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Abstract. Explicit time stepping schemes for the immersed boundary method require
very small time steps in order to maintain stability. Solving the equations that arise
from an implicit discretization is difficult. Recently, several different approaches have
been proposed, but a complete understanding of this problem is still emerging. A
multigrid method is developed and explored for solving the equations in an implicit
time discretization of a model of the immersed boundary equations. The model prob-
lem consists of a scalar Poisson equation with conformation-dependent singular forces
on an immersed boundary. This model does not include the inertial terms or the in-
compressibility constraint. The method is more efficient than an explicit method, but
the efficiency gain is limited. The multigrid method alone may not be an effective
solver, but when used as a preconditioner for Krylov methods, the speed-up over the
explicit time method is substantial. For example, depending on the constitutive law
for the boundary force, with a time step 100 times larger than the explicit method,
the implicit method is about 15-100 times more efficient than the explicit method. A
very attractive feature of this method is that the efficiency of the multigrid precondi-
tioned Krylov solver is shown to be independent of the number of immersed boundary
points.
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1 Introduction

The immersed boundary (IB) method was developed by Peskin [18] to solve the coupled
equations of motion of viscous fluidwith an immersed elastic boundary. Themethodwas
developed to simulate blood flow in the heart, and it has since been applied to many dif-
ferent biofluid applications, and it is increasingly being used in other engineering prob-
lems [12]. The method involves two coordinate systems and two discrete grids. The
fluid variables are represented in Eulerian coordinates which are discretized by a fixed,
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Cartesian grid. The immersed structures are represented in moving Lagrangian coordi-
nates. The structures move at the local fluid velocity, interpolated from the Eulerian grid
to the Lagrangian grid. The forces generated by the deformation of the structures are
transferred to the Eulerian grid and appear as a forcing term in the momentum balance
equation for the fluid.

Typical implementations of the IB method use a fractional stepping approach to solve
the coupled fluid and boundary equations. The fluid velocity and pressure are updated
for fixed boundary position, and then the boundary position is updated from the new
velocity. Because the fluid and boundary are updated separately, one can use stan-
dard methods for solving for the fluid motion. One reason for the popularity of the
IB method is that many different applications can be simulated with minor changes to
existing codes. However, in many applications the elastic time scales are well below the
physical time scales of interest, which means that the IB equations are very numerically
stiff. When alternating between updating the fluid velocity and boundary position, this
stiffness requires that the time step be very small in order to maintain stability.

Much effort has been devoted to both understanding and alleviating the severe time
step restriction of IB methods [5,14,21]. Early attempts at implicit methods were not very
efficient and thus not competitive with explicit methods [25], and some semi-implicit
methods still presented significant time step restrictions [10, 11]. Newren et al. [14] an-
alyzed the origin of instability in semi-implicit methods using energy arguments, and
they gave sufficient conditions for schemes to be unconditionally stable in the sense that
the total energy is bounded regardless of the size of the time step. Recently a variety
of stable semi-implicit methods have been developed [3, 7, 8, 15], as well as several fully
implicit methods [9,13]. Of course, these methods require more sophisticated algorithms
in which the velocity and boundary position are solved for simultaneously. These recent
methods are generally competitive in efficiency with explicit methods, and in some spe-
cial cases they can be faster by factors of hundreds. It remains an open question as to
whether there is a general, robust implicit method that is easy to use and more efficient
than the explicit method for large classes of problems, or whether specialized methods
will need to be developed for specific problems.

Many implicit methods reduce the full IB equations (fluid and boundary) to equa-
tions on only the boundary [2, 3, 13]. These methods achieve a substantial speed-up over
explicit methods when there are relatively few immersed boundary points [3]. In addi-
tion, some methods require that the boundaries be smooth, closed curves [7, 8]. Newren
et al. [15] explored Kryolv methods for solving the linearized IB equations for different
test problems. The relative efficiency of the implicit methods depended on the prob-
lem, and unpreconditioned Krylov methods were at least comparable in speed to explicit
methods. These results suggest that with appropriate preconditioning, this approach
will offer a significant improvement over explicit methods. One way to achieve gener-
ally applicable and robust efficient implicit methods is through the development of good
preconditioners for the linearized equations. This is the approach we take in this paper.

The main challenge in solving the implicit IB equations involves the fluid-boundary
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coupling. In this paper, we explore a model problem related to the implicit immersed
boundary equations in which we ignore the inertial terms and the incompressibility con-
straint. We develop and explore a multigrid method which simultaneously solves for
the unknown fluid velocity and boundary position. Multigrid has been used in the past
with explicit-time IB methods to solve the fluid equations [6, 19, 28] as well as in model
problems of the IB equations [17]. There are two significant complications to applying
multigrid to the implicit IB equations which involve the simultaneous solution of both
Eulerian and Lagrangian equations. One is the presence of both an Eulerian grid and a
Lagrangian grid, and so it is not clear how to coarsen the problem. The second compli-
cation is how to smooth the errors in immersed boundary equations. We explore these
issues on a model problem which resembles the singularly forced Poisson equation. The
model problem involves only one parameter (elastic stiffness) and its simplicity facilitates
algorithm exploration.

