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Abstract

Projection methods are a popular class of methods for solving the incompress-

ible Navier-Stokes equations. If a cell-centered grid is chosen, in order to use high-

resolution methods for the advection terms, performing the projection exactly is

problematic. An attractive alternative is to use an approximate projection, in which

the velocity is required to be only approximately discretely divergence-free. The sta-

bility of the cell-centered, approximate projection is highly sensitive to the method

used to update the pressure and compute the pressure gradient. This is demon-

strated by analyzing a model problem and conducting numerical simulations of the

Navier-Stokes equations.
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1 Introduction

This paper considers the stability of approximate projection methods for

solving the incompressible Navier-Stokes equations discretized using a cell-

centered grid. The nondimensional form of the equations considered is

ut + u · ∇u = −∇p + ν∆u + f (1)

∇ · u = 0, (2)

where the nondimensional viscosity ν is equal to Re−1. Of course suitable

boundary conditions ( for example, u = 0 on the boundary) must also be

prescribed. If one were to naively begin to design a numerical scheme, several

challenges would quickly become apparent. Because of the advection terms, the

equations are nonlinear. The nonlinearity does complicate the construction of

a numerical scheme, but this complication can be handled in a variety of ways,

which are discussed later. Another difficulty, which is more specific to these

equations, comes from the lack of an evolution equation for the pressure. In

incompressible flow the pressure does not evolve, rather, its value is determined

to enforce the incompressibility constraint. This idea is the basis of a class of

methods called projection methods.

The first projection method was developed by Chorin [1,2]. The basic idea

behind the method is to use the momentum equation to solve for an interme-

diate velocity that is not required to be divergence-free. Then the intermediate

velocity is projected to yield a discretely divergence-free velocity and a gradi-

ent field. The latter can then be used to update the pressure. The nonlinear

advection terms can be extrapolated in time, leaving a linear equation to solve

for the intermediate velocity. One popular method of extrapolating the nonlin-
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ear terms, particularly useful at high Reynolds numbers, uses a high-resolution

Godunov method, which require a cell-centered spatial discretization [3]. How-

ever, the use of a cell-centered grid complicates the use of mesh refinement

and the implementation of a multigrid solver in the projection step of the

method [4]. These complications can be avoided if the constraint that the ve-

locity be discretely divergence-free is relaxed so that the discrete velocity is

required to be only approximately divergence-free. Such methods are referred

to as approximate projection methods [5].

Projection methods and approximate projection methods involve solving for

intermediate quantities which are then used to compute the physical quanti-

ties, the velocity field and the pressure. Because the intermediate quantities

are not physical quantities, there has been much confusion related to the

boundary conditions. The proper update for the pressure is another source of

ambiguity in projection methods. A recent paper by Brown et al. [6] explored

and clarified the role of boundary conditions and different pressure updates in

projection methods. This paper also proposed various methods for obtaining a

pressure that is globally second-order accurate, a result some have speculated

to be unattainable with a projection method [7,8]. The results in [6] followed

from the analysis of a system with discrete time but continuous spatial vari-

ables. The results of the analysis are supported by numerical tests that verify

the second-order accurate pressure. We note that the numerical tests were

performed using an approximate projection method on a node-centered grid,

rather than the more commonly used cell-centered grid. The behavior of the

solution in approximate projection methods has been shown to be sensitive to

the grid structure [9].

We extend the work of [6] by taking into account the discretization of space.
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Our analysis shows that the system of equations becomes very sensitive to the

spatial discretization if an approximate projection method is used in combina-

tion with the method of obtaining a second-order accurate pressure discussed

in [6]. We found instabilities in testing this method with a standard second-

order discretization on a cell-centered grid. The nature of the instability is

analyzed using a model problem, and numerical results are presented for the

model problem and for the Navier-Stokes equations. These computational tests

demonstrate the instability and identify several methods that are stable and

achieve full second-order accuracy.

There have been many analyses of the accuracy and stability properties of

projection methods, beginning with Chorin [2], whose analysis was limited to

the case of periodic boundary conditions. There have more recent studies that

included the effect of boundaries. Many of these studies considered systems

with discrete time and continuous space [7,10–14], and others included the

spatial discretization in the analysis [15,16]. The properties of approximate

projection methods are not very well understood, since only a few analyses

have been performed [9,17]. Numerical results from [9] demonstrate that it is

important to consider the spatial discretization in an approximate projection

method.

In the remainder of this paper we present the motivation for projection meth-

ods followed by a discussion of different approaches to implementing them

and the accuracy of these implementations. We then analyze the stability of a

model problem. In doing so, we consider several different methods for updat-

ing the pressure. This analysis is done for the case of an exact projection on a

staggered grid and for an approximate projection on a cell-centered grid. Nu-

merical results are presented for the model problem and for the Navier-Stokes
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equations in two spatial dimensions.

2 Motivation

The following, well-known decomposition theorem helps clarify the role of the

pressure in incompressible flow and motivates projection methods [18].

Theorem 1 (Hodge decomposition) Let Ω be a smooth, bounded domain,

and u∗ be smooth vector field on Ω. The vector field u∗ can be decomposed in

the form

u∗ = u + ∇φ, (3)

where

∇ · u = 0 in Ω, u · n = 0 on ∂Ω.

