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Abstract

Direct forcing methods are a class of methods for solving the Navier-Stokes equa-
tions on nonrectangular domains. The physical domain is embedded into a larger,
rectangular domain, and the equations of motion are solved on this extended do-
main. The boundary conditions are enforced by applying forces near the embedded
boundaries. This raises the question of how the flow outside the physical domain
influences the flow inside the physical domain. This question is particularly relevant
when using a projection method for incompressible flow. In this paper, analysis
and computational tests are presented that explore the performance of projection
methods when used with direct forcing methods. Sufficient conditions for the suc-
cess of projection methods on extended domains are derived, and it is shown how
forcing methods meet these conditions. Bounds on the error due to projecting on
the extended domain are derived, and it is shown that direct forcing methods are,
in general, first-order accurate in the max-norm. Numerical tests of the projection
alone confirm the analysis and show that this error is concentrated near the em-
bedded boundaries, leading to higher-order accuracy in integral norms. Generically,
forcing methods generate a solution that is not smooth across the embedded bound-
aries, and it is this lack of smoothness which limits the accuracy of the methods.
Additional computational tests of the Navier-Stokes equations involving a direct
forcing method and a projection method are presented, and the results are com-
pared with the predictions of the analysis. These results confirm that the lack of
smoothness in the solution produces a lower-order error. The rate of convergence
attained in practice depends on the type of forcing method used.
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1 Introduction

The immersed boundary (IB) method was developed by Peskin for simulating
the coupled motion of an elastic boundary immersed in a viscous fluid [1].
Typically the fluid velocity is discretized on a Cartesian grid and the bound-
ary is discretized using a Lagrangian grid. One reason for the popularity of
the IB method is that no internal boundary conditions are required on the
immersed boundary. The boundary moves with the local fluid velocity and
these deformations generate forces which affect the motion of the fluid.

Goldstein et al. [2] introduced a variation of the IB method for flows around
solid objects. The solid objects are embedded in a larger computational do-
main, and the velocity field is extended throughout the objects. The no-slip
condition is enforced on the surface of the objects by applying a body force
near the surfaces to bring the velocity to zero. As with the immersed bound-
ary method, complicated domains can be discretized using a regular Cartesian
grid. A disadvantage of this method is that it requires choosing numerical forc-
ing parameters which can make the equations stiff.

Another type of forcing method was introduced by Mohd-Yusof [3] that does
not require numerical forcing parameters. The forcing is computed from the
algebraic equations in the discretized problem. This approach avoids the stiff-
ness encountered from the penalty forces used in previous forcing methods.
As this method has gained popularity, many variations on how the forcing is
applied have appeared in the literature [4–8]. These methods are often referred
to as direct forcing methods.

Projection methods are often used to enforce the divergence-free constraint
in incompressible flow. The momentum equation is advanced in time to give
an intermediate velocity that is not required to be divergence-free. This inter-
mediate velocity is then projected onto the subspace of divergence-free fields
to find the velocity at the next time step. Performing the projection involves
solving a Poisson equation, which when used with a forcing method, is of-
ten solved over the extended computational domain. Thus the flow outside
the physical domain necessarily influences the flow on the physical domain,
even if these two subdomains were effectively decoupled in the solution of the
momentum equation.

We note that the projection need not be performed over the extended do-
main. There are several methods for discretizing the Poisson equation only
on the fluid domain using a Cartesian grid, such as the embedded boundary
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method [9] or the ghost-fluid method [10]. These methods have been used in
conjunction with projection methods and immersed boundary methods; see,
for example, [11–13]. However, in many, if not the majority, of forcing methods
the projection is performed over the entire domain. Further, the projection can
be the most most computationally expensive step of a fluid solver, and solving
on a regular domain allows the straightforward use of fast solvers based on
FFTs or geometric multigrid. In this paper we focus on methods in which the
projection is performed over the entire domain.

How the flow outside the domain influences the flow in the physical domain
is not well understood. In spite of the fact that direct forcing and projection
methods are commonly used together successfully, it is not clear that the solu-
tion from this combination of methods should converge to the correct solution.
Several authors have already commented on this issue. Saiki and Biringen [14]
comment that they found it necessary to apply forces on the extension to ob-
tain convergence to the correct solution. Fadlun et al. [4] experimented with
different treatments of flow on the extension, and they concluded that the flow
on the extension has little effect on the physical flow. Similar observations were
reported by Zhang and Zheng [8]. Recently, Domenichini [15] performed a se-
ries of numerical tests aimed at understanding the effect of using projection
methods and direct forcing methods. The problem has not yet been analyzed
to understand why forcing methods do seem to work with projection methods.
A deeper understanding is necessary in order to drive the development of more
accurate methods.

In this paper we explore the performance of projection methods when the
projection is performed over an extended domain. We show that if the inter-
mediate velocity is continuous across the embedded boundaries and close, in
some sense, to a divergence-free field, then the error produced by performing
the projection on the extended domain is small. We show that the interme-
diate velocity meets these conditions, and the error introduced by solving on
the extended domain is of the same size as the error of the projection method
itself.

The intermediate velocity generated using a forcing method generally has a
jump in the first derivative near the embedded boundaries. We analyze the
spatially discrete projection and show that this lack of smoothness introduces
a first-order error during the projection step. Numerical tests of the projection
alone show that this error is localized near the embedded boundary, and so
higher rates of convergence are achieved in integral norms. These results show
that forcing methods will generally be first-order accurate in the max-norm,
but the accuracy in integral norms depends on how the forcing is performed
in the momentum equation.

The remainder of the paper is organized as follows. We briefly describe the
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main ideas behind direct forcing and projection methods in Sections 2 and 3,
respectively. Our analysis of projections on extended domains, including the
spatially discrete problem, appears in Section 4. In Section 5, numerical tests
validating our analysis and further exploring the accuracy of direct forcing
methods are presented. The effect of the smoothness of the extended field on
the accuracy of the projection is demonstrated in Section 5.1, and in Section
5.2, the accuracy of projection methods for solving the Navier-Stokes equations
is considered. Finally, in Section 6 we describe how our results explain some
observations in previous papers, and we discuss some ideas for developing more
accurate methods.

2 Direct forcing methods

Direct forcing methods are a class of numerical methods for solving the in-
compressible Navier-Stokes equations

ρ (ut + u · ∇u) = −∇p + µ∆u + f (1)

∇ · u = 0, (2)

on a nonrectangular domain using a Cartesian grid. As usual, u is the fluid
velocity, p is the pressure, ρ is the density, µ is the dynamic viscosity, and f

is a body force density acting on the fluid. The physical domain is embedded
in a larger rectangular domain, and the boundary conditions on the physical
boundaries are enforced by applying a localized force on the Cartesian grid.
The basic idea of choosing the the force is very simple. Consider the explicit,
discrete-time update for the momentum equation:

un+1 − un

∆t
= G + f , (3)

where the term G represents the pressure gradient, advection terms, and vis-
cous terms. The force is selected so that on the boundary un+1 = Un+1

b , where
Un+1

b is the given velocity on the boundary at time level n+1. The appropriate
force is computed from simply rearranging equation (3):

f =
Un+1

b − un

∆t
− G. (4)

This illustrates the idea behind choosing the force, but to apply the method
one must specify where this forcing term is applied and decide how to handle
implicit discretizations.