In the next section we describe the immersed boundary method. In Section 3 we de-
scribe the model problem explored in this paper. In Section 4 we present and explore the
multigrid method for the solving the model problem. The effectiveness of the multigrid
method as a solver for Krylov methods is presented in Section 5. Finally, some discus-
sion of the relevance of themodel problem and its relationship to the immersed boundary
method are presented in Section 6.

2 Immersed Boundary Equations

The IB method makes use of two coordinate systems: an Eulerian system for the fluid
velocity and pressure and a Lagrangian system for the elastic structure. Let Ω denote
the Eulerian domain, and let Γ represent the immersed boundary. The spatial location
of the immersed boundary is X(s,t), where s is a parametric coordinate. See Figure 1.
In general we use the convention of lowercase letters for Eulerian variables and capital
letters for Lagrangian variables.

The forces generated by the deformation of the boundary drive the motion of the
fluid. Generally, it is assumed that the immersed boundary is neutrally buoyant, so that
all of the boundary force is transmitted to the fluid. It is also assumed that the boundary
moves with the local fluid velocity. The communication between the boundary and the
background fluid is handled by convolutions with the Dirac delta function. The equa-
tions are

Re(ut+u·∇u)=∆u−∇p+ f (2.1)

∇·u=0 (2.2)

∂X(s,t)

∂t
=U(s,t)=

∫

Ω
u(x,t)δ(x−X(s,t))dx (2.3)

f =
∫

Γ
F(s,t)δ(x−X(s,t))ds (2.4)
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Γ

X(s,t)

Ω

Figure 1: The fluid domain Ω contains the immersed boundary Γ whose position is given by X(s,t).

The first two equations are the incompressible Naiver-Stokes equations to describe the
motion of the fluid, where u is the fluid velocity, p is the pressure, and Re is the Reynolds
number. The last two equations describe the boundary-fluid communication. The inte-
gral operator in (2.4) that transfers boundary forces to the fluid is called the spreading
operator, which we denote by S. The operator which transfers the fluid velocity to the
boundary is the adjoint of the spreading operator. Equations (2.3) and (2.4) can be ex-
pressed as

U=S∗u (2.5)

f =SF, (2.6)

respectively.

A constitutive law for the boundary forces is needed to complete the description of
the system. For simplicity, in this paper, we focus on linear constitutive laws. The three
constitutive laws we consider correspond to tethering forces, stretching forces, and bend-
ing forces:

tether: F=−γ(X−X0) (2.7)

stretch: F=γ
∂2X

∂s2
(2.8)

bend: F=−γ
∂4X

∂s4
(2.9)

In each case, the constant γ characterizes the stiffness of the elastic material. Tether forces
are used to enforce Dirichlet boundary conditions on the immersed boundary. The im-
mersed boundary is connected by linear springs (tethers) to a second boundary located
at position X0 whose motion is prescribed. If the stiffness is taken very large, the tether



5

forces cause the immersed boundary to move at approximately the same velocity as that
of the prescribed boundary. These force laws are all of form

F=−γA(X−X0), (2.10)

where A is a symmetric positive definite operator, and X0=0 for stretching and bending
forces.

3 Model Problem

In this paper, we explore a model problem rather than the full immersed boundary equa-
tions. We ignore the inertial terms and the incompressibility constraint, which gives the
scalar problem

∆u+SF=0 (3.1)

Xt =S∗u (3.2)

F=−γA(X−X0). (3.3)

The model problem only contains one parameter, the stiffness γ. We refer to u as the ve-
locity and F as the force, even though these quantities do not represent physical quanti-
ties. Boundary conditions for u on the Eulerian domain must be specified. For simplicity,
we use homogeneous Dirichlet boundary conditions (u=0 on ∂Ω).

By ignoring incompressibility, we reduce the velocity to a scalar and eliminate the
pressure as an unknown. The reduced number of unknowns in the model problem fa-
cilitates numerical explorations that are computationally intensive such as those that in-
volve computing the inverse or all of the eigenvalues of a matrix. Additionally, many
algorithms for solving the equations of viscous incompressible flow involve inverting,
or approximately inverting, Laplacian-like operators related to the viscous stress. Ex-
tending these algorithms to implicit IB methods involves inverting operators like those
that appear in the model problem which include both fluid viscosity and boundary elas-
ticity. Therefore, this model problem is a natural starting point for exploring multigrid
algorithms for implicit IB methods.