We present the elementary proof of the theorem because it is constructive,

and thus provides a method for performing this decomposition that can be

used to implement a projection method.

PROOF. Taking the divergence of (3) gives the Poisson equation

∆φ = ∇ · u∗, (4)

with the boundary condition given by the normal component of (3) on the

boundary

∂φ

∂n
= u∗ · n on ∂Ω. (5)

Together (4) and (5) define a Neumann problem for φ, which has a unique

solution, up to an additive constant, provided the solvability condition

∫

Ω
∇ · u∗ dV =

∫

∂Ω
u∗ · n dS (6)
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is satisfied. Equation (6) is always satisfied, because this is simply the diver-

gence theorem. This defines the gradient part of the decomposition, and the

divergence-free field is then defined by u = u∗ −∇φ. 2

The preceding proof describes a procedure for decomposing an arbitrary smooth

vector field into a gradient field and a divergence-free field. Let P denote the

operator which takes vector fields to divergence-free vector fields, as in the

decomposition theorem. Then P is a projection operator (it is linear and

P2 = P), and

P (u∗) = u,

and

(I − P) (u∗) = ∇φ.

Note that gradient fields and divergence-free fields that have zero normal com-

ponent on the boundary define orthogonal subspaces of L2 (Ω). The require-

ment that u · n = 0 on the boundary may be relaxed so that u · n = g,

provided g satisfies

∫

∂Ω
g dS = 0. (7)

If u is interpreted as a velocity field, then the condition (7) physically means

that the total flux of fluid across the boundary of the domain is zero, which is

a consequence of incompressibility. While the decomposition holds in the case

g 6= 0, the resulting operator P is no longer a projection. However numeri-

cal methods that employ this decomposition with nonhomogeneous boundary

conditions are still referred to as projection methods. The decomposition also

may be applied to periodic velocity fields, with an obvious modification.
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Applying the projection operator to (1) gives the equation

ut = P (−u · ∇u + ν∆u + f) , (8)

in which the pressure has been eliminated. This form is equivalent to the orig-

inal equations (1)–(2). Note that the operator P constrains only the normal

component of the velocity, and additional boundary conditions are required

(for example u · τ = 0) to complete the statement of the problem. The equiv-

alence of these two forms of the equations clarifies the role of the pressure

in enforcing incompressibility. The proof of the Hodge decomposition is sug-

gestive of a scheme for advancing the velocity and pressure in time: advance

the momentum equation (1) to determine an intermediate velocity which is

not required to be divergence-free. Then to find the velocity at the new time,

project the intermediate velocity field onto the space of divergence-free fields,

and use the gradient part of the projection to update the pressure.

3 Implementing Accurate Projection Methods

Chorin’s original projection method [1,2] is first order accurate in space and

time. The next generation of projection methods used various means to obtain

a velocity which is second-order accurate in space and time, but a pressure

that is only first-order accurate [3,19]. In the same time period, Kim and

Moin [20] proposed a method in which the pressure is excluded from the

computation, but with a modification to the boundary conditions, they obtain

a second-order accurate velocity field. Interestingly, they do mention how the

pressure can be recovered from their computation, and this pressure turns out

to be second-order accurate, provided the result is interpreted at the proper
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temporal location [6].

Other variations of the original projection method have been utilized. One

such modification which we will discuss in detail is the approximate projec-

tion method [5,21]. The idea of the approximate projection method is to relax

the condition that the velocity field be discretely divergence-free, rather the

velocity field that results is approximately divergence-free. The utility of such

methods is discussed below when we consider the different spatial discretiza-

tions.

3.1 Temporal Discretization

A second-order time discretization of the momentum equation (1) is

un+1 − un

∆t
+ gn+1/2 = −∇pn+1/2 +

ν

2

(
∆un + ∆un+1

)
, (9)

where gn+1/2 represents some approximation to the nonlinear, advection terms

at the half time level, and we have set the external forces to zero for conve-

nience. We discuss the form of gn+1/2 in a later section. Let q be some ap-

proximation for the pressure that can be computed from the variables at the

current time level. The projection method seeks a solution to (9), by first

solving the equation

u∗ − un

∆t
+ gn+1/2 = −∇q +

ν

2
(∆un + ∆u∗) , (10)

for an intermediate velocity u∗. The velocity u∗ is a solution to the discrete

momentum equation, but it is not divergence-free. Using the Hodge decompo-

sition theorem, we know that u∗ can be decomposed as

u∗ = un+1 + ∆t∇φ, (11)
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where un+1 is divergence-free. The factor of ∆t is not required, but its rele-

vance is clarified in the discussion of the pressure. Proceeding as in the proof of

the decomposition, the divergence of this equation and the normal component

on the boundary give the Poisson problem

∆t∆φ = ∇ · u∗, (12)

with Neumann boundary conditions

∆t
∂φ

∂n
=
(
u∗ − un+1

)
· n. (13)

Once φ is known, the divergence-free velocity is then found by computing

un+1 = u∗ − ∆t∇φ. (14)

Note that there are no prescribed boundary conditions for the intermediate ve-

locity u∗. Often the boundary conditions for un+1 are used for u∗. A thorough

discussion on boundary conditions can be found in [6].

We now discuss the the computation of the pressure. The variable q in equation

(10) represents some approximation to the pressure at time level n + 1/2.