As written, the equation for the force (4) is slightly ambiguous because the
velocity un is computed on the Cartesian grid and the boundary velocity Un+1

b
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is given on the embedded boundary which does not align with the Cartesian
grid. There are two variations on how this force is computed in practice: on
the embedded boundary [6–8,16] and on the Cartesian grid [3–5].

In order to compute the forcing term on the embedded boundary, the velocity
from the Cartesian grid, un, and the explicit terms, G, must be interpolated
to the embedded boundary. Similarly, the force must be transmitted back to
the Cartesian grid where the fluid equations are solved. The methods of inter-
polating the velocity and distributing the force are typically based on discrete
delta functions, as in the original Immersed Boundary method. Computing
the forces on the embedded boundary and spreading it to the grid using dis-
crete delta functions is in some ways easier than computing the force on the
grid. However, the use of delta functions limits the order of accuracy near the
boundary to first order in space [17–19]. We note that a recent method has
been proposed which spreads the force to grid, but the spreading is not based
on discrete delta functions [16]. This new method may yield higher-order accu-
racy, becuase the idea behind computing the forces is more similar to methods
that compute the forces on the grid, which do not limit the accuracy.

Methods that compute the forcing term directly on the Cartesian grid, avoid
the transfer of data back and forth between the boundary and the grid. The
physical boundary condition is given at the embedded boundary, and so one
needs a way to represent the boundary conditions on the Cartesian grid. This
is typically accomplished using interpolation/extrapolation. For example, the
boundary condition can be enforced by requiring that at points on the Carte-
sian grid adjacent to the embedded boundary the velocity be interpolated from
the boundary points and nearby points.

Once the representation for the boundary condition on the Cartesian grid has
been chosen, equation (4) can be used to compute the necessary forces to
satisfy this boundary condition. However, the momentum equation is often
discretized implicitly in time, which means that the term G in (4) depends
on Un+1

b . There are two typical methods for handling implicit discretizations.
Treating the force as an additional unknown, equations (3) and (4) could be
solved simultaneously for the velocity and force. Alternatively a predictor-
corrector method could be used.

3 Projection methods

In the previous section we described the ideas of direct forcing methods for
solving only the momentum equation (1). Projection methods are a popular
class of methods for solving the incompressible Navier-Stokes equations that
avoid solving the momentum equation and continuity equation simultaneously
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[20,21]. In a projection method, the momentum equation (1) is advanced in
time without enforcing the incompressibility constraint to give an intermedi-
ate velocity. This intermediate velocity is then projected onto the space of
divergence-free fields to obtain the incompressible velocity field.

The projection is accomplished by computing the Hodge decomposition of the
intermediate velocity field. That is, any sufficiently regular vector field u∗ can
be decomposed into the sum of a divergence-free field and a gradient field:

u∗ = u + ∇φ, (5)

where ∇ · u = 0. Taking the divergence of this equation gives the Poisson
equation,

∆φ = ∇ · u∗. (6)

With suitable boundary conditions on φ, this equation can be solved for φ,
and u can then be computed using (5).

The use of projection methods with direct forcing methods raises some inter-
esting questions. The projection is performed over a computational domain
that includes the physical domain and regions that are outside the physical
domain. Since the projection is performed by solving a Poisson equation over
this extended domain, clearly the velocity outside the physical domain influ-
ences the flow in the physical domain. In the following section we investigate
under what circumstances the projection can be performed on the extended
domain without affecting results on the physical domain.

4 Projections on extended domains

Suppose we are solving the incompressible Navier-Stokes equations (1)-(2) on
a domain Ω1 with the velocity given on ∂Ω1. Throughout this section, we
assume that all domains considered are sufficiently regular for the purposes
of our arguments. Let u∗ be the intermediate velocity field that arises from
advancing the momentum equation in time while ignoring the divergence-free
constraint. We assume that u∗ satisfies the boundary conditions for u. The
intermediate velocity is decomposed into the sum of a gradient field and a
divergence-free field as in (5). The decomposition is performed by solving
(6) in Ω1 with homogeneous Neumann boundary conditions, and then the
divergence-free velocity is found from (5). Note that a solution to this Poisson
problem exists by the divergence theorem and the assumption that u and u∗

are equal on the boundary of Ω1. We denote the projection operator which
projects fields onto the space of divergence-free fields on Ω1 by P1, so that

P1 (u∗) = u, (7)
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where u∗ and u are as in (5).

Suppose that Ω1 is extended to the larger domain Ω = Ω1 ∪ Ω2. Let Γ =
∂Ω1 ∩ ∂Ω2 denote the interface between the original domain, Ω1, and the
extension, Ω2. One such example is pictured in Figure 1. Let u∗

e be an L2

extension of u∗ to all of Ω such that u∗

e = u∗ on Ω1. As in (5), assuming that
u∗

e is sufficiently regular (∇ ·u∗

e ∈ L2(Ω) is enough) and that
∫

Ω ∇ ·u∗

e = 0 (a
necessary and sufficient condition for the solvability of the following problem
(9)-(10)), this extended velocity can be decomposed

u∗

e = ue + ∇φe, (8)

where ue and ∇φe are L2 vector fields with ∇ · ue = 0 (in the sense of
distributions), by solving

∆φe = ∇ · u∗

e on Ω (9)

∂φe

∂n
= 0 on ∂Ω. (10)

Analogously to P1, we denote the operator which projects fields onto the space
of divergence-free fields on the extended domain Ω by Pe, so that

Pe (u∗

e) = ue, (11)

where u∗

e and ue are described above.

Ω = Ω1 ∪ Ω2

Ω1

Γ = ∂Ω1 ∩ ∂Ω2

Ω2

Fig. 1. The physical domain, Ω1, is embedded in the larger domain Ω = Ω1 ∪ Ω2,
and Γ = ∂Ω1∩∂Ω2 denotes the interface between the physical domain and extended
domain.

Ideally, the restriction of Pe (u∗

e) to Ω1 would equal P1 (u∗). In other words, the
divergence-free velocities that result from projecting on the extended domain
and projecting on the original domain would be identical. Clearly, this will not
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always be the case, because this would mean that the projection is independent
of the choice of the extension.

In this section, we show that while it is always possible to choose an extension
that does not affect the projection, this is impractical. However, we demon-
strate that if the intermediate velocity is in some sense close to a divergence-
free field, then the projected velocities are also close. As we argue in Section
4.3, this is exactly the case in projection methods, and the error of project-
ing on the extended domain is the same size as the error of the projection
method on the original domain. In Section 4.4 we argue that the velocity
fields projected in direct forcing methods are generally only continuous across
the embedded boundary. This lack of smoothness introduces additional error
in the spatially discrete problem, which is analyzed in Section 4.5.

4.1 Existence of an extension

We first show that it is possible to extend u∗ to all of Ω in such a way that
P1(u

∗) = Pe(u
∗

e) on Ω1. By performing the projection only on Ω1 we obtain
the divergence-free field P1(u

∗) = u and the gradient field ∇φ, as in equation
(5). We can extend u and φ to all of Ω so that the extension of u is divergence
free. Suppose both extensions are smooth, and denote them by ue and φe.
Define the extended velocity field by

u∗

e = ue + ∇φe. (12)

The projection of this velocity field gives Pe(u
∗

e) = ue, which by construction
equals the velocity P1(u

∗) = u on Ω1. Therefore such an extension exists.