3.1 Time discretization

We use a backward Euler time discretization in which the positions of the spreading and
interpolation operators are lagged in time. As shown in [14], keeping the spreading and
interpolation operators fixed over the time step does not affect this stability as long as
the spreading and interpolation occurs at the same spatial location in the time step. The
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discrete time system is

∆un+1+SFn+1=0 (3.4)

Xn+1=Xn+∆tS∗un+1 (3.5)

Fn+1=−γA
(

Xn+1−Xn+1
0

)

. (3.6)

The last two equations can be used to eliminate the force in the first equation, leaving a
single linear equation to solve for the velocity:

(∆−αSAS∗)un+1=γSA
(

Xn−Xn+1
0

)

, (3.7)

where we define
α=∆tγ. (3.8)

Because A is positive definite and the Laplacian is negative definite, the operator ∆−

αSAS∗ is negative definite, and therefore, invertible. Once the velocity is known, it is
easy to compute the other unknowns.

The advantage of reducing the system (3.4)–(3.6) to the single equation (3.7), is that
all of the unknowns are on a single Eulerian grid. This facilitates the development of
multigrid methods. We note that many other implicit immersed boundary methods elim-
inate the velocity using a Schur complement to obtain a single equation for the unknown
boundary position [3,7,8,13]. However the Lagrangian grid is often unstructured, which
makes it difficult to develop multigrid methods.

3.2 Spatial discretization

For the test problems in this paper, the domain is the unit square [0,1]2. We use an equally
spaced, node centered discretization: (xi,yj) = (i∆x, j∆x). The discrete Laplacian is the
standard, second-order, five-point operator

(Lu)i,j =
ui−1,j+ui,j−1−4ui,j+ui+1,j+ui,j+1

∆x2
. (3.9)

The two-dimensional discrete delta function is the tensor product of two one-dimensional
delta functions:

δ2(x−X)=δ(x−X)δ(y−Y). (3.10)

The one-dimensional discrete delta function is

δ(r)=

{

1
4∆x

(

1+cos
(

πr
2

))

if r<2∆x

0 otherwise
. (3.11)

The discrete spreading operator is

(SF)i,j=∑
k

fkδ(xi−Xk)δ(yj−Yk)∆s, (3.12)
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where ∆s represents the grid spacing of the Lagrangian grid.
For second derivative on the boundary that appears in the stretching constitutive law

is discretized using the standard three-point, second-order discretization:

(

∂2X

∂s2

)

k

≈
Xk−1−2Xk+Xk+1

∆s2
. (3.13)

Similarly, the fourth derivative in the bending force law is discretized the five-point dif-
ference that results from two second differences.

4 Multigrid Method

In this section, we explore a multigrid method for solving equation (3.7). Two challenges
to developing an effective multigrid method for implicit immersed boundary methods
are (1) how to smooth the error and (2) how to coarsen. We explicitly form the matrix.
Note that forming the spreading operator is no more expensive than applying it. We
can then use standard smoothers such as Gauss-Seidel. The advantage of using problem
(3.7), is that we have eliminated the Lagrangian grid, and coarsening the Eulerian grid
is straightforward. We use standard geometric coarsening, with full-weighting for the
restriction operator and bilinear interpolation for the prolongation operator. It is not clear
what to use for a coarse grid operator. In the next section we compare the rediscretized
and Galerkin coarse grid operators.

4.1 Coarse grid operator

For an initial test, the domain is the unit square [0,1]2, and the immersed boundary is a
circle of radius 0.15 centered at the point (0.35,0.45). The Lagrangian grid spacing is half
that of the Eulerian grid, i.e. ∆s=∆x/2. See Figure 2. Homogeneous Dirichlet boundary
conditions on the velocity are enforced on the boundary of the square. We apply the
algorithm to the problem

(L−αSS∗)u=0, (4.1)

which corresponds to tethering forces (see equation (2.7)). The solution to this problem
is u= 0, and so the iterates are the error. The initial guess for u is random and scaled to
one in the max-norm. This choice is made so that all spatial frequencies are present in the
error.

We begin with a two-grid method in which the fine grid spacing is ∆x=2−6 and the
coarse grid spacing is ∆x= 2−5. On the coarse grid we perform an exact solve. We use
only two grids to avoid overlap of the stencil of the spreading operator with the bound-
ary. For a smoother, we use Gauss-Seidel with lexicographic ordering with one pre and
one post smooth. We compare the convergence rate of the multigrid algorithm with two
different coarse grid operators: one that is rediscretized and the Galerkin coarse grid op-
erator. Note that rediscretization involves coarsening the Lagrangian grid as well as the
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Figure 2: Computational domain for model problem one. The domain is the unit square with a circle of immersed
boundary points of radius 0.15 centered around (0.35,0.45).

Eulerian grid in order to define the coarse grid spreading and interpolation operators.
The Galerkin coarse grid operator is generated by interpolating up to the fine grid, ap-
plying the fine grid operator, and then restricting back down to the coarse grid. This can
be expressed as

(L−αSS∗)2h= I2hh (Lh−αShS
∗
h)I

h
2h, (4.2)

where Ih2h is the prolongation operator and I2hh is the restriction operator.