Some choices for q that have been used in methods that produce a second-

order accurate approximation to the velocity are q = 0 [20], q = pn [19], and

q = pn−1/2 [3]. We consider the case q = pn−1/2; the formulas for the other cases

can be derived by straightforward modifications to the following arguments.

Equation (9) can be rearranged as

un+1 − un

∆t
+ ∇pn+1/2 = −gn+1/2 +

ν

2

(
∆un + ∆un+1

)
, (15)

so that the terms on the left side resemble a Hodge decomposition of the

terms on the right side into a divergence-free field and a gradient field. Writing
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equations (10) and (11) as

u∗ − un

∆t
+ ∇pn−1/2 = −gn+1/2 +

ν

2
(∆un + ∆u∗) (16)

un+1 − u∗

∆t
+ ∇φ = 0 (17)

shows that one way of conceptualizing the projection method is a splitting of

the time derivative ut and the pressure into two steps using the intermediate

variables u∗ and φ. This splitting reveals that φ is related to the pressure as

the pressure update

pn+1/2 = pn−1/2 + φ. (18)

This is the traditional method used to update the pressure, but it is well

known that the resulting pressure is only first-order accurate due to a nu-

merical boundary layer; for analysis see for example [6,7,14]. This error does

not degrade the accuracy of the velocity, and so the resulting scheme gives a

pressure that is first-order accurate and a second-order accurate velocity.

A method for obtaining a second order accurate pressure is proposed in [6].

Following their derivation of a pressure update formula, use (11) to eliminate

the intermediate velocity in (10) to obtain

un+1 − un

∆t
+gn+1/2 = −∇pn−1/2−∇φ+

ν∆t

2
∆∇φ+

ν

2

(
∆un + ∆un+1

)
. (19)

Comparison with (9) suggests defining

∇pn+1/2 = ∇pn−1/2 + ∇φ−
ν∆t

2
∆∇φ. (20)

Commuting the Laplacian and the gradient operators gives the pressure up-

date formula

pn+1/2 = pn−1/2 + φ−
ν∆t

2
∆φ. (21)
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Using (12), this can be written as

pn+1/2 = pn−1/2 + φ−
ν

2
∇ · u∗. (22)

In [6] it is shown that this pressure update eliminates the boundary layer and

gives a globally second-order accurate pressure. In section 4 of this paper we

demonstrate through a model problem that when this pressure update is used

in an approximate projection method, the stability of the scheme is not robust.

3.2 Spatial Discretization

We discuss regular (equally spaced) finite difference spatial discretizations of

a rectangular domain. All of these discretizations partition the domain into

some number of equal sized squares. The discretizations differ in where on

the domain the discrete data are located. Two standard discretizations are

the vertex (or node)-centered grid and the cell-centered grid. On the vertex-

centered grid, all discrete variables are located on the vertices of the squares.

For the cell-centered grid, all data are located at the centers of the squares.

See Fig.1 for examples of both grids.

In order to perform a discrete projection, we proceed as in the proof of the

Hodge decomposition. Let ui,j = (ui,j, vi,j) be a discrete velocity at the grid

point indexed by (i, j), and let φi,j be a discrete scalar located at the same

grid point. We use the convention that point i, j corresponds to the cell center,

and points such as i − 1/2, j correspond to the cell edges (left edge in this

example). Let D and G denote the discrete divergence and gradient operators

for the cell-centered grid (corresponding operators for the node-centered grid

are obtained by an obvious shift of indicies). Second-order accurate operators
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are

(Du)i,j =
ui+1,j − ui−1,j

2h
+
vi,j+1 − vi,j−1

2h
, (23)

and

(Gφ)i,j =

(
φi+1,j − φi−1,j

2h
,
φi,j+1 − φi,j−1

2h

)

. (24)

To decompose the discrete velocity u∗ into a discretely divergence-free field

and a discrete gradient field, we seek u and φ such that

u∗ = u + ∆tGφ (25)

Du = 0. (26)

Applying D to both sides of (25), and using (26) we obtain the equation

Du∗ = ∆tDGφ = ∆tLwφ. (27)

This equation can be solved to find φ, which then defines u using (25).

The operator Lw represents a discrete approximation to the Laplacian. The

superscript w is used to denote the fact that the stencil for the operator is

wide. The form of Lw at point i, j is

(Lwφ)i,j =
φi−2,j + φi+2,j − 4φi,j + φi,j−2 + φi,j+2

4h2
. (28)

The wide stencil for the discrete Laplacian creates some difficulties that are

absent when working with the more standard, compact Laplacian

(Lφ)i,j =
φi−1,j + φi+1,j − 4φi,j + φi,j−1 + φi,j+1

h2
. (29)

When solving equation (27) the problem decouples into four separate subgrids

on each of which i and j are either always even or always odd, except possi-

bly near the boundaries. This local decoupling must be accounted for when

implementing mesh refinement or in designing a multigrid solver [4].
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A third grid structure which is commonly used for projection methods is the

MAC (or staggered) grid, which was introduced by Harlow and Welch [22]. On

the MAC grid the horizontal velocities are stored at vertical edges, the vertical

velocities are stored at horizontal edges, and scalar quantities are stored at

cell centers. An example is displayed in Fig.2. The discrete divergence is

(Du)i,j =
ui+1/2,j − ui−1/2,j

h
+
vi,j+1/2 − vi,j−1/2

h
, (30)

and the discrete gradient is Gφ = (G1φ,G2φ), where the first component is

defined by

(G1φ)i−1/2,j =
φi,j − φi−1,j

h
, (31)

and the second component is defined by

(G2φ)i,j−1/2 =
φi,j − φi,j−1

h
. (32)

Using this divergence and gradient in equations (25) and (26) gives the equa-

tion

Du∗ = ∆tDGφ = ∆tLφ. (33)

The operator L is again a discrete approximation to the Laplacian, but it has

the compact stencil given in (29). When solving (33), there is no decoupling

of grids and handling the boundary conditions is straightforward.

