ ¼ kðkÞ‘ðkÞ; ð63Þ
‘ðiÞ � rðjÞ ¼ dij; ð64Þ

where dij is the Kronecker delta. The jumps across the
interface are then decomposed into waves as

W ðkÞ ¼ aðkÞrðkÞ ¼ ð‘ðkÞ � DqÞrðjÞ; ð65Þ
where Dq is the difference in q across the edge. These waves
change the value in the cell into which they propagate by
the amount

� Dt
Dx

kðkÞð‘ðkÞ � DqÞrðjÞ ¼ � Dt
Dx

kðkÞrðjÞð‘ðkÞÞTDq: ð66Þ

This simple rearrangement of the inner product suggests
another way to think about this update – a series of rank
one matrices is applied to the jump in the function across
the edge.

To see why the wave propagation method is unstable,
consider the eigenvectors corresponding to the eigenvalue
k ¼ uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs11 þ GÞ

p
:

r ¼ ð1; 0;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs11 þ GÞ

p
; 0; 0ÞT; ð67Þ

‘ ¼ 1

2
; 0;� 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs11 þ GÞ

p ; 0; 0

 !T

: ð68Þ

The 1,3 element of the matrix kr‘T is

½kr‘T�1;3 ¼ �
uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs11 þ GÞ

p
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs11 þ GÞ

p : ð69Þ
e propagation algorithm for viscoelastic fluids with spatially ...,
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This term becomes arbitrarily large when s11 þ G is very
small. This problem shows up immediately when the visco-
elastic fluid is immersed in an Newtonian fluid. Near the
edges of the interface between the two fluids, s11 þ G is nec-
essarily small. In simulations of a uniform viscoelastic
fluid, this instability shows up in regions of large strain
rates which is reminiscent of high Weissenberg instabilities.

This is not the only potentially unbounded term encoun-
tered. Each of the five waves contains a similar term.
Notice that if u ¼ 0, (69) reduces to 1/2. The other
unbounded terms also become bounded when the velocity
is set to zero. This suggests a solution to this problem: a
further splitting. In the matrices A and B given by (31)
and (32), respectively, the velocities appear only on the
diagonal and arise from the advection terms. If we do
not include the advection terms with the elastic terms, then
it is as if the velocity has been set to zero in (31) and (32),
and all of the waves across edges become nicely bounded.

To stabilize the wave propagation, we split (23) and (24)
into a subsystem containing the advection terms

ut þ u � ru ¼ 0; ð70Þ
st þ u � rs ¼ 0 ð71Þ

and a subsystem containing the elastic terms

ut ¼ r � s; ð72Þ
st � sru�ruTs ¼ GðruþruTÞ: ð73Þ
4.1. Advection

For the advection subsystem, we apply the wave propa-
gation method as described in [17]. Applying this method
for advection requires knowing the velocity normal to the
edges. Hence, we maintain two sets of velocities: one veloc-
ity field is stored at the cell centers and the other is stored in
a staggered fashion at the cell edges. Below we describe
how the edge velocities are computed as part of the
projection.

Before performing the projection, we have the interme-
diate velocity u� at the cell centers. We compute the veloc-
ity normal to the cell edges by averaging:

u�eiþ1=2;j ¼
u�i;j þ u�iþ1;j

2
; v�ei;jþ1=2 ¼

u�i;j þ u�i;jþ1

2
: ð74Þ

These edge velocities are then projected onto the space of
divergence-free fields by solving

D/ ¼ r � u�e ð75Þ

and updating the edge velocities

ue
iþ1=2;j ¼ u�eiþ1=2;j �

/iþ1;j � /i;j

Dx
; ð76Þ

ve
i;jþ1=2 ¼ v�ei;jþ1=2 �

/i;jþ1 � /i;j

Dx
: ð77Þ
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The original cell-centered velocities are then corrected by

ui;j ¼ u�i;j �
/iþ1;j � /i�1;j

2Dx
; ð78Þ

vi;j ¼ v�i;j �
/i;jþ1 � /i;j�1

2Dx
: ð79Þ

This procedure ensures that the edge velocities are dis-
cretely divergence-free, but the cell-centered velocities are
only approximately discretely divergence-free, so that we
are using an approximate projection [18] for the cell-cen-
tered velocities.
4.2. Elastic wave propagation