In Figure 3 we show the max-norm of the error for ten iterations of the algorithm
for the two different coarse grid operators for stiffnesses, α, in the range [102,105]. For
small values of the stiffness, the convergence in the two methods is very similar. The
convergence rate for α < 102 is very similar to α = 102, and we do not show results for
these smaller values of α. Thus, for α < 102 the convergence rate is like that of the Pois-
son equation. For the larger values of the stiffness, the errors in the method with the
rediscretized operator are amplified by each iteration. There is a dramatic change in con-
vergence behavior between α = 103 and α = 104. With the Galerkin coarse grid operator,
the convergence slows as the stiffness increases, but the error is always decreasing, al-
beit slowly. We tested this method for even larger values of α, and it always converged.
We conclude that the Galerkin coarse grid operator is necessary for convergence (at least
for our choices of coarsening strategy and smoother), and we use this approach in the
remainder of the paper.

4.2 Efficiency comparison

The results from the previous section suggest that themultigrid algorithmwith the Galerkin
coarse grid operator always converges, but the convergence is slow for large values of
the stiffness parameter. In this section we compare the efficiency of the multigrid method
with the efficiency of an explicit time method. Consider the explicit time discretization
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Figure 3: Max norm of the errors from the multigrid method applied to problem (4.1) with random initial data.
(a) Coarse grid operator from rediscretization. (b) Galerkin coarse grid operator.

in which the force is computed based on the current configuration of the boundary

Lun+1−γSAXn =0 (4.3)

Xn+1−Xn

∆t
=S∗un+1. (4.4)

From this system we eliminate un+1 to get

Xn+1−Xn

∆t
=γS∗L−1SAXn. (4.5)

Thus, the explicit method is stable when

α=γ∆t<
2

ρ
, (4.6)

where ρ is the spectral radius of S∗L−1SA.
We use the same domain as in the previous test. The spectral radii of S∗L−1SA for

the three different force operators on four different grids are given in Table 1. For the
stretching forces, the spectral radius grows linearly as the grid is refined, and for the
bending forces, the spectral radius grows cubically. Also in the same table, we give the
maximum value of α = γ∆t scaled by a power of ∆x. Notice that after rescaling, the
maximum value of α for stability of the explicit method is around 10 for all constitutive
laws. For a given stiffness, γ, we let ∆texp denote the maximum time step for stability
and αexp denote the corresponding maximum value of α. In general we define αexp by

αexp=
2

ρ
. (4.7)
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For this first test problem, we make the approximation that

αexp=γ∆texp=10∆xb, (4.8)

where b=0 for tether forces, b=1 for stretching forces, and b=3 for bending forces.

Table 1: Spectral radius of the matrix S∗L−1SA as a function of the grid spacing for the different force operators,
and the corresponding time step restriction of the explicit method.

spectral radius max(γ∆t/∆xb)
grid spacing tether stretch bend tether (b=0) stretch (b=1) bend (b=3)

2−5 0.1662 5.482 6.938·103 12.04 11.68 9.445

2−6 0.1736 10.98 5.396·104 11.52 11.66 9.716

2−7 0.1759 22.05 4.369·105 11.37 11.61 9.600

2−7 0.1778 44.06 3.483·106 11.25 11.62 9.635

One iteration of the multigrid method takes about the same amount of work as an
iteration of multigrid on the Poisson equation. There is some extra work because we
use Galerkin coarsening and form the matrices. Let mα be the number of iterations of
multigrid to converge to a given tolerance for a given value of α. The number of iterations
needed to solve the Poisson equation in the explicit method is m0.

We quantify the amount of work for eachmethod as the number of iterations of multi-
grid per time step times the number of time steps taken. The number of time steps to
compute to a fixed point in time is proportional to ∆t−1.

In the explicit method, the time step is restricted by the stability constraint, so that
∆texpγ = αexp = 10∆xb. We assume that time step in the explicit method is chosen to be
min(∆t,∆texp) so that the work associated with the explicit method is

Wexp=
m0

min
(

∆t,∆texp
) =

γm0

min
(

α,αexp

) . (4.9)

For the same value of γ, the time step of the implicit method is not restricted by the
stability constraint. The amount of work for the implicit method is

Wimp=
mα

∆t
=

γmα

α
. (4.10)

We define the efficiency factor as

E(α)=
Wexp

Wimp
=

αm0

min
(

α,αexp

)

mα
. (4.11)

The value of E is interpreted as the speed-up one would expect by using the implicit
method in place of the explicit method for a given simulation.

To estimate the number of iterations, we initialize the solution with random initial
data with max-norm one. We apply V-cycles with one pre and one post smooth until the
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error is reduced by a factor of 10−6. For this test, the finest grid spacing is 2−5 and the
grid spacing on the coarsest grid is 2−1 (i.e. the coarsest grid has only one grid point).
Note that the iteration count we report represents the worst case scenario because we
start with a random initial guess. In a time dependent simulation, the solution from the
previous time step would be used as an initial guess, and one would expect a smaller
number of iterations.