The projection may seem more natural on the MAC grid, but it is sometimes

useful to use a vertex- or cell-centered grid. As we discuss later, a popular

method for computing the nonlinear terms requires that the velocities be on

a cell-centered grid. Either of these other grid structures requires the use

of the wide Laplacian to enforce the divergence constraint. If however, the

constraint that the velocity be discretely divergence-free is relaxed so that

the divergence constraint is only satisfied approximately, the use of the wide
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Laplacian can be avoided. Such methods are referred to as approximate pro-

jections, for obvious reasons. Suppose that a vertex- or cell-centered grid is

being used. In the projection step, the compact Laplacian is used in place of

the wide Laplacian in solving equation (27). The velocity u that results is not

discretely divergence-free (with respect to the divergence operator (23)), but

its divergence is ((h2) (for sufficiently smooth velocity fields) because this is a

second-order discretization of equation (4).

3.3 Nonlinear Terms

The nonlinear, advective terms can be approximated in a variety of ways. In

Chorin’s original method [1,2], the momentum equation (10) is solved using

an ADI scheme with the nonlinear terms approximated as

un · ∇u∗. (34)

Of course this is only first order accurate in time and must be modified to get

a second-order scheme. Van Kan [19] uses the approximation

1

2
(un · ∇u∗ + u∗ · ∇un) , (35)

which results in a second-order scheme, and still only requires linear solves.

Another popular method of computing the nonlinear terms is to extrapolate

them in time from past velocities. One method of extrapolation used by Kim

and Moin [20] is the second-order AB method

(u · ∇u)n+1/2 =
3

2
(un · ∇un) −

1

2

(
un−1 · ∇un−1

)
+ O(∆t2). (36)

This approach has been used by others in practice and for analysis [6,8,13,23].
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Another very different extrapolation method introduced by Bell et al. [3] and

used frequently [4,21,24,25] is particularly useful for high Reynolds number

flow. This method is based on high-resolution upwinding methods [26], which

require that the cell-centered grid be used. As discussed previously, this grid

structure complicates the projection step, and so this situation is ideal for an

approximate projection.

A recent variation on the method of using high-resolution upwinding is to em-

ploy time splitting to treat the advection separately [27]. In this approach, the

cell-centered velocity is advected by a discretely divergence-free edge velocity,

ue. At the beginning of the time step, the homogeneous advection equation

ut + ue · ∇u = 0, (37)

is advanced one time step using the method described in [28]. The resulting

cell-centered velocity is then used in place of un in the momentum equation

to solve for u∗. Because the advection is treated separately, this momentum

equation is linear. The intermediate velocity is then averaged to the cell edges,

and a MAC projection is performed to get the new cell-edge velocity that is

discretely divergence-free. The cell-centered velocity is then obtained by aver-

aging the gradient from the MAC projection to the cell centers, and subtract-

ing this average gradient from u∗.

3.4 Comparison of Methods

A recent paper by Brown et al. [6] removes much of the confusion surrounding

the boundary conditions and the pressure in projection methods. In particular

they analyze the accuracy of both the velocity and pressure for various combi-
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nations of pressure approximations, pressure update formulas, and boundary

conditions on the intermediate velocity. Their analysis is done for a system

with discrete time and continuous space. Using an approximate projection

method, they generate numerical results that support their analysis. So as

long as the spatial operators are discretized to sufficiently high order, the

results from [6] predict that full second-order accuracy in the velocity and

pressure are attainable.

We briefly summarize their results on the accuracy of projection methods. As

discussed previously, let q represent the approximation to the pressure that is

used in the momentum equation. The three methods considered are

(1) Projection Method I (PM I) – The pressure gradient is lagged in the

momentum equation, q = pn−1/2. The pressure is updated by pn+1/2 =

pn−1/2 + φ.

(2) Projection Method II (PM II) – The pressure gradient is again lagged

in the momentum equation, q = pn−1/2, but the pressure is updated by

pn+1/2 = pn−1/2 + φ− ν∆t
2

∆φ.

(3) Projection Method III (PM III) – The pressure gradient is not present in

the momentum equation, q = 0. The pressure is not updated, rather is is

computed by pn+1/2 = φ− ν∆t
2

∆φ.

The time accuracy of each method is analyzed using normal mode analysis.

Suppose that the intermediate velocity satisfies the boundary conditions that

are prescribed for the velocity at the next time step. Then this analysis predicts

that PM I gives velocities that are uniformly second-order in time, but the

pressure contains a numerical boundary layer making it only globally first

order accurate. PM II is predicted to be globally second-order accurate in
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both the velocity and the pressure. In order to achieve second-order accuracy

for PM III, the tangential component of the intermediate velocity on the

boundary must be modified to depend on φ from the previous time step.