Without the advection terms the system (72) and (73) is
still of the form (30). The matrices AðqÞ and BðqÞ are given
by (31) and (32), respectively, with the velocities along the
diagonal set to zero. We discuss two variations of the wave
propagation algorithm that differ in how the wave decom-
position is performed. The first is based on linearizing (30)
about the edges by averaging the variables on the two sides
to the edge. This method is referred to as method I. The sec-
ond method is based on wave propagation for heteroge-
neous elastic media [11], and we refer to it as method II.
4.2.1. Method I – Averaging at edges

To linearize about the edges we need values of s11, s12,
and G at the vertical edges because these quantities appear
in A. Similarly we need values of s22, s12, and G at the hor-
izontal edges because these quantities appear in B. We
compute these edge values by simple averaging:

ðse
11Þi�1=2;j ¼

ðs11Þi�1;j þ ðs11Þi;j
2

; ð80Þ

ðse
12Þi�1=2;j ¼

ðs12Þi�1;j þ ðs12Þi;j
2

; ð81Þ

Ge
i�1=2;j ¼

Gi�1;j þ Gi;j

2
: ð82Þ

With the edge values computed, the algorithm precedes as
described for the linear problem in Section 3.4. The only
difference is that the eigenvectors and eigenvalues used in
the wave decomposition are different at each edge.
4.2.2. Method II – Heterogeneous elastic material

The second method we explore is based on [11], which
describes a method for linearly elastic material with a spa-
tially dependent elastic modulus. Consider a vertical edge
between two cells in which the values of the elastic modulus
are different. There are two waves moving the to right with
speeds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs11 þ GÞ

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s11 þ G
p

, and two waves moving
to the left with speeds �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs11 þ GÞ

p
and �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s11 þ G
p

. All
of these quantities are known only at the cell centers. The
idea from [11] is that the right-going waves propagate
according to the speed computed from G and s11 on the
right of the cell edge, and the left-moving waves propagate
e propagation algorithm for viscoelastic fluids with spatially ...,
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according to the speed computed with the values on the left
side of the cell edge.

For the linearized problem the waves are computed by
decomposing the jump across the cell edge into the eigen-
spaces of the matrix at the edge, and the waves are then
of the form W ðkÞ ¼ aðkÞrðkÞ. Performing this decomposition
is equivalent to solving the linear system

Ra ¼ Dq: ð83Þ

To perform the decomposition for the heterogeneous mate-
rial, a different system must be solved. Let r

ð1Þ
þ and r

ð2Þ
þ denote

the eigenvectors on the right side of the edge corresponding
to the two positive eigenvalues, and let rð3Þ� and rð4Þ� denote
the eigenvectors on the left side of the edge corresponding
to the negative eigenvalues. There is one more eigen-
vector with eigenvalue zero. This eigenvector is rð5Þ ¼
ð0; 0; 0; 0; 1ÞT, which does not contain any state variables
in its elements. To carry out the decomposition, we solve a
system of the form (83), with R replaced by a matrix with
columns r

ð1Þ
þ , r

ð2Þ
þ , rð3Þ� , rð4Þ� , and rð5Þ.

There are two important differences between the system
considered in [11] and (72) and (73). In [11], the matrices A

and B did not depend on the values of the stresses them-
selves, and secondly the elastic modulus was a given func-
tion of space. For the viscoelastic fluid problem, the waves
and speeds depend on the stress and the elastic modulus
moves with the fluid.
4.3. Viscoelastic fluids in contact with Newtonian fluids

For simulations of a viscoelastic fluid in contact with a
Newtonian fluid, we must make several modifications to
the algorithm. Consider a numerical cell edge between a
viscoelastic fluid and a Newtonian fluid. Using method I
as described above, we average the stress and elastic mod-
ulus to this edge and propagate waves based on these aver-
age values. This procedure causes viscoelastic stresses to
develop in cells of Newtonian fluid. To fix this problem,
we modify method I at such edges so that waves are prop-
agated as in method II. This prevents elastic stresses from
developing in regions where the elastic modulus is zero.
We have found that the simulations are much more robust
with this modification to method I.