The number of iterations versus α, scaled by αexp, is shown in Figure 4(a). The itera-
tion count for stretching and bending forces is about the same. In both of these cases, the
number of iterations is fairly constant for α < αexp, and it increases steadily for α above
αexp. For tether forces, the iteration count increases very modestly for α between αexp and
about 100αexp. After that, the iteration count increases more rapidly.

In Figure 4(b) we show the efficiency factor computed from the iteration count. For
stretching and bending forces, the efficiency factor is an increasing function, but it satu-
rates around 6. The efficiency factor for the tether forces increases rapidly for two orders
of magnitude in stiffness, and it saturates around a value of 200.
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Figure 4: (a) Number of V-cycles needed to reduce the error by a factor of 10−6. (b) Efficiency factor computed
from this data.

The asymptotic convergence factor is the spectral radius of the iteration matrix [24].
This estimate assumes that all the error is concentrated in the eigenspace with the largest
eigenvalue. For a large number of iterations, this is the factor by which the error is re-
duced per iteration. We estimate the number of iterations needed to reduce the error by
a factor of 10y by

mα =
−y

log10ρ(α)
, (4.12)

where ρ(α) is the spectral radius of the multigrid iteration matrix. Using this estimate,
we express the efficiency factor as

E(α)=
αlog10ρ(α)

min(αexp,α)log10ρ(0)
. (4.13)



12

To compute the asymptotic convergence factor, we explicitly form the multigrid iteration
matrix. The jth column of the multigrid iteration matrix is generated by applying one
V-cycle to a problem with zero right hand side with initial guess of a unit vector with a
one in the jth place and zeros everywhere else.

The asymptotic convergence factors for the three different force laws as a function
of α are shown in Figure 5(a). The results for stretching and bending forces are about
the same. The convergence factor is sigmoidal in shape. It increases from around 0.1 to
near one for α in the decade above αexp. The convergence factor for the tethering forces
increases modestly for the first two decades above αexp, after which it increases rapidly
towards one. In Figure 5(b) we show the efficiency factor computed using the asymptotic
convergence factor. These results are similar to those from the previous tests, but the
asymptotic efficiency is a little lower than before.
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Figure 5: (a) Asymptotic convergence factor (spectral radius) of the multigrid method. (b) Efficiency factor
estimated from asymptotic convergence factor.

4.3 Smoothing

In this section we explore how the number of smoothing steps per V-cycle affects the
convergence of the algorithm. For this test, we use the stretching constitutive law on the
same domain as before. We explicitly form the multigrid matrix, as described above, for
different numbers of pre and post smoothing steps, and we compute the spectral radius
of the multigrid matrix. For even-numbered total smoothing steps, we use equal number
of pre and post smoothing steps, an for odd-numbered total smoothing steps we perform
an additional pre smoothing step.

In Table 2 we give the spectral radius of the multigrid iteration matrix for the total
number of smoothing steps, ν, between 1 and 6 for several orders of magnitude of the
stiffness. As expected, the spectral radius decreases as the number of smoothing steps
increases. We use the number of smoothing steps plus one as a work unit for the V-cycle.
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The plus one accounts for the work in computing the residual, and we ignore the work
of the transfer operators. The total work to solve a problem is the work unit times the
number of cycles needed to converge to a given tolerance. As a measure of total work,
we use the quantity

W=
ν+1

−log10(ρ)
, (4.14)

where ν is the total number of pre and post smooths and ρ is the spectral radius of the
multigrid iteration matrix. One can interpret this quantity as the amount of work to
reduce the error by one order of magnitude.

Table 2: Spectral radius of the multigrid matrix for different values of the total number of smoothing steps, ν
and values of the stiffness, α.

α/αexp

ν 0 10−1 100 101 102 103

1 0.3105 0.3073 0.3035 0.6505 0.9439 0.9938
2 0.0892 0.0867 0.1024 0.4963 0.9111 0.9900
3 0.0608 0.0592 0.0604 0.4002 0.8830 0.9865
4 0.0451 0.0441 0.0441 0.3259 0.8554 0.9831
5 0.0352 0.0344 0.0358 0.2721 0.8299 0.9797
6 0.0287 0.0280 0.0298 0.2303 0.8055 0.9764

In Table 3, we give the total work as a function of the number of smoothing steps and
the stiffness. For a stiffness up to about ten times the stability limit (α≤10αexp), the most
efficient number of smoothing steps is two. For larger values of the stiffness, the most
efficient number of smoothing steps increases to 4 at α=100αexp and to 5 at α=1000αexp.
For large values of the stiffness, the efficiency is less sensitive to the number of smoothing
steps, and so we use two smoothing steps.

Table 3: Work estimate to reduce the error by one digit of accuracy for different values of the total number of
smoothing steps, ν and values of the stiffness, α.