We have found that projection method II is extremely sensitive to the spatial

discretization, becoming unstable with certain discretizations. In this paper

we further explore the stability of the methods analyzed in [6] by considering

the spatial discretization. Specifically we will compare the stability properties

of the three projection methods PM I–III using an exact projection on a MAC

grid and an approximate projection on a cell-centered grid.

4 Stability Analysis

Analyses of projection methods are numerous in the literature. See for example

[7,11–16]. On the other hand, approximate projection methods have received

much less attention [9,17], and these analyses did not consider the effect of

boundary conditions or the form of the pressure update used in PM II. As

we show below, when an approximate projection is used in combination with

the second-order pressure update, the stability of the numerical scheme is not

robust.

In order to explore the stability of the various discretizations, we analyze a

one-dimensional model problem: the time-dependent, one-dimensional Stokes

equations with homogeneous boundary conditions on the velocity and no ex-

ternal body forces. Although this problem seems trivial, it is not. It describes

how particular perturbations to the horizontal velocity and the pressure, those

that vary only in the x-direction, propagate in time when a projection method
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or approximate projection method is used to solve the Stokes equations. The

discrete time system for projection methods I and II is

u∗ − un

∆t
= −∂xp

n−1/2 +
ν

2
∂xx (u∗ + un) (38)

∆t∂xxφ = ∂xu
∗ (39)

un+1 = u∗ − ∆t∂xφ (40)

pn+1/2 = pn−1/2 + φ− χ
ν

2
∂xu

∗, (41)

where χ is 0 for PM I or 1 for PM II. In order for a discretization to be stable,

the solution to this system must decay to zero for any initial data.

Projection method III is treated separately because the pressure from one time

step does not affect the velocity or the pressure at the next time step. This

simplifies the stability analysis considerably, because we only need to study

how errors propagate in the velocity. The discrete time system for PM III is

u∗ − un

∆t
=
ν

2
∂xx (u∗ + un) (42)

∆t∂xxφ = ∂xu
∗ (43)

un+1 = u∗ − ∆t∂xφ (44)

pn+1/2 = φ−
ν

2
∂xu

∗, (45)

4.1 Stability on MAC grid

We first discretize space using the MAC discretization, which means that the

velocities are stored at cell edges and the pressure is stored at the cell centers.

Divide the domain into N cells of equal size, with the width of each cell being

h = 1/N . There are N unknowns for the pressure (one for each cell) and N−1

unknowns for the velocity (N +1 cell edges with two of the values given). The
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discrete Laplacian applied to the velocity (and intermediate velocity) is defined

in the usual manner

(Ldu)j+1/2 =
uj−1/2 − 2uj+1/2 + uj+3/2

h2
, (46)

where the subscript d signifies that the velocity satisfies homogeneous Dirichlet

boundary conditions, so that at the first and last interior cell edges (j = 1 and

j = N − 1), the boundary conditions u1/2 = uN+1/2 = 0 are used to evaluate

the operator for both the velocity and the intermediate velocity. The discrete

divergence operator is defined as

(Du)j =
uj+1/2 − uj−1/2

h
. (47)

As with the Laplacian defined above, homogeneous Dirichlet boundary condi-

tions are used to evaluate the divergence at points adjacent to the boundary.

The gradient operator is defined by

(Gφ)j+1/2 =
φj+1 − φj

h
. (48)

Because the gradient maps cell centers to interior cell edges, no boundary con-

ditions are necessary for evaluating the gradient. The gradient and divergence

operators are related by

G = −DT, (49)

which can be used to show that the discrete projection is orthogonal. The

discrete version of equation (39) arises from the discrete Hodge decomposition

u∗ = un+1 + ∆tGφ; Dun+1 = 0. (50)

Applying the discrete divergence operator introduces the discrete Laplacian

Ln = DG, (51)

19



where the subscript n signifies that this Laplacian takes into account the

homogeneous Neumann boundary conditions used in the projection. With

these discrete operators, (38)–(41) for PM I and PM II are discretized to

u∗ − un

∆t
= −Gpn−1/2 +

ν

2
Ld (u∗ + un) (52)

∆tLnφ = Du∗ (53)

un+1 = u∗ − ∆tGφ (54)

pn+1/2 = pn−1/2 + φ− χ
ν

2
Du∗. (55)

In order to analyze the stability of this system, we diagonalize the equations

(52)–(53), eliminate the intermediate variables to find the linear operator that

advances velocity and pressure in time, and then find the eigenvalues of this

operator. For j = 1 . . . (N − 1) and m = 1 . . . (N − 1), the jth component of

the mth eigenvector of Ld is

s
(m)
j = sin (mπhj) , (56)

with corresponding eigenvalue

λ(m) = −
4

h2
sin2

(
mπh

2

)

. (57)

The form of the eigenvalues of Ln is the same as for Ld, but the eigenvectors

are

c
(m)
j = cos

(
mπh(j − 1/2)

)
, (58)

for m = 0 . . . (N − 1) and j = 1 . . .N . The discrete divergence and gradient

map these sets of eigenvectors to each other in the following manner

Ds(m) =
2

h
sin

(
mπh

2

)

c(m), (59)
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and

Gc(m) = −
2

h
sin

(
mπh

2

)

s(m). (60)

Let S be the orthonormal matrix whose mth column is given by the normalized

s(m), and let C be the orthonormal matrix with columnm = 1 . . . (N−1) given

by the normalized c(m), and column N given by the normalized c(0). Make the

changes of coordinates

u = Sû, u∗ = Sû∗, p = Cp̂, φ = Cφ̂ (61)

in (52)-(53). Then multiplying (53) and (55) on the left by CT and (52) and

(54) by ST, we diagonalize the equations.