The second modification applies to both methods I and
II. In the wave decomposition, terms of the form

s12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s11 þ G
p ð84Þ

arise. These terms look as though they have the potential to
become unbounded. However, the tensor sþ Gd is positive
semidefinite. This can be shown by the same argument used
to show that (33) and (34) hold. Because sþ Gd is positive
semidefinite, the determinant is nonnegative, and so

s12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s11 þ G
p
����

���� 6 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s22 þ G

p
: ð85Þ
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The algorithm presented in this paper does not necessarily
preserve the definiteness of the stress, which can lead to
instabilities. At the beginning of the time step, we look
for grid cells for which sþ Gd fails to be positive semidef-
inite. In these grid cells we reset s so that sþ Gd is the clos-
est (in two-norm) positive semidefinite tensor. In Appendix
A, we explain how this is done.

The wave propagation algorithm does not preserve
hyperbolicity, meaning that after propagating waves, the
inequalities (33) and (34) may not hold everywhere. When
these inequalities are violated, the discrepancy is very
small. By enforcing that sþ Gd be positive semidefinite
as described above, the inequalities (33) and (34) are satis-
fied and hyperbolicity is maintained.
4.4. Summary of the algorithm

At the beginning of a time step we have the velocity
field, pressure, viscoelastic stress, and elastic modulus at
the cell centers and a second velocity field at the cell edges.
One step of the algorithm is outlined below:

	 Advect all cell-centered quantities using the wave prop-
agation algorithm described in [17].
	 Ensure that (72) and (73) is hyperbolic and that the

stress tensor sþ Gd is positive semidefinite, as described
in Section 4.3.
	 Average the stresses to the cell edges (method I only).
	 Propagate elastic waves in the system (72) and (73).
	 Update velocity with the viscous terms and background

force implicitly.
	 Relax the stress implicitly.
	 Project the velocity to enforce incompressibility.
5. Computational tests

In this section, we present a series of computational
tests. One goal in performing these tests is to determine
whether one of the two wave propagation methods offers
any advantages over the other. For the first set of tests,
we consider a single viscoelastic fluid with a uniform elastic
modulus, and then we explore problems which contain
both Newtonian and viscoelastic fluids.
5.1. Uniform elastic modulus

The domain is the periodic box ½�0:5; 0:5� � ½�0:5; 0:5�.
The flow is driven by a body force which is chosen to drive
a Newtonian fluid with a steady state velocity of

u ¼ sinð2pxÞ cosð2pyÞ; v ¼ � cosð2pxÞ sinð2pyÞ: ð86Þ

Substituting this velocity field into the Navier–Stokes equa-
tions, we compute a force field f ss. The force which we ap-
ply to the fluid in these tests is

f bg ¼ ð1� e�tÞf ss: ð87Þ
e propagation algorithm for viscoelastic fluids with spatially ...,
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Fig. 3. The (a) velocity field and (b,c) stresses are shown for G ¼ 1 and
b ¼ 1 at time t ¼ 1. The stress component s22 is not displayed because it is
similar to s11 with an appropriate shift and rotation.
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When the fluid is viscoelastic, the flow pattern is very sim-
ilar to the Newtonian case, but the velocities are generally
smaller. We fixed the Reynolds number at 25, and explored
a wide range of elastic moduli ð10�3–103Þ and relaxation
rates ð10�3–103Þ. The simulations remained stable for all
sets of parameters tested. We present refinement studies
for two sets of parameters which typify the two behaviors
observed.