Although we have shown that the intermediate velocity can be extended in
such a way as to give the “correct” projected velocity, the method used in
the proof above requires that we first project on the original domain, which
defeats the purpose of extending in the first place.

4.2 Comparison of projected fields

In general it is difficult to determine conditions on the extension so that
P1(u

∗) = Pe(u
∗

e) without knowledge of the projection of u∗ on Ω1. However,
in special cases, such as when the gradient portion vanishes on Γ, any suf-
ficiently smooth divergence-free extension will preserve the projection. This
is the case when the intermediate velocity is divergence-free to begin with.
Considering divergence-free extensions of divergence-free fields does not seem
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to be interesting or useful, but this idea leads us to consider the case when
the intermediate velocity and its extension are close to divergence-free fields.

We compare P1(u
∗) to Pe(u

∗

e) in the physical domain Ω1 in the L2 norm. By
the decompositions (5) and (8) and the fact that u∗ = u∗

e in Ω1,

||Pe(u
∗

e) − P1(u
∗)|| = ||Pe(u

∗

e) − u∗

e + u∗ − P1(u
∗)|| ≤ ||∇φe|| + ||∇φ||. (13)

A consequence of inequality (13) is that if u∗ and u∗

e are close to being
divergence-free in the sense that the difference between each of these fields
and their projections is small, then so is the difference between the projec-
tions of the two fields. As a result, if the intermediate field is close to the
desired divergence-free field, then the projection (on the extended domain)
is just as close to the desired field. As we discuss below, this result is useful
in the context of projection methods because the intermediate velocity is not
arbitrary. It is close to the desired divergence-free velocity field, and this is
one key reason why the projection can be performed on the extended domain
and still converge to the appropriate solution.

In the case when u∗ and u∗

e are both divergence-free, inequality (13) shows
that Pe (u∗

e) equals P1(u
∗) in Ω1, as claimed above. This suggests that the

velocity on the extension be chosen to be as close to a divergence-free field
as possible. Thus, a velocity that is divergence-free on the extension which is
easy to generate is a reasonable choice.

4.3 Intermediate velocity in projection methods

In this section we show that the intermediate velocity field in a projection
method is indeed close to a divergence-free field. For simplicity we consider
the time-dependent Stokes equations. Suppose we want to solve the system

ut = ∆u −∇p (14)

∇ · u = 0, (15)

in Ω1 with Dirichlet boundary conditions, and we are given the initial velocity
u(x, t0) and pressure p0(x) = p(x, t0). We hold the pressure constant in time,
and advance the momentum equation in time to t = t0 + ∆t by solving

u∗

t = ∆u∗ −∇p0(x). (16)

The approximate solution to (14)–(15) is then generated by performing the
projection

u(x, t0 + ∆t) ≈ P1u
∗(x, t0 + ∆t). (17)

9



To show that u∗(x, t0 + ∆t) is close to a divergence-free field, we expand
u∗(x, t0 + ∆t) and u(x, t0 + ∆t) as ∆t → 0 and show that u(x, t0 + ∆t) =
u∗(x, t0 + ∆t) + O(∆t2). First, the expansion of u(x, t0 + ∆t) is

u(x, t0 + ∆t) = u(x, t0) + ∆tut(x, t0) +
∆t2

2
utt(x, t0) + O(∆t3). (18)

Using equation (14) to eliminate one time derivative gives

u(x, t0 + ∆t) = u(x, t0) + ∆t
(

∆u(x, t0) −∇p(x, t0)
)

+
∆t2

2

(

∆ut(x, t0) −∇pt(x, t0)
)

+ O(∆t3).
(19)

Similarly,

u∗(x, t0 + ∆t) = u∗(x, t0) + ∆t
(

∆u∗(x, t0) −∇p0(x)
)

+
∆t2

2

∂

∂t

(

∆u∗(x, t) −∇p0(x)
)∣

∣

∣

t=t0
+ O(∆t3).

(20)

Because u∗(x, t0) = u(x, t0) all occurrences of u∗ can be eliminated on the
right side of this equation to get

u∗(x, t0 + ∆t) = u(x, t0) + ∆t
(

∆u(x, t0) −∇p0(x)
)

+
∆t2

2

(

∆ut(x, t0)
)

+ O(∆t3).
(21)

Comparing the expansions (19) and (21) and using that p0(x) = p(x, t0), we
get that

u∗(x, t0 + ∆t) = u(x, t0 + ∆t) +
∆t2

2
∇pt(x, t0) + O(∆t3). (22)

Therefore, the intermediate velocity that is projected is within O(∆t2) of a
divergence-free field. Furthermore, P1u

∗(x, t0 +∆t) = u(x, t0 +∆t)+O(∆t3),
since the second-order term is a gradient field.

4.4 Continuity of extensions from direct forcing

The intermediate velocity that is generated by a forcing method will be contin-
uous across the embedded boundaries because the forcing enforces the Dirich-
let boundary condition. However, the solution will not generally be smooth
across the embedded boundaries. We argue via a simple example why the
extended intermediate velocity is only continuous.

Consider the solution to the forced diffusion equation in one dimension on the
semi-infinite domain x > 0 with homogeneous Dirichlet boundary condition
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u(0, t) = 0. Discretize the entire real line using the points xj = (j + 1/2)h,
and solve the discrete equations for all j. The boundary condition is enforced
by applying a force at the first grid point of the extension, x−1. The force
applied is chosen to enforce the algebraic condition un

−1 = −un
0 for all n,

where un
j = u(xj, n∆t).

The discrete solution at the grid points in the extension j < −1 are coupled
to the physical domain only through un

−1. We may view the solution in the
extension as the solution to the unforced heat equation on the semi-infinite
domain x < −h/2 with the time-dependent Dirichlet boundary condition
u(−h/2, n∆t) = un

−1. Because un
−1 = −un

0 = O(h), the solution on the ex-
tension is O(h). Therefore as h → 0, the solution in the extension converges
to zero, while the solution in the physical domain converges to the solution of
the PDE, which is zero at the boundary, but need not have zero derivative.
Therefore the discrete solution on the extended domain converges to a func-
tion that is continuous but not necessarily differentiable across the interface
between the physical domain and the extension. This is illustrated in Figure
2.

solution O(h)
on extension

u=0 u=0

Physical DomainExtension

Refine mesh

Fig. 2. Illustration of solution behavior from a forcing method for the one-dimen-
sional forced diffusion equation with homogeneous boundary condition. The discrete
solution typically converges to a function that is continuous but not differentiable
across the embedded boundary.

When the intermediate velocity is only continuous across the embedded bound-
aries, it is not obvious that projection and decomposition (8) can be performed,
since this involves derivatives of functions that are not differentiable. As men-
tioned previously, we only need that ∇ · u∗

e ∈ L2(Ω) in order to perform the
projection. In general, the intermediate velocity is differentiable on the closure
of Ω1, differentiable on the closure of Ω2, and continuous in Ω. In particular,
u∗

e is continuous across Γ. In other words, there could be a jump in the one-
sided derivatives of the components of u∗

e on Γ. As a result, the components of
u∗

e are weakly differentiable in Ω, with derivatives that are bounded, and thus
∇ · u∗

e ∈ L2(Ω). Therefore, the projection can be applied to the intermediate
velocity in direct forcing methods despite the lack of smoothness.
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4.5 Spatially discrete problem

In this section we consider the spatially discrete problem, and we show that
when the extended velocity is not smooth across Γ, the error in the discrete
problem is larger near this interface than in the rest of the domain. Although
the scheme converges as the mesh spacing goes to zero, the order of accuracy
is reduced by the lack of smoothness.