α/αexp

ν 0 10−1 100 101 102 103

1 3.94 3.90 3.86 10.71 79.71 742.11
2 2.86 2.82 3.03 9.86 74.21 685.83
3 3.29 3.26 3.28 10.06 74.04 679.91
4 3.72 3.69 3.69 10.27 73.73 674.38
5 4.13 4.10 4.15 10.62 74.09 674.04
6 4.54 4.51 4.59 10.98 74.54 674.91
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4.4 Grid Refinement

In the previous tests, we used a relatively coarse grid. In this section we explore how
the performance of the algorithm depends on the grid spacing. In Figure 6(a) we show
the number of iterations to solve the problem described previously to a tolerance of 10−6

for a range of stiffness values for four different grid sizes for stretching forces. For very
low values of the stiffness, the number of iterations does not depend on the grid spacing,
but for large values of the stiffness the number of iterations increases as the mesh is
refined. Thus for a fixed value of the stiffness, the convergence of the algorithm is not
mesh independent.

In Figure 6(b) we replot the iteration count against the stiffness scaled by αexp, which
for this constitutive law, scales linearly with the grid spacing. With the exception of the
coarsest grid, the number of iterations is essentially independent of grid spacing for a
fixed relative stiffness. In Figure 6(c) we show the efficiency factor computed from this
data according to equation (4.11). The maximum efficiency factor is around 12, which is
twice as large as that of the coarsest grid.

4.5 Spectrum of MG operator

All of the previous tests show that as the stiffness increases above the explicit stability
limit, the convergence rate of the multigrid algorithm degrades and the relative efficiency
levels off. In this section, we examine the spectrum of the multigrid iteration matrix as
a function of the stiffness. For the stretching forces, we explicitly form the multigrid
iteration matrix corresponding to one pre and one post smooth as described previously.

In Figure 7 we plot the eigenvalues of the matrix in the complex plane for scaled
values of the stiffness between 1 and 100 for a grid spacing of ∆x= 2−5. For α/αexp = 1,
the convergence rate is similar to that of the Poisson equation (α=0), and the eigenvalues
are tightly clustered around the origin. As α increases the convergence rate decays, but
as these plots show, it is only a small number of eigenvalues that are responsible for the
slow down in convergence. At first only one eigenvalue moves away from the origin, but
as the stiffness increases, more eigenvalues move away from the origin and towards the
boundary of the unit disc.

5 Multigrid Preconditioning

As the plots of the spectrum of the MG iteration matrix from the previous section sug-
gest, even when the spectral radius increases, the convergence still is rapid on a large
subspace. As discussed in [16], multigrid preconditioned Krylov methods may be very
effective in these situations. Multigrid preconditioning has been investigated for CG [23]
for symmetric positive definite problems as well as for GMRES and BICGSTAB for more
general problems [16, 24]. In multiphase flow applications with sharp variation in ma-
terial properties, it has been observed that multigrid is a poor solver but very effective
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Figure 6: (a) Number of iterations of the multigrid algorithm to reduce the error by a factor of 10−6 as a function
of the stiffness for a four different grid sizes for the stretching constitutive law. (b) The data is replotted against
the stiffness relative to the stability limit of explicit time stepping. (c) Efficiency factor computed from this
data.

preconditioner for Krylovmethods [22,27]. In this sectionwe investigate the effectiveness
of multigrid as a preconditioner for this model of the immersed boundary equations.

We use right preconditionedGMRES [20]. We also experimentedwith CG and BICGSTAB,
and found that the efficiency results were about the same for all threemethods. The appli-
cation of the preconditioner is accomplished by taking one V-cycle (one pre and one post
smooth) with an initial guess of zero. We begin with the same model problem explored
previously, and we compute the number of iterations required to reduce the residual by
a factor of 10−6 as a function of α for the three different force laws. We terminate the
iteration after 200 steps if it has failed to converge.

The iteration count as a function of α is shown in Figure 8(a). For α<αexp the iteration
count is essentially constant. For the stretching and bending force laws, the number of
iterations begins to increase around α ≈ αexp, and for tether forces the iteration count
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Figure 7: Eigenvalues of the multigrid iteration matrix for different values of the stiffness, α, for the model
problem. The spectral radius, ρ, is given for each value of α. The finest grid level has a total of 312=961 grid

points (∆x=2−5).
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does not increase until about α ≈ 100αexp. This behavior is similar to that of multigrid
as a stand-alone solver. For comparison, we overlay the iteration count of the multigrid
solver for stretching forces (labeled “mg only”) from Figure 4(a). We see that number of
iterations in the multigrid preconditioned solver is increasing much more slowly than in
the multigrid solver.
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Figure 8: (a) Number of iterations of multigrid preconditioned GMRES to reduce the error by a factor of

10−6. (b) Efficiency factor computed from this data. For comparison, the results from the multigrid solver for
stretching forces (labeled “mg only”) are replotted from Figure 4.