For the first test the elastic modulus is G ¼ 1, the relax-
ation rate is b ¼ 1, and the simulation is run until time
t ¼ 1. The flow field and the stresses are displayed in
Fig. 3. The maximum velocity is about 0.05, which is the
effective Weissenberg number.

The results of the refinement study are displayed in
Fig. 4. The results for v and s22 are not displayed because
they are identical to the results for u and s11. The one-norm
and the max-norm for both methods are displayed. The
convergence is first-order for all variables and in both
norms. The errors in the velocity were essentially the same
for the two methods. The errors in the stresses were slightly
smaller when waves were propagated as in a heterogeneous
material, although the errors were similar for the two
methods.

The results from the previous test do not demonstrate a
significant difference between the two methods. However,
when the elastic modulus and the breaking rate were small
the algorithms gave very different results when run for long
periods of time. The velocity field and stresses generated by
method I for G ¼ 0:01 and b ¼ 0:01 are shown in Fig. 5 at
time t ¼ 10. This simulation was run longer than the previ-
ous one because it took longer to see the effect of the slow
relaxation rate. The maximum velocity is again around
0.05, making the effective Weissenberg number 5, which
is considered high. Notice that compared to the previous
test, the stresses are much larger and the normal stress,
s11, is concentrated in a very narrow region of space.

The results from a refinement study for this parameter
set are displayed in Fig. 6. For method II (propagation
in a heterogeneous material), none of the variables appear
to be converging. When waves are propagated by averag-
ing values to the edges (method I), the velocity appears
to be converging, although at a rate less that first-order
(0.68 in one-norm and 0.53 in max-norm). However, its
not clear that the stresses are converging. From Fig. 5b,
we see that the normal stress is highly concentrated at a
few grid points. The lack of convergence could be due to
severe under-resolution of the stresses.

The numerical solutions from the two methods of wave
propagation do not converge to each other. The max-norm
of the difference in the velocities is shown in Fig. 7. Thus
this test shows that there is a significant difference between
the two methods at high Weissenberg number. The averag-
ing method (method I) is converging in the velocity, but it
is not clear that it is converging to the correct velocity. To
determine if this method is approaching the correct veloc-
ity, we must have an analytic solution. In the next section,
we use a test for which we know the solution.
Please cite this article in press as: R.D. Guy, A.L. Fogelson, A wav
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5.2. Layered fluid shear flow

To explore further the difference between the two algo-
rithms, we use a simple test problem for which we can gen-
erate an analytic solution: steady state, one-dimensional
shear flow. When the elastic modulus was uniform, the
methods converged at the same rate and the solutions
e propagation algorithm for viscoelastic fluids with spatially ...,
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norm and max-norm of the errors are shown for both wave propagation
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had the same features (not shown). When the elastic mod-
ulus was spatially dependent, but bounded away from zero,
the errors from method I (averaging) were generally smal-
ler than for method II (heterogeneous medium), but the
results were again similar (not shown). However, in tests
containing a viscoelastic fluid in contact with a Newtonian
e propagation algorithm for viscoelastic fluids with spatially ...,
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fluid, the methods were very different. These results are pre-
sented below.
Please cite this article in press as: R.D. Guy, A.L. Fogelson, A wav
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All parameters given below are nondimensional. The
computational domain is periodic in the y-direction with
y 2 ½�0:5; 0:5�. The flow is driven by the background force
in the x-direction

fbg ¼
4p2

Re
sinð2pðy � 0:5ÞÞ: ð88Þ

For a Newtonian fluid, this force would drive the flow in
the x-direction with velocity profile u ¼ sinð2pðy � 0:5ÞÞ.
However, for our tests, the middle of the domain contains
viscoelastic fluid with the spatially dependent elastic
modulus

GðyÞ ¼
Gmax

2
1þ cos p

2
y

� 	� 	
for jyj < 0:2;

0; otherwise:

(
ð89Þ

At steady state the velocity and stress satisfy the equations

Re�1uyy þ ðs12Þy þ fbg ¼ 0; ð90Þ
2s12uy � bs11 ¼ 0; ð91Þ
GðyÞuy � bs12 ¼ 0 ð92Þ

and v and s22 are both zero. This steady state system was
solved using a finite difference method with an extremely
fine mesh ðN ¼ 4096Þ, and large time results from the
two wave propagation methods (with N ¼ 64) were com-
pared with this solution. The fluid parameters used were
Re ¼ 25, Gmax ¼ 10, and b ¼ 1.