Suppose that the extended domain, Ω, is discretized into regular cells of width
h with centers (xi, yj) = ((i + 1/2)h, (j + 1/2)h). Let uh = (uh, vh) represent
a discrete velocity field and φh represent a discrete scalar field. We consider
the standard staggered discretization, so that the horizontal component of the
velocity, uh, is stored at the vertical cell edges, the vertical component of the
velocity, vh, is stored at the horizontal cell edges, and scalars (e.g. φh) are
stored at the cell center. See Figure 3.
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vh
i,j+1/2

uh
i+1/2,j

φh
i,juh

i−1/2,j

vh
i,j−1/2

Fig. 3. Example of a staggered grid discretization. The velocity field uh = (uh, vh)
is stored at the cell edges as shown, and scalar fields are stored at the cell centers.

Let D denote the discrete divergence operator, defined as

(

Duh
)

i,j
=

uh
i+1/2,j − uh

i−1/2,j

h
+

vh
i,j+1/2 − vh

i,j−1/2

h
. (23)

Let G be the discrete gradient operator, Gφ = (G1φ
h, G2φ

h), where the first
component is

(

G1φ
h
)

i−1/2,j
=

φh
i,j − φh

i−1,j

h
, (24)

and similarly the second component is

(

G2φ
h
)

i,j−1/2
=

φh
i,j − φh

i,j−1

h
. (25)
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Γ

Fig. 4. The open circles denote the centers of regular grid cells; the cell center and
all four centers of the edges are on the same side of the interface. The solid circles
represent the centers of the irregular cells.

As with the continuous problem, a discrete vector field uh∗ can be decomposed
into the sum of a discretely divergence-free field and a discrete gradient by
solving the discrete Poisson equation

Lφh = DGφh = Duh∗, (26)

where L is the standard five-point, second-order accurate, discrete Laplacian.
The discretely divergence-free field is then

uh = uh∗ − Gφh. (27)

In the absence of an internal interface, the discrete projection is a second-
order accurate approximation to the continuous projection. We next address
how the internal interface affects the accuracy of the discrete approximation.
We define regular grid cells as those whose center and four edge velocities lie
entirely in Ω1 or entirely in Ω2, i.e. the cell center and the four centers of the
edges are all on the same side of the interface Γ. Other grid points are called
irregular points. See Figure 4.

We assume that the extended velocity field, ue, is at least C3 in Ω1 and in Ω2.
For the regular grid points

Duh
e = ∇ · ue + O(h2), (28)

where the truncation error term is proportional to the third derivatives of ue.
At the irregular grid points, the truncation error of the derivatives depends
on the smoothness of the velocity across Γ.
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To illustrate the effect of smoothness on the spatially discrete problem, con-
sider a scalar function g(x) defined by

g(x) =







g−(x) if x < x0

g+(x) if x > x0,
(29)

where we assume that both g− and g+ are smooth. The centered difference of
g at x0 is

g(x0 + h/2) − g(x0 − h/2)

h
=

1

h

(

g+(x0) − g−(x0)
)

+
1

2

(

g+
x (x0) + g−

x (x0)
)

+
h

8

(

g+
xx(x0) − g−

xx(x0)
)

+
h2

48

(

g+
xxx(x0) + g−

xxx(x0)
)

+ O
(

h3
)

. (30)

Thus if g is at least C2 at x0, then the centered difference is second-order
accurate at x0. If g is only C1, then this centered difference is first-order
accurate, and if g is only C0, then the error in the approximation is order one.
Although we considered the centered difference at x0 for simplicity, the orders
of accuracy hold for the centered difference about any point in the interval
(x0 − h/2, x0 + h/2).

At the irregular grid cells, the discrete divergence involves velocities from both
sides of the interface. If the intermediate velocity is C2 across the interface Γ,
then the truncation error at the irregular points is O(h2), which is the same as
at the regular points, and the discrete projection is second-order accurate. If
the intermediate velocity is only C1 across the interface, then the truncation
error in the discrete divergence is O(h) at the irregular points. The error
term is proportional to the jump in the second derivative. It has long been
observed in practice that if the truncation error is O(h) on a lower dimensional
set of points (codimension one in the limit) and O(h2) everywhere else, then
the error in the solution of the discrete Poisson equation is O(h2) in the max-
norm. However, it was not until recently that this result was rigorously proved
by Beale and Layton [22].

Next consider the most interesting case in which the velocity is only C0 across
the interface, which is the most relevant case for understanding direct forcing
methods. In this case, the truncation error of the discrete divergence is O(1)
at the irregular points, i.e. this is an inconsistent discretization. Although
Theorem 2.1 from [22] does not apply in this case, the lemmas used to prove
the theorem can be adapted to give bounds on the error.

We summarize two lemmas from [22] that we use to estimate the error in the
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discrete projection. Let fh
irr be a discrete scalar function that is nonzero only

on irregular cells. By Lemma 2.2 of [22], there exists a vector grid function F h

such that
fh

irr = DF h, (31)

and
‖F h

k ‖∞ ≤ Ch‖fh
irr‖∞, (32)

where F h
k is the kth component of F h, for some constant C independent of

the grid spacing h. Lemma 2.3 of [22] gives a bound on the solution to the
discrete Poisson equation in terms of the size of the forcing function at the
regular and irregular grid points. Specifically, suppose that φh is the solution
to

Lφh = fh
reg + fh

irr

= fh
reg + DF h,

(33)

with homogeneous Dirichlet boundary conditions. Then

‖φh‖∞ ≤ C0

(

‖fh
reg‖2 +

∑

k

‖F h
k ‖∞

)

, (34)

and

‖Gφh‖∞ ≤ C1 log
(

h−1
)

(

‖fh
reg‖2 +

∑

k

‖F h
k ‖∞

)

, (35)

where the constants C0 and C1 are independent of the grid spacing. Although
this second lemma applies to the Dirichlet problem, it can be adapted to the
Neumann problem as discussed in [22].

To apply these lemmas to the discrete projection, consider the case when u

is a divergence-free field on Ω1, and ue is an extension of u to all of Ω that
is divergence-free and continuous (but not differentiable) across Γ. (Note that
the error bounds derived below apply to the case when the velocity projected
is not divergence-free.) Let uh

e be the representation of ue on the grid with
spacing h. Then

Duh
e =







O(h2) at regular points

O(1) at irregular points
. (36)

To perform the discrete projection, we solve

Lφh = Duh
e . (37)

Comparing this equation with (33), we use (31), (32) and (35) to arrive at the
bound on the gradient

‖Gφh‖∞ ≤ C1 log
(

h−1
) (

O(h2) + O(h)
)

= O (h log(h)) .
(38)
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The projected discrete velocity is then

Puh
e = uh

e − Gφh = uh
e + O (h log(h)) . (39)

Therefore as h goes to zero the discrete projection operator converges to the
continuous projection operator in the max-norm. Although this bound on
the error is less than first-order, as we show in our numerical tests, we ob-
serve a first-order error in practice in the max-norm, which is consistent with
the observations from [22]. In practice it is difficult to distinguish between
O (h log(h)) and O (h).