In Figure 8(b) we show the efficiency factor computed from the iteration count. As
the stiffness increases, the efficiency factor increases, and it does not level off as it did for
multigrid alone. These data show that themultigrid preconditionedGMRESmethod pro-
vides a very substantial speed-up over the explicit method. For example for α =100αexp

(100 times lager time steps than explicit method), the efficiency gains are 92, 22, and 16
for tether, stretching, and bending forces, respectively. For α =1000αexp, these efficiency
gains are 328, 81, and 61, respectively.

5.1 Grid Refinement

We use the stretching constitutive law and explore the effect of grid refinement on per-
formance of the multigrid preconditioned GMRES solver. In Figure 9(a) we show the
number of iterations as a function of α (unscaled) to reduce the error by a factor of 10−6

for four different grid spacings. For a fixed value of the stiffness, as the grid is refined,
the number of iterations increases. This same behavior was observed with the multigrid
solver.

The maximum time step allowed by the explicit method decreases as the grid is re-
fined for this constitutive law, and so αexp decreases as the grid is refined. In Figure 9(b)
we plot the iteration count against the scaled stiffness α/αexp. For a fixed value of the
scaled stiffness, the iteration count is independent of the grid spacing. In Figure 9(c) we
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plot the efficiency factor, which is independent of the grid spacing.
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Figure 9: (a) Number of iterations of multigrid preconditioned GMRES to reduce the error by a factor of 10−6

as a function of the stiffness for a four different grid sizes for the stretching constitutive law. (b) The data
is replotted against the stiffness relative to the stability limit of explicit time stepping. (c) Efficiency factor
computed from this data.

5.2 Tests With More Lagrangian Points

All of the tests presented so far have used the same test problem: the immersed boundary
was a single circle. The immersed boundary occupies a very small region in the domain,
and there are many more Eulerian grid points than Lagrangian grid points. Some other
implicit IB methods are very efficient for problems when with few Lagrangian points [3].
These methods reduce the problem to the immersed boundary, and they exploit that
there are far fewer boundary unknowns than fluid unknowns. The multigrid method
presented here reduces the problem to the Eulerian mesh in an effort to avoid increas-
ing complexity when there are large numbers of Lagrangian points. In this section we
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explore the performance of the multigrid preconditioned GMRES method for problems
with different numbers of immersed boundary points.

We use circular immersed boundarieswith different radii placed inside the unit square.
We compare the performance of the algorithm on problemswith 1, 5, 10, and 20 immersed
boundaries. The test with one circle is the test used previously in this paper. The domains
with 5, 10, and 20 circles are pictured in Figure 10. The centers and radii of the circles
were selected randomly from a uniform distribution. The radii range between 0.05 and
0.15. No circles overlap, and they are all at least two Eulerian mesh points away from the
domain boundaries. This second constraint ensures that the support of the discrete delta
function does not intersect the domain boundary. Although selected randomly, the same
set of circles was used for all numerical tests. The spacing of the immersed boundary
points on each circle is approximately one half the Eulerian grid spacing. In Table 4, for
an Eulerian grid with spacing ∆x=2−5 and Ngrid =312 =961 total grid points, we report
the total number of immersed boundary points NIB and the number of rows of the matrix
modified by the presence of the immersed boundaries, RIB, for the different test prob-
lems. We also report the ratios of these quantities to the total number of Eulerian grid
points. For the test problem with only one immersed boundary, the ratio of Lagrangian
grid points to Eulerian points is only about 6% and only about 15% of the equations are
modified by the immersed boundaries. By contrast, when there are 20 immersed bound-
aries, the are about 10 times more Lagrangian points, and about 87% of the equations are
modified by the immersed boundaries.
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Figure 10: Domains with (a) 5, (b) 10, and (c) 20 circular immersed boundaries.

The maximum time step allowed by the explicit method is different for the differ-
ent numbers of immersed boundary points. Recall from (4.5) that the spectral radius of
S∗L−1SA determines the stability limit, that αexp is related to the spectral radius by (4.7).
In Table 5, we give the spectral radius and corresponding values of αexp for the different
test problems for an Eulerian grid with spacing ∆x=2−5.

We solve the model problem on the different domains using the multigrid precon-
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Table 4: For different numbers of circles, NIB is the number of Lagrangian grid points used when the Eulerian
grid has Ngrid=312=961 grid points. The number of rows of the matrix modified by the immersed boundaries
is RIB.

circles NIB NIB/Ngrid RIB RIB/Ngrid

1 60 0.062 147 0.153

5 161 0.168 346 0.360

10 344 0.358 608 0.633

20 577 0.600 831 0.865

Table 5: Spectral radius of the matrix S∗L−1SA and the corresponding values of αexp for the different test

problems for an Eulerian grid spacing of ∆x=2−5.

spectral radius αexp

circles tether stretch bend tether stretch bend

1 0.1662 5.482 6.938·103 12.04 0.3648 2.883·10−4

5 0.3208 9.275 1.073·104 6.235 0.2156 1.864·10−4

10 0.4777 10.00 1.087·104 4.186 0.1999 1.840·10−4

20 0.6174 11.28 1.398·104 3.240 0.1773 1.431·10−4

ditioned GMRES to a tolerance of 10−6. The number of iterations and corresponding
efficiency factors for different constitutive laws are shown in Figure 11. The results are
similar for the different numbers of immersed boundary points. However, in the case of
one immersed boundary, the rate of increase slows down for very large values of the stiff-
ness. This feature is not seen with more immersed boundary points. We conjecture that
this seeming increase in efficiency is an artifact of having a small number of immersed
boundary points. In general, we conclude that the efficiency of the method is indepen-
dent of the number of immersed boundary points. There is more work per iteration with
more immersed boundary points, but the additional points increase the work of both the
explicit method and implicit method proportionally.