In Fig. 8, we show the velocity and stress profiles for the
top half of the domain. Above the dashed line the fluid is
Newtonian. The line without markers represents the
‘‘exact” solution generated by the finite difference method.
The lines with markers are the solutions produced using the
two wave propagation algorithms. The square markers cor-
respond to method I (averaging), and the circles corre-
spond to method II (heterogeneous medium). In Table 1,
we give the one-norm and max-norm errors for the two
e propagation algorithm for viscoelastic fluids with spatially ...,
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Fig. 8. Velocity and stress profiles for shear flow of a Newtonian fluid over a viscoelastic fluid. Above the dashed line the fluid is Newtonian. The solid line
with no markers denotes the exact solution. The line marked with squares corresponds to the wave propagation solution with averaging to the edges
(method I), and the line marked with circles corresponds to wave propagation through a heterogeneous elastic medium (method II). In (d) we show a
closer view of the results for s11.

Table 1
Errors in the shear flow test for the two wave propagation algorithms

Method I Method II

u

kek1 3:92� 10�3 4:87� 10�2

kek1 9:56� 10�3 1:35� 10�1

s11

kek1 4:83� 10�3 1:72� 10�2

kek1 4:20� 10�2 1:79� 10�1

s12

kek1 1:30� 10�2 3:62� 10�2

kek1 1:93� 10�1 4:14� 10�1
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methods. These results show that the averaging approach is
much more accurate. Comparing the normal stresses ðs11Þ
near the interface where the elastic modulus goes to zero,
we see that the averaging approach does a much better
job capturing the behavior of the solution.
5.3. Comparing with previous algorithm

The algorithm used in [1] and described more thor-
oughly in [2], is based on a different splitting of the system
in which the viscoelastic stress and the fluid velocity are
updated alternately. This splitting is easy to implement,
but in some simulations grid-scale oscillations developed
over time. Reducing the time step eliminated these oscilla-
Please cite this article in press as: R.D. Guy, A.L. Fogelson, A wav
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tions, but it is not clear how to choose the time step in
advance to avoid them. This phenomenon was the motiva-
tion for exploring the wave propagation algorithms
described in this paper. Using the wave propagation algo-
rithm, we are able to compute with a time step very near
the stability limit without introducing artificial numerical
oscillations. This is demonstrated below.

We use a test problem similar to that presented in Section
5.1, except that the elastic modulus is not uniform. The
domain is again the periodic box ½�0:5; 0:5� � ½�0:5; 0:5�,
the fluid is initially at rest, and the motion is driven by the
force (87). The fluid is viscoelastic in a circle centered at
the origin with radius 0.175, and outside this circle the elastic
modulus is initially zero. Inside the circle, the elastic modu-
lus is G ¼ 50, which is much higher than in the previous
tests. The Reynolds number is 25 and the relaxation rate is
1. The simulation is run until time t ¼ 3.

The flow pattern is shown in Fig. 9a, where the single con-
tour represents the boundary between the viscoelastic fluid
and the Newtonian fluid. In Fig. 9b, we show a slice of the
shear stress, s12, along the line x ¼ 0:15. The results labeled
‘‘old algorithm” were generated using the algorithm from
[1] which alternates velocity and stress updates. The time
step used in the old algorithm was fixed at 10�3. The time step
for the wave propagation algorithm was chosen to run at
0.95 of the CFL condition, and was around 2� 10�3 for
the parameters in this test. Both algorithms were stable,
but in the old algorithm, some numerical oscillations
e propagation algorithm for viscoelastic fluids with spatially ...,
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viscoelastic fluid and the Newtonian fluid. (b) Slice of the shear stress s12

along the line x ¼ 0:15. The stress from the wave propagation algorithm
does not show the grid-scale oscillations as does the algorithm from [2].
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accumulated. In the wave algorithm, no such oscillations
were observed, even though the wave algorithm was run with
a larger time step.
6. Conclusions