The bound above applies to the max-norm of the error. Because the larger
truncation errors are concentrated near the interface Γ one would hope that
the errors are also concentrated near the interface. Our numerical tests confirm
this, and we obtain higher rates of convergence in the 1-norm and 2-norm as
discussed in Section 5.1.1.

5 Computational tests

5.1 Projection

We begin by demonstrating how the smoothness of the extension affects the
accuracy of the discrete projection. Since we are interested in the projection
of nearly divergence-free fields, we apply the discrete projection to divergence-
free fields. The first test problem is only continuous across an embedded
boundary. We verify our bound on the max-norm of the error and demon-
strate that the errors converge at a faster rate in the 1-norm and 2-norm,
indicating that the additional error introduced by the lack of smoothness is
indeed concentrated near the interface.

The domain used in these problems is a circle of radius R. This circular domain
is embedded into a larger square domain. In the notation of the previous
section,

Ω1 = {(x, y) : x2 + y2 < R2} (40)

Ω = [−L/2, L/2] × [−L/2, L/2] (41)

Ω2 = Ω \ Ω1. (42)

In the computational tests, L = 1 and R = 0.4. We use a staggered grid and
a MAC projection as described in Section 4.5.
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5.1.1 Projection of a C0 divergence-free velocity

For a C0 divergence-free test problem, we begin with a rotational flow defined
by the angular velocity

uθ = Ar2(R − r) H(R − r), (43)

where

A =
27

4R3
, (44)

so that the maximum velocity is 1, and H is the Heaviside function. In the
basis of rectangular coordinates, the velocity field is

u = Ar(R − r)H(R − r)
(

yi − xj
)

, (45)

where i and j are the unit direction vectors. This velocity field is divergence-
free almost everywhere, but it is not differentiable across the interface r = R.
The error introduced by the discrete projection is

eh = uh − Puh, (46)

which is equal to the discrete gradient field Gφh.

Table 1 shows the 1-norm, 2-norm, and max-norm of the error in the first
component of the velocity from the discrete projection as the grid spacing
decreases. By symmetry, the error is the same in both components of the
velocity. The max-norm of the error shows first-order convergence (or slightly
less than first-order), as predicted by our analysis. The convergence in the 1-
norm and 2-norm is more rapid. The error shows second-order convergence in
the 1-norm, and order 1.5 in the 2-norm as demonstrated by the log plots of the
errors in Figure 5. These orders of convergence in the integral norms indicate
that the errors are first-order near the embedded boundary and second-order
away from the boundary. In Figure 6 we plot the errors on the 32×32 grid, and
we see that indeed the errors are much larger near the embedded boundary
than in the rest of the domain.

5.1.2 Projection of a C1 divergence-free velocity

For comparison, we consider a velocity field which is divergence-free and C1

across the internal boundary. We again use a rotational flow with angular
velocity

uθ = Ar2(R − r)2 H(R − r), (47)

and the normalization is

A =
16

R4
, (48)

so that, as before, the maximum velocity is 1, and H is the Heaviside function.
Again the error introduced by the discrete projection is (46).
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Table 1
Errors from a refinement study of the discrete projection of the velocity field (45)
which is only C0 across the internal boundary for different grid spacings, h. The
error in the first component is shown. By symmetry, the norms of the errors are
identical in the two components. The convergence is second-order in the 1-norm,
order 1.5 in the 2-norm, and first-order in the max-norm.

h ‖e‖1 ‖e‖2 ‖e‖∞

2−5 8.62 · 10−4 1.86 · 10−3 1.67 · 10−2

2−6 3.28 · 10−4 8.42 · 10−4 8.88 · 10−3

2−7 6.83 · 10−5 2.81 · 10−4 5.57 · 10−3

2−8 1.94 · 10−5 1.07 · 10−4 3.08 · 10−3

2−9 5.02 · 10−6 3.73 · 10−5 1.52 · 10−3
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Fig. 5. Plots of the errors from the refinement study data in Table 1 for the C0

velocity field. For reference, lines of slope 1, 1.5, and 2 are displayed, which indicate
first-order convergence in the max-norm, order 1.5 convergence in the 2-norm, and
second-order in the 1-norm, respectively.

Table 2 shows the 1-norm, 2-norm, and max-norm of the error in the projection
as the grid spacing decreases. As expected, the convergence in all norms is
second-order, even though the local truncation error is first order near the
embedded boundary. In Figure 7 we plot the errors for the 32×32 grid, and
we see that the error near the boundary is comparable in size to the error in
the rest of the domain.
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Fig. 6. Plot of the error from the discrete projection of the velocity field (45) which
is only C0 across the boundary R = 0.4. The error in the first component is plotted.
The errors are much larger near the boundary than in the remainder of the domain.

Table 2
Errors from a refinement study of the discrete projection of the velocity field (47)
which is C1 across the internal boundary for different grid spacings, h. The error in
the first component is shown. By symmetry, the norms of the errors are identical in
the two components. The convergence is second-order in all norms.

h ‖e‖1 ‖e‖2 ‖e‖∞

2−5 3.14 · 10−4 4.23 · 10−4 1.41 · 10−3

2−6 7.31 · 10−5 9.57 · 10−5 3.46 · 10−4

2−7 1.81 · 10−5 2.36 · 10−5 9.18 · 10−5

2−8 4.50 · 10−6 5.83 · 10−6 2.29 · 10−5

2−9 1.13 · 10−6 1.46 · 10−6 5.83 · 10−6

5.2 Navier-Stokes tests

In the previous section we verified the results of our analysis on the accuracy
of the projection alone. In this section we consider the accuracy of projection
methods for solving the Navier-Stokes equations. We solve the incompress-
ible Navier-Stokes equations in two spatial dimensions for the flow through
a channel with a circular obstacle inside the channel. The computational do-
main is [0, 3]× [0, 1] (dimensionless) with periodic boundary conditions in the
horizontal direction and no-slip boundary conditions on the top and bottom
of the channel. There is a stationary circular obstacle with radius 0.2 with
center (1, 0.4) on which the flow satisfies the no-slip condition. The Reynolds
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Fig. 7. Plot of the error of the discrete projection of the velocity field (47) which is
C1 across the boundary R = 0.4. The error in the first component is plotted. The
errors near the boundary are comparable in size to those throughout the domain.

number is set to 50. The fluid is initially at rest; we drive the flow with a con-
stant background force in the x-direction, f = (8.0, 0)T, and we solve for the
velocity field at time t = 0.1. The maximum magnitude of the velocity field is
approximately 1.51. The maximum horizontal velocity is also approximately
1.51, and the maximum vertical velocity is about 0.55. All reported errors are
absolute errors. The velocity field is displayed in Figure 8.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

Fig. 8. The velocity field through a two dimensional channel with a circular obstruc-
tion which is used to test the accuracy of the Navier-Stokes solver.