The mth set of equations is

û∗m − ûn
m

∆t
=

2

h
sin

(
mπh

2

)

p̂n−1/2
m −

2ν

h2
sin2

(
mπh

2

)

(û∗m + ûn
m) (62)

−
4∆t

h2
sin2

(
mπh

2

)

φ̂m =
2

h
sin

(
mπh

2

)

û∗m (63)

ûn+1
m = û∗m +

2∆t

h
sin

(
mπh

2

)

φ̂m (64)

p̂n+1/2
m = p̂n−1/2

m + φ̂m − χ
ν

h
sin

(
mπh

2

)

û∗m. (65)

Eq. (62) can be solved for û∗, and eq. (63) can be solved for φ̂m. After elim-

inating û∗ and φ̂m, for each m we obtain a 2 × 2 matrix Xm which maps

(ûn
m, p̂

n−1/2
m )T to (ûn+1

m , p̂n+1/2
m )T. The eigenvalues of the matrices Xm deter-

mine the stability of the discretization. Solving (63) for φ̂m and substituting

this into (64), we see that

ûn+1
m = 0. (66)

This means that errors introduced at some time step in the velocity or pressure,

do not propagate to the velocity at the next time step. The first row of Xm

is entirely zero for all m, which means that Xm is lower triangular, and so to
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determine the stability, we need to examine only x22.

After some algebraic manipulations using equations (62)-(65), we find

x22 =

(1 − χ)
2ν∆t

h2
sin2

(
mπh

2

)

1 +
2ν∆t

h2
sin2

(
mπh

2

) . (67)

If PM II is used (χ = 1), then all the eigenvalues of Xm are zero, and X2
m =

0 for any m. Because x21 6= 0, errors introduced in the velocity at a time

step appear in the pressure of the following time step, but do not appear in

either the velocity or pressure in the time step after that. For PM I (χ = 0),

the method is still stable, because all the eigenvalues are less than one in

magnitude.

Eq. (63) and (64) are the same for projection method III. Again ûn+1
m = 0,

and because the pressure does not propagate, it need not be considered for

stability. Therefore all three projection methods are stable on the MAC grid.

4.2 Stability on a cell-centered grid – Approximate projection

We now consider the case of an approximate projection on a cell-centered grid.

Equations (38)–(41) for PM I and PM II are discretized to

u∗ − un

∆t
= −Gpp

n−1/2 +
ν

2
Ld (u∗ + un) (68)

∆tLnφ = Du∗ (69)

un+1 = u∗ − ∆tGφ (70)

pn+1/2 = pn−1/2 + φ− χ
ν

2
Du∗. (71)
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This system is similar to (52)-(55), but the definitions of the operators must

be modified, because all variables are stored at the cell centers. The definitions

of the operators are given below.

The form of the Laplacian is

(Lw)j =
wj−1 − 2wj + wj+1

h2
, (72)

where the different boundary conditions are accounted for by setting values

of ghost cells outside the domain. For example, the ghost cell value for the

velocity (and intermediate velocity) at the left boundary is set to be u−1 =

−u1, which corresponds to linearly extrapolating the velocity from the physical

boundary condition and the first interior point. Note that the eigenfunctions

of the Laplacian with homogeneous Dirichlet boundary conditions are sine

functions, and this method of setting the ghost cells for the velocity reflects this

structure. The ghost cell value for φ at the left boundary is set by φ−1 = φ1,

which is a discretization of the homogeneous Neumann boundary condition

that φ satisfies. To avoid confusion, we add the the subscripts d and n to the

Laplacian to signify which boundary conditions are used for evaluation.

The divergence and gradient are computed by centered differencing, and as

with the Laplacian, the boundary conditions are handled using ghost cells.

Note that on the cell-centered grid, boundary conditions are required to eval-

uate the gradient. This was not the case with the MAC grid. The boundary

conditions for φ are used to set the its ghost cells as for the Laplacian, but

there are no physical boundary conditions for the pressure. In equation (68),

we have noted the pressure gradient with the subscript p to indicate that this

operator may not be the same gradient operator that is applied to φ.

23



For projection method I, the pressure gradient does not need to be computed

from the pressure; it can simply be updated. In this case the computed pres-

sure is forced to have constant normal derivative in time near the boundary, as

a consequence of the boundary conditions used in the projection. For projec-

tion method II, there is ambiguity near the boundary whether one chooses to

update the pressure gradient or the pressure. Updating the pressure gradient

requires computing the Laplacian of the gradient of φ. The normal component

of the gradient of φ is zero on the boundary, and this can be used in computing

the Laplacian of the normal component of the gradient of φ near the boundary.