The algorithm for simulating the platelet model pre-
sented in this paper was developed as an improvement to
the algorithm used in [1,2]. In simulations with the old
algorithm, grid-scale oscillations would accumulate slowly.
These oscillations could be eliminated by reducing the time
step, but it is unclear how small a time step is needed to
avoid them. The wave propagation algorithm does not give
these oscillations as long as the time step is chosen to sat-
isfy a CFL constraint. This not only has the advantage of
better resolved solutions, but it allows the use of a variable
time step. In simulations of growing blood clots, the time
step can be larger in the beginning of the simulation before
the clot develops. This feature makes for more efficient
simulations.

Two different methods of propagating waves were
explored, one based on linearizing about the cell edges
and the other based on wave propagation in a heteroge-
neous elastic medium [11]. In tests with a uniform elastic
modulus and at low to moderate Weissenberg numbers,
Please cite this article in press as: R.D. Guy, A.L. Fogelson, A wav
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the two methods gave very similar results. When the
domain contained both a viscoelastic fluid and a Newto-
nian fluid, the two methods gave very different results.
The method of averaging the stresses to the edges gave
more accurate results and more accurately captured the
behavior of the stresses near the interface where the elastic
modulus went to zero. It may be surprising that the method
based on heterogeneous elastic materials did not perform
well given the success reported in [11]. However, there
are some notable differences between the system, (72) and
(73), in this paper and the system in [11]. First the coeffi-
cients of the system in [11] did not depend on the state vari-
ables as they do in (72) and (73). Second the elastic
modulus moves with the fluid in the viscoelastic flow sys-
tem but was stationary for the system in [11].

Though developed for the platelet model, the algorithm
applies to more general viscoelastic fluids. Simulating at
high Weissenberg number is a significant challenge for
algorithms for viscoelastic flow. Our algorithm showed
no instabilities at high Weissenberg number, but the results
from a refinement study suggested that the results may not
be very accurate. It would be interesting to test our wave
propagation algorithm using some of the standard bench-
mark problems for viscoelastic flows. It is worth noting
that, as presented, our algorithm does not apply to zero
Reynolds number flow. This is because the system in which
we propagate waves would no longer be hyperbolic in that
parameter range.

Appendix A. Enforcing positive definiteness

As discussed in Section 4.3, when the tensor sþ Gd fails
to be positive definite, we replace this tensor with the clos-
est symmetric positive semidefinite tensor (s.p.s.d.). Here
we describe how to choose this replacement tensor.

Let r be a symmetric tensor. We claim that the closest in
two-norm symmetric positive semidefinite tensor is rþ.
Suppose that r̂ is a symmetric positive definite tensor that
is closer to r in two-norm than rþ. Then

kr� r̂k2 6 kr� rþk2 ¼ kr�k2 ¼ jk
�j; ðA:1Þ

where k� is the largest (in absolute value) negative eigen-
value of r.

Let v be the normalized eigenvector of r such that

vTrv ¼ k�: ðA:2Þ

We can bound the quadratic form jvTðr� r̂Þvj from below
by

jvTðr� r̂Þvj ¼ jk� � lj; l > 0; ðA:3Þ
> jk�j: ðA:4Þ

The same quadratic from is bounded above by

jvTðr� r̂Þvj 6 kvk2kðr� r̂Þvk2; ðA:5Þ
6 kr� r̂k2; ðA:6Þ
6 jk�j; ðA:7Þ
e propagation algorithm for viscoelastic fluids with spatially ...,
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which contradicts the previous inequality. Therefore, no
symmetric positive definite tensor is closer to r than rþ.
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