5.2.1 Zero velocity on the extension

The computational domain is discretized using a staggered grid. The momen-
tum equation is solved only on the physical domain (outside the obstacle).
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Before projecting, the velocity inside the obstacle is set to zero, as motivated
by the discussion in Section 4.2. To advance the momentum equation for the
intermediate velocity, the advection terms are discretized explicitly using a
second-order Adams-Bashforth method, and the pressure gradient is lagged
from the previous time step. A Crank-Nicolson discretization is used for the
viscous terms. At grid points adjacent to the obstacle, the stencil of the dis-
crete Laplacian is modified to include the point(s) on the boundary of the
obstacle. For example, in one dimension, suppose that xj = jh is in the phys-
ical domain, xj+1 = (j + 1)h is outside the physical domain, and the obstacle
boundary is located at xb = (j +α)h for some 0 < α < 1. The discrete second
derivative at point j is

(uxx)j =
2α uj−1 − 2(1 + α) uj + 2ub

α(1 + α)h2
+ O (h) . (49)

Although the local truncation error is first-order in space, the error that results
in the solution is second-order.

The solver used for the momentum equation alone (no projection) is second-
order accurate in space and time. This has been verified with computational
tests (results not shown). The projection is performed on the extended domain,
[0, 3]× [0, 1] (i.e. inside and outside of the obstacle). The intermediate velocity
on the extension is zero (inside the obstacle). Thus the velocity is divergence-
free on the extension, and because the velocity satisfies the no-slip condition
on the obstacle, the velocity is continuous across the obstacle boundary. For
more details on the discretization, see Appendix A.1.

We perform a refinement study to estimate the rate of convergence. On the
coarsest mesh, the space step is 2−5 and time step is 10−2. Time and space
are refined simultaneously by factors of two. Since an analytic solution for
the velocity is not available, we estimate the error on a given mesh by sub-
tracting the numerical solution on the next finest mesh. The velocity on the
finer mesh must be interpolated to the coarser mesh, and this interpolation is
appropriately modified near the obstacle boundary.

The results of the refinement study are displayed in Table 3. We report the
norms of the estimated errors for the one-norm, two-norm, and max-norm
for both the horizontal and vertical components of the velocity field, u and v
respectively. The order of convergence is computed from fitting a line through
the log of the norm of the error versus the log of the grid spacing.

Our analysis predicts that the rate of convergence should be first-order in the
max-norm, and our previous numerical tests of the projection suggest that the
convergence will be second-order in the one-norm and order 1.5 in the two-
norm. These are roughly the orders that we observe for the vertical velocity,
v. For the horizontal velocity, the rate of convergence is slightly better than
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predicted in the two-norm and in the max-norm. The convergence appears to
be second-order in the two-norm.

Recall that the source of the lower-order errors is related to the jumps in
the derivatives of the velocity across the embedded boundary. In the tests
involving only the projection presented in Section 5.1.1, we constructed the
velocity so that the jump in the derivative was uniform around the embedded
boundary. In this test involving the Navier-Stokes equations, the jump in the
velocity is not uniform around the embedded boundary, and as a result we
observe higher rates of convergence.

Table 3
Refinement study for Navier-Stokes equation in which the momentum equation is
solved only on the physical domain, and then it is extended continuously with a
divergence-free field (identically zero).

u v

h ‖e‖1 ‖e‖2 ‖e‖∞ ‖e‖1 ‖e‖2 ‖e‖∞

2−5 1.46 · 10−2 1.90 · 10−2 7.93 · 10−2 2.96 · 10−3 7.85 · 10−3 1.28 · 10−1

2−6 3.89 · 10−3 5.02 · 10−3 3.23 · 10−2 7.52 · 10−4 1.95 · 10−3 4.31 · 10−2

2−7 9.43 · 10−4 1.30 · 10−3 1.27 · 10−2 2.33 · 10−4 7.79 · 10−4 2.39 · 10−2

2−8 2.32 · 10−4 3.46 · 10−4 5.41 · 10−3 6.91 · 10−5 2.67 · 10−4 1.12 · 10−2

order 2.00 1.93 1.30 1.80 1.60 1.14

5.2.2 Forcing method

For comparison, we repeat this test using a forcing method to solve the mo-
mentum equation. We use the method of Kim et al. [5]. The forces are chosen
so that at the first grid point on the extended domain (inside the obstacle in
this case) the intermediate velocity is a linear extrapolation of the velocity
from the physical domain.

This method is in the form of a predictor-corrector. A predicted velocity is
used to estimate the force necessary to ensure that the velocity at the first
cell in the extension is the extrapolation from the physical domain. This force
is then applied at these points, and the momentum equation is advanced. We
modify this procedure in our tests to iterate until the velocity is within some
tolerance of the extrapolated value. Further details on the discretization are
in Appendix A.2. Although setting the grid values on the extrapolation gives
an even larger truncation error (order one) for the discrete Laplacian, the
solution to the momentum equation is still second-order accurate. We have
verified that in the absence of the projection, the solution to the momentum
equation is second-order accurate in space and time (results not shown).

22



The results of the refinement study are presented in Table 4. In all norms and
for both components of the velocity, the convergence appears to be between
first and second order. Comparing with the results of the previous test, the
estimated errors in this test are generally larger, except in the max-norm of
the vertical velocity on the finest mesh.

Table 4
Refinement study for Navier-Stokes equations using a forcing method.

u v

h ‖e‖1 ‖e‖2 ‖e‖∞ ‖e‖1 ‖e‖2 ‖e‖∞

2−5 2.89 · 10−2 2.61 · 10−2 1.75 · 10−1 6.97 · 10−3 1.10 · 10−2 1.31 · 10−1

2−6 8.25 · 10−3 1.11 · 10−2 1.21 · 10−1 4.01 · 10−3 6.76 · 10−3 6.61 · 10−2

2−7 2.40 · 10−3 2.50 · 10−3 3.58 · 10−2 1.04 · 10−3 1.70 · 10−3 2.22 · 10−2

2−8 2.38 · 10−3 1.77 · 10−3 1.14 · 10−2 8.36 · 10−4 1.08 · 10−3 6.01 · 10−3

order 1.26 1.38 1.36 1.11 1.21 1.49

There are two significant differences between this forcing method, and the
method presented previously. First, the way in which the boundary conditions
on the embedded boundary are enforced is different, and second, the velocity
on the extension is nonzero in the forcing method. Since this method would
give second-order accurate results without the projection, it appears that it
is the nonzero velocity on the extension which is giving larger than expected
errors.

As argued in Section 4.4, we expect the velocity on the extension to go to zero
as the mesh is refined. In Table 5 we show the one-norm and max-norm of the
velocity on the extension, and indeed it is going to zero as the mesh is refined.
The large errors are arising from the lack of smoothness in the velocity across
the extension. It is the size of the jump in the velocity gradient which controls
this error. In Figure 9 we show ux computed with a finite difference along
line of fixed height for both the forcing method and the method in which the
velocity on the extension is set to zero. In the forcing method the velocity
is smooth across the interface, but there is a large jump in the derivative at
the second point inside the extension. The size of the discontinuity in the
derivative is much larger in the forcing method than in the other method.
This explains the much larger errors observed in the forcing method.

These plots also suggest why the error in the max-norm decreased at a faster
rate than our analysis predicts. It is not because the method is more accurate,
but that the size of the jump in the derivative is decreasing as the grid is
refined. Thus the size of the first order error introduced from the lack of
smoothness is decreasing, giving the illusion of faster convergence. Also, the
jump in the derivative occurs one grid cell inside the extension, rather than
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at the boundary between the physical domain and the extension.