6 Discussion

The popularity of the immersed boundary method is due, in part, to its simplicity and ro-
bustness. Explicit time integration requires a code to solve the fluid equations along with
a few routines to compute forces and transfer data between the Eulerian and Lagrangian
grids. The price of this simplicity is the severe time step restriction. The implicit methods
that have been developed to date require specialized algorithms to achieve a substantial
improvement in efficiency over explicit time methods.

The goal of the research presented in this paper is to investigate implicit methods that
balance efficiency, robustness, and simplicity. A feature that distinguishes our approach
from other successful implicit IB methods is that we formulate the problem only on the
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Figure 11: Number of iterations of the multigrid preconditioned GMRES method to reduce the residual by a
factor of 10−6 and the corresponding efficiency factors for the different test problems on an Eulerian grid with
spacing ∆x=2−5
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Eulerian grid. This formulation facilitates the use of standard tools to solve the equations.
The multigrid method uses geometric coarsening and Gauss-Seidel for the smoother–
tools which are readily available in existing codes. Another advantage of working only
on the Eulerian grid is that the efficiency of the method is independent of the number of
Lagrangian points.

The efficiency of the multigrid solver alone is not very impressive, but the multigrid
method is a very effective preconditioner for Krylov methods. It may be possible to
improve the multigrid algorithm by using a more sophisticated smoother. The goal of
this paper is not to find the best possible multigrid algorithm, but rather, to show that
respectable efficiency can be achieved with a very simple algorithm. In the future, we
will investigate improvements to the multigrid algorithm, but of course, there is a trade-
off between efficiency and simplicity.

Our measurement of efficiency is based on the iteration count, which is admittedly
too simple. We explicitly form the discrete force operator, the spreading operator, and
the interpolation operator. Forming the matrices is no more expensive than applying
them. Similarly, the smoothing step of the implicit method is no more expensive than the
application of the forces in the explicit method. However, there is a much larger storage
cost of the algorithm compared to the explicit method. The actual efficiency depends not
only on the iteration count, but also on the implementation. Because our algorithm uses
standard smoothing and coarsening, the implementation is not complex. We chose not to
perform timing tests, because we only explored model problems, and such comparisons
are not meaningful.

We used amodel problem rather than the immersed boundary equations, because this
facilitated explorations of different approaches. In addition, because there is only one pa-
rameter in the equations, the stiffness, it was simple to assess the results. The model
“momentum equation” mimics Stokes equations rather than Navier-Stokes. The time in-
dependent momentum equation is more challenging than the time dependent equation.
Adding the time derivative to the model is straightforward, and it would result in faster
convergence because the operator inverted at each time step is better conditioned and the
previous time solution is a good initial guess to the next solution.

Extending the algorithm from the model problem to the immersed boundary equa-
tions requires including the convection terms and incompressibility constraint. The stiff-
ness in the immersed boundary method comes from the elastic forces, not the convection
terms. Thus the convection terms can be discretized explicitly without imposing a se-
vere time step restriction. Solving for the velocity and pressure simultaneously is more
challenging, and will require further development of the algorithm.

Multigrid can be used to solve for the velocity and pressure simultaneously, but spe-
cial smoothers must be used. The two main classes of smoothers are coupled smoothers
[26] and distributed smoothers [1]. As the name suggests, coupled smoothers locally
solve for the velocity and pressure simultaneously. Distributive smoothers are applied to
a transformed system in which the velocity components and the pressure are decoupled.
For the implicit IB equations, the operators to smooth in the transformed system are of
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the same form as the operator studied in the model problem.

There are other approaches to extending the algorithm for the model problem to in-
compressible flow. Applying preconditioners to the discrete Stokes equations that are
based on approximate block factorizations involve applying a fast approximate inverse
Laplacian [4]. For implicit IB equations, the multigrid algorithm developed in this paper
could be used to apply an approximate inverse that includes both the viscous and elastic
stresses. Alternatively, for time dependent problems, projection methods are a popular
way of handling the incompressibility. In a projection method, the momentum equation
is advanced in time, while the pressure is held constant. The intermediate velocity field
is then decomposed into a divergence-free field and a gradient field. In the first step of
a projection method, the problem solved is identical to our model problem (with time
dependence). Therefore the algorithm we propose can be used in conjunction with a
projection method without modification.
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