However, there are no boundary conditions for the tangential component of

the gradient of φ. On the other hand, if the pressure is to be updated, it must

then be differenced, but there are no boundary conditions for the pressure for

use in a difference formula. It seems that either a one sided difference must be

used near the boundary, or a lower order error must be introduced.

We analyze the case in which the pressure is updated and then differenced.

Because there are no physical boundary conditions for the pressure, the ghost

cell values must be extrapolated using data only from the interior cells. Then

the standard centered difference operator can be applied at the first interior

cell to compute the gradient, but the resulting gradient is effectively a one sided

derivative whose form is determined by the manner in which the ghost cell

value has been set. Some possible polynomial extrapolations and the resulting

pressure gradients are given in Table I. We refer to these gradients as gradient

0, gradient 1, and gradient 2, to denote their accuracy (or order of polynomial

extrapolation used for the ghost cells).
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4.2.1 Constant Extrapolation

We repeat the procedure used to analyze the stability on the MAC grid, but

only for the case when the ghost cell value for the pressure is set by constant

extrapolation. The resulting pressure gradient is used for analysis because

the system can be diagonalized, while this is not true for the other pressure

gradients. Also note that with this choice of extrapolation, the gradient ap-

plied to the pressure is the same as the gradient applied to φ because the

constant extrapolation formula is identical to the discretization of the homo-

geneous Neumann boundary condition. Even though our analysis is restricted

to just one of the many possible gradients, it is still very informative because

it gives information about how the stability is affected by using an approxi-

mate projection and the high-order pressure correction. All of the gradients

are identical at the interior points, and so because they differ only at points

near the boundary, they can be viewed as perturbations of one another.

The operator Ln is the same operator used on the MAC grid. The eigenvalues

of Ld are given by (57), but the eigenvectors on the cell-centered grid are

s
(m)
j = sin

(
mπh(j − 1/2)

)
, (73)

for m = 1 . . . N and j = 1 . . . N . The discrete divergence is computed by

centered differencing everywhere, with the ghost cell values outside the do-

main set by u0 = −u1 to correspond to the homogeneous Dirichlet boundary

conditions. This divergence operator applied to the eigenvectors of Ld gives

Ds(m) =
1

h
sin (mπh) c(m). (74)

The discrete gradient of φ is also computed by centered differencing every-

where, with the ghost cells set by φ0 = φ1, which can be interpreted either
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as discretizing the homogeneous Neumann boundary condition or as constant

extrapolation. This discrete gradient acting on the eigenvectors of Ln gives

Gc(m) = −
1

h
sin (mπh) s(m). (75)

Again define the matrices S and C as for the MAC grid, and make the trans-

formations

u = Sû, u∗ = Sû∗, p = Cp̂, φ = Cφ̂. (76)

The mth set of equations is

û∗m − ûn
m

∆t
=

1

h
sin (mπh) p̂n−1/2

m −
2ν

h2
sin2

(
mπh

2

)

(û∗m + ûn
m) (77)

−
4∆t

h2
sin2

(
mπh

2

)

φ̂m =
1

h
sin (mπh) û∗m (78)

ûn+1
m = û∗m +

∆t

h
sin (mπh) φ̂m (79)

p̂n+1/2
m = p̂n−1/2

m + φ̂m − χ
ν

2h
sin (mπh) û∗m. (80)

From this system we eliminate the intermediate variables û∗m and φ̂m, and

obtain, after algebraic manipulations,





ûn+1
m

p̂n+1/2
m





=





(1 − a)

(1 + a)
s2 scba

(1 + a)

−
sc(1 − a)(1 + χa)

ba(1 + a)

s2 + a(1 − χc2)

(1 + a)









ûn
m

p̂n−1/2
m





, (81)

where

a =
2ν∆t

h2
sin2

(
mπh

2

)

, b =
h

ν
, s = sin

(
mπh

2

)

, c = cos

(
mπh

2

)

.

Let the matrix that maps (ûn
m, p̂

n−1/2
m )T to (ûn+1

m , p̂n+1/2
m )T be denoted by Xm.

We now compute the eigenvalues of each Xm to show that they are less than

one in magnitude, making the scheme stable for both the standard pressure
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update (χ = 0) and the higher order correction (χ = 1). The trace and

determinant of Xm are

Tr(Xm) =
2s2 + a(1 − s2)(1 − χ)

(1 + a)
, det(Xm) =

(1 − a)s2

(1 + a)
, (82)

and the characteristic polynomial is

λ2 − Trλ+ det = 0. (83)

The roots of this equation are either real, or a complex conjugate pair. If the

roots are complex, then their squared magnitude is equal to the determinant,

which is less than one. Therefore if the roots are complex, they must have

magnitude less than one. Now suppose that the roots are real. The graph of

the characteristic polynomial is just a parabola with its vertex at Tr/2, which

is positive. This implies that there must be at least one positive root, and if

it is less than one, then the smaller root must be greater than negative one.

It is sufficient to examine only the larger root. Note that it is also sufficient

to consider the case of χ = 0 (PM I), because the trace is larger in that case

than for χ = 1 (PM II).