Table 5
Norms of the velocity on the extension as the grid is refined.

h ‖uext‖1 ‖uext‖∞ ‖vext‖1 ‖vext‖∞

2−5 2.12 · 10−1 8.23 · 10−1 1.05 · 10−1 5.74 · 10−1

2−6 9.84 · 10−2 6.26 · 10−1 5.75 · 10−2 3.04 · 10−1

2−7 5.13 · 10−2 3.69 · 10−1 2.82 · 10−2 1.45 · 10−1

2−8 2.69 · 10−2 1.97 · 10−1 1.35 · 10−2 8.61 · 10−2
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Fig. 9. Plot of the ux computed using a finite difference along the line y = 0.328125
computed from the (a) forcing method and (b) method in which the intermediate
velocity is extended by zero. The dashed line denotes the physical location of the
embedded boundary. The results are shown for two different mesh spacings. Squares
are used for h = 2−5, and circles used for h = 2−7.

6 Discussion

In this paper we presented analysis and numerical tests aimed at understand-
ing how well, if at all, projection methods work when the projection is per-
formed over an extended domain that includes regions outside the physical
domain. This work was motivated by direct forcing methods, in which the
equations of motion are solved on these extended domains. In general, one
expects the flow on the extended domain to affect the flow on the physical
domain through the projection. The intermediate velocity field that arises in
a projection method is not arbitrary; it is close to a divergence-free field. This
is the key reason why projection methods on extended domains work. For
the spatially continuous problem, we showed that the error in performing the
projection on the extended domain is of the same size as the error introduced
from the projection method on the original domain.
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Generally, the intermediate velocity that arises from direct forcing methods is
not smooth across the embedded boundaries. When performing the projection
discretely, this lack of smoothness introduces a large error near the embedded
boundaries. We analyzed the accuracy of the discrete projection by extend-
ing the results of Beale and Layton [22]. We showed that the projection is
first-order accurate in the max-norm when the intermediate velocity is only
continuous across the embedded boundaries. Numerical tests showed that this
error is highly localized near the embedded boundaries, and as a result, we
observed second-order convergence in the one-norm, although when the pro-
jection was combined with a direct forcing method to solve the incompressible
Navier-Stokes equations, the convergence rate depended on the method used
to solve the momentum equation.

Several papers have commented on the treatment of the velocity on the exten-
sion. Fadlun et al. [4] and Zhang and Zheng [8] compared letting the velocity
evolve on the extension and setting it to the value of the solid body after each
time step. Both papers concluded that there is little difference in the results,
although they did not quantify the difference. We argue that as discrete time
and space are refined, the velocity on the extension will converge to the ve-
locity of the solid body, and so it is not surprising that these approaches gave
similar results.

From our analysis, we conclude that the dominant error in projecting on the
extended domain is the lack of smoothness of the intermediate velocity across
the internal boundaries, not the flow on the extension. This explains why
others have observed that the treatment of the extension does not strongly
influence the flow on the physical domain. In our numerical tests, we observed
smaller errors when the velocity was reset on the extension. This is partly
because the jumps in the derivatives of the velocity were smaller when the
velocity was reset.

Fadlun et al. [4] speculated that the projection worked in their forcing method
because the gradient portion of the intermediate velocity was effectively zero
on the embedded boundaries, although they did not provide any numerical
evidence to support this conjecture. This argument can be formalized to show
that if the gradient portion of the intermediate velocity is indeed zero on
the embedded boundary, then the projection is independent of the extension
provided the extension is divergence-free. A zero gradient may result in some
specific problems, but it is not generally true that this gradient field would
or should be zero [15]. In our numerical tests we observed a nonzero pressure
gradient near the embedded boundaries. This paper provides a more complete
picture of why projection methods can be used with direct forcing methods.

According to our analysis, the solution will generally be first-order accurate in
the max-norm, regardless of the accuracy of the method used to advance the
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momentum equation. In practice, one may observe higher rates of convergence.
The first-order error is proportional to the size of the jump in the velocity
gradient across the embedded boundaries. If the jumps in the derivatives are
small, the error from the lack of smoothness may be smaller than other errors
in the problem.

Some papers on forcing methods have reported second-order convergence in
max-norm [5,6,16], which appears contrary to the analysis presented in this
paper. Our analysis predicts that the limitation on accuracy arises from the
lack of smoothness of the intermediate velocity across the embedded boundary.
In the refinement studies of [5,6], the velocity field tested was chosen to be
smooth across the embedded boundary, and so their results are consistent with
the predictions of this paper. In more general tests, one will not have a smooth
extension across the embedded boundary. The analytic results from this paper
and the recent numerical results from [16] indicate that further investigation
on higher-order accuracy is needed.

Our numerical tests involving the Navier-Stokes equations showed that the
convergence rate depends on the type of forcing method used to solve the
momentum equation. We obtained approximately first-order convergence in
the max-norm and second-order convergence in the one-norm and two-norm
when the momentum equation was solved only on the physical domain and
the velocity on the extended domain was set to zero. The convergence rates in
the max-norm and one-norm agreed with those from the test of the projection
alone. The better convergence in the two-norm resulted because the first-order
errors were concentrated at only a few points near the boundary, while in the
test of the projection alone the larger errors were more uniform along the
boundary.

The convergence rate of the forcing method in which the extended domain
and the physical domain were coupled in the discrete momentum equation
was between first and second order in both the max-norm and in the integral
norms. The leading-order error is controlled by the jump in the derivative of
the intermediate velocity across the embedded boundary. For this method,
the effective jump decreased as the grid was refined, which gave the illusion
of better than first-order convergence. The slower convergence in the integral
norms indicates that the error did not remain concentrated near the embedded
boundary. This may result from the stronger coupling of the physical domain
and the extended domain in the discrete momentum equation.

In this paper we did not address the many different ways of using forcing
to enforce the boundary conditions in the momentum equation. We only an-
alyzed how performing the projection over the extended domain affects the
accuracy of the method. It would be interesting to explore how the different
treatments of the momentum equation affect the accuracy. Such a comparison
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is beyond the scope of the current paper. However, we comment on methods
which use discretized delta functions to transmit the force from the immersed
boundary to the Cartesian grid [6,7]. These methods effectively smear the
location of the boundary over several grid cells, and so the intermediate ve-
locity is thus seemingly smoother near the boundary. This smearing does not
lead to higher-order accuracy because the intermediate velocity that results is
generally only first-order accurate near the boundary [17–19] and because as
the mesh is refined, the region over which the smearing occurs goes to zero.
Despite the local smoothing, the velocity is again approaching a function that
is not differentiable across the boundary.

Finally, we comment on how one might design a forcing method to obtain
a second-order accurate velocity. To achieve this accuracy, the intermediate
velocity must be differentiable across the embedded boundary. Since there
is some freedom in the treatment of the velocity on the extension, it may
be possible to force the velocity to be smooth across the embedded boundary.
Since the larger errors remained highly localized in some of our numerical tests,
it may be sufficient to ensure that the jump in the derivative occurs further
inside the extended domain, away from the embedded boundary. It is not clear
how to design efficient methods to achieve this smoothness. Additionally, one
must be careful to avoid introducing a large gradient field on the extension, in
which case our analysis breaks down, and convergence to the correct solution
is not guaranteed.

A Discretization details of Navier-Stokes tests

A.1 Zero velocity on extension

Given the velocity field, pressure, and pressure gradient at time level n, the
solution is advanced in time in five steps, which are described below.

(1) Advection terms: The advection terms are differenced in conservative
form ∇ · (uu). They are approximated at the half-time level by

∇ · (uu)n+1/2 =
3

2
∇ · (uu)n −

1

2
∇ · (uu)n−1 . (A.1)

The spatial differencing is performed with a centered difference. For ex-
ample, the component of ∇ · (uu) in the x-direction is computed by

(

(uu)x+(uv)y

)

i+1/2,j
=

(uu)i+3/2,j − (uu)i−1/2,j

2h
+

(uv)i+3/2,j − (uv)i−1/2,j

2h
.

(A.2)
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Because a staggered grid is used, u and v are stored at different spatial
locations. One of the velocity components must be spatially averaged to
compute the products uv. In the difference formula above this product is
computed by

(uv)i+1/2,j = ui+1/2,j

(

vi,j−1/2 + vi,j+1/2 + vi+1,j−1/2 + vi+1,j+1/2

4

)

. (A.3)

The component in the y-direction is computed similarly. No modifications
to differences are made near the embedded boundary. This introduces an
O(1) local error, but contributes only an O(h2) error to the solution of
the momentum equation.

(2) Viscous terms: The viscous terms are discretized implicitly, using Crank-
Nicolson discretization in time:

u∗ − un

∆t
= −∇pn +

1

2
(∆u∗ + ∆un) + gn+1/2, (A.4)

where the term gn+1/2 includes the advection terms and background
forces. The Laplacian is discretized using the standard, five-point, second-
order difference away from the boundary. Adjacent to the embedded
boundary the stencil is modified as described in Section 5.2.1. The physi-
cal domain and the extended domain decouple in this discretization. The
discrete equations are solved using SOR.

(3) Reset intermediate velocity on extension: Before projecting the
intermediate velocity is set to zero in the extension.

(4) Projection: The projection is performed over the extended domain, ig-
noring the embedded boundary. The projection is performed as described
in Section 4.5 using equations (26) and (27). The discrete equations are
solved using multigrid. The pressure and the pressure gradient are up-
dated by

pn+1 = pn +
φ

∆t
(A.5)

∇pn+1 = ∇pn +
∇φ

∆t
. (A.6)

This pressure update is only first-order for the pressure, but this error
does not affect the error in the velocity field [23].

(5) Reset velocity on the extension: After performing the projection, the
velocity field is reset to zero on on the extended domain.

A.2 Forcing method

For the forcing method the advection terms and projection are handled exactly
as described above. The forcing method differs from the method described in
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Section A.1 in two ways. The velocity is never reset on the extension, and
the boundary conditions on the embedded boundary are enforced using direct
forcing rather than modifying the stencil.

The momentum equation is again discretized in time using Crank-Nicolson:

u∗ − un

∆t
= −∇pn +

1

2
(∆u∗ + ∆un) + gn+1/2 + f , (A.7)

where, as before, gn+1/2 includes the advection terms and any background
forces, and f represents the forces needed to enforce the boundary conditions
on the embedded boundary. The forcing terms are applied only at the points
in the extended domain adjacent to the embedded boundary. We call these the
forcing points. The forces are chosen so that the velocity field at these forcing
points agrees with a velocity that is interpolated using points only from the
physical domain and on the embedded boundary. The interpolation scheme is
that used by Kim et al. [5], which is described below.

Algebraically, the interpolation can be written as

B1u
∗ + B2ub = IFu∗, (A.8)

where B1 and B2 are matrices defined by the interpolation scheme, ub rep-
resents the velocity evaluated at a set of discrete points on the embedded
boundary, and IF is the diagonal matrix corresponding to the discrete char-
acteristic function of the forcing points. The left side of this equation is the
velocity interpolated to the forcing points from the physical domain and the
boundary points, and the right side is the value of the velocity at the forcing
points.

Because the scheme is implicit, applying the forcing is not as straightforward as
described by equation (4). Equations (A.7) and (A.8) together determine the
velocity and force. To approximately solve this coupled system of equations,
we use the iteration

u∗,k+1 − un

∆t
= −∇pn +

1

2

(

∆u∗,k+1 + ∆un
)

+ gn+1/2 + fk (A.9)

fk+1 = fk +
B1u

∗,k+1 + B2ub − IFu∗,k+1

∆t
. (A.10)

This iteration is performed until ‖fk+1 − fk‖∞ < 1, which is sufficient to
obtain second-order accuracy in space and time . The accuracy of this scheme
was tested, and in the absence of the projection, the solution is second-order
accurate in space and time in the max-norm. We experimented with a tolerance
of O(∆t), and the results did not change significantly.

To complete the description of the scheme, we give the details of the interpola-
tion scheme, which is the scheme used by Kim et al. [5]. There are two types of
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forcing points: those with one neighbor inside the physical domain and those
with two neighbors inside the physical domain. We ensure that there are no
forcing points with three neighbors in the physical domain. First consider the
case of a forcing point which has only one neighbor point in the physical do-
main. See Figure A.1(a-b). Note that the figure is drawn as a node-centered
grid for simplicity, but in the computation we use a staggered grid. There
are five labeled collinear points in Figure A.1(a-b). The point F is where the
forcing is applied. Points A and C are mesh points in the physical domain.
Point B is on the boundary in between points F and C at a distance ah away
from point F, and point I is distance 2ah away, where 0 < a < 1.

2ah

I F

ah

BCA

(a)

ah

2ah

A FBCI

(b)

bh

ah F

B

A

C

D

(c)

Fig. A.1. Solid circles represent the points used in the interpolation from the physical
domain to the forcing point, which is represented by the open circle. (a-b) The
interpolation is performed by two successive linear interpolations. First to the point
I, represented by the square, followed by linear extrapolation to point F using the
values at I and B. (c) The value at point B is set so that the bilinear interpolant
through points A, D, C, F satisfies the boundary condition at point B.

The interpolation formula is derived in two steps. First the velocity is inter-
polated to point I using either points C and B, as in Figure A.1(a), or using
points C and A, as in Figure A.1(b). The interpolated value at point F, UF,
is then linearly extrapolated using the values at points I and B. Combining
these two interpolations gives the formula

UF =











1

1 − a
UB −

a

1 − a
UC if a ≤ 1/2

2UB − 2(1 − a)UC + (1 − 2a)UA if a > 1/2
. (A.11)

Next consider the case when the forcing point has two neighbors in the physical
domain, as depicted in Figure A.1(c). As before, point F is where the forcing is
applied. Points C and D represent the neighbor points in the physical domain
and point A is the common neighbor point to points C and D. The boundary is
approximated as a linear function through the two points where the boundary
intersects the line segments CF and DF. The value at F results from requiring
that the bilinear interpolant on ADFC satisfy the boundary condition at point
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B. This gives the interpolation formula at point F as

UF =
1

(1 − α)(1 − β)
UB −

α

1 − α
UC −

β

1 − β
UD −

αβ

(1 − α)(1 − β)
UA, (A.12)

where

α =
ab2

a2 + b2
and β =

a2b

a2 + b2
. (A.13)
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