For the case χ = 0, the larger eigenvalue is given by

λ =
1

2




(2 − a)s2 + a

(1 + a)
+

√√√√√

(
(2 − a)s2 + a

)2

(1 + a)2
−

4(1 − a)s2

(1 + a)



 . (84)

Simplifying under the square root gives

λ =
1

2(1 + a)

(
p1(s

2) +
√
p2(s2)

)
, (85)

where

p1(r) = (2 − a)r + a,
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and

p2(r) = (2 − a)2r2 + 2(a2 + 2a− 2)r + a2.

Note that s is in the range [0, 1]. If a ≤ 2, then both p1 and p2 attain their

maximum on [0, 1] at 1. And so,

λ ≤
1

2(1 + a)

(
p1(1) +

√
p2(1)

)
= 1 for a ≤ 2. (86)

Now consider the case of a > 2. It turns out that the maximum value of λ is

again obtained at s2 = 1, but it is a little more difficult to show this. Denote

s2 by r. A straightforward computation shows that

∂2λ

∂r2
=

−2(2a− 1)(a− 1)
(
p2(r)

)3/2
< 0, since a > 2, (87)

which means that the derivative of λ with respect to r is a decreasing function.

The minimum value of the derivative of λ is obtained at r = 1, which is

∂λ

∂r

∣∣∣∣∣
r=1

=
1

2a
> 0. (88)

Together (87) and (88) imply that λ is an increasing function of r on [0, 1],

and so we have shown that

λ ≤
1

2(1 + a)

(
p1(1) +

√
p2(1)

)
= 1 for a > 2. (89)

Therefore all the eigenvalues are less than or equal to one in magnitude, and

both PM I and PM II are stable.

Showing projection method III is stable is very easy. We can use the results

from above by assuming that p̂n−1/2 is zero. Therefore, the element of Xm in

the first row and column is all that is needed to determine the stability. This

element is always less than 1 in magnitude, and therefore PM III is also stable.
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4.2.2 Higher Order Gradients

As we proved in the previous section, setting the ghost cell values for the pres-

sure using constant extrapolation produced a stable scheme for all projection

methods. This analysis did not consider the accuracy of such an approach. The

pressure gradient that results is zeroth order accurate near the boundary, and

as we shall see later in a numerical test, the pressure is not second-order accu-

rate for PM II. A more accurate extrapolation, and hence pressure gradient,

must be used near the boundary to produce a second-order scheme. For PM

III, the pressure gradient never needs to be computed, and so the discussion

that follows only applies to PM I and PM II.

When using a different gradient for the pressure, we were unable to diagonalize

the resulting system as was done when constant extrapolation was used. All

of the gradients are identical to the one analyzed away from the boundary,

but differ at grid points adjacent to the boundary. We consider the other

pressure gradients as localized perturbations to the one that was analyzed in

the previous section. We can gain insight into the stability of these schemes

by examining how sensitive the previous scheme is to perturbations.

In the previous section, we showed that the eigenvalues are an increasing

function of the parameter s2 ∈ [0, 1]. Recall that

s = sin

(
mπh

2

)

, (90)

and so s near 1 corresponds to m near 1/h = N . The eigenvalues are thus an

increasing function of the frequency, m, of the eigenfunctions. We examine the

structure of the matrices Xm for large m. In particular, we examine XN−1, so
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that mh = 1−h, and we expand XN−1 in a Taylor series for small h to obtain

XN−1 =





−1 +

(
ν∆tπ2 + 4

4ν∆t

)

h2 π

2ν
h2

νπ

2
χ +

(
3π − χ(ν∆tπ2 + 6π)

12∆t

)

h2 1 −
χπ2

4
h2





+ O
(
h4
)
. (91)

This expansion reveals a significant difference between the cases χ = 0 and

χ = 1. Suppose first that ∆t = O(h) and ν is O(1). With these assumptions, if

χ = 0, the matrix is almost diagonal, but if χ = 1 there is an O(1) off diagonal

element. This large off diagonal element makes the matrix significantly more

sensitive to perturbations.

As an example of how the off-diagonal element affects stability, consider the

matrix

A =





−1 + δ1 0

d 1 − δ2




. (92)

Now suppose that this matrix is perturbed in the upper right element, so that

Ã =





−1 + δ1 ǫ

d 1 − δ2




. (93)

If

ǫ >
δ2(1 − δ1)

d
, (94)

then Ã has an eigenvalue greater than one. If d is small, then ǫ would have

to be large to produce an eigenvalue greater than one. As d gets larger, the

perturbations that force an instability become smaller. If d is O(1), then per-

turbations of size δ2 can produce an instability. Applying this to the matrix
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XN−1 with χ = 1, shows that perturbations of order h2 could produce an

instability.

Projection method II with constant extrapolation for the pressure ghost cells

produces a stable scheme, but is significantly more sensitive to perturbations

than projection method I. This analysis suggests that PM II will become

unstable when higher order extrapolations are used to set the ghost cell values

of the pressure, unless we choose those extrapolating formulas carefully. This

is shown to be the case in the following section.

5 Numerical Tests

We perform two numerical tests. First we test the stability of the model prob-

lem for different choices of pressure gradients for both projection methods I

and II. We test all of the gradients ( gradient 0, gradient 1, and gradient 2)

given in Table I, and one more second-order gradient, which we will refer to as

gradient 2a. We derive the formula for gradient 2a by linearly extrapolating

the gradient itself near the boundary, rather than extrapolating the pressure.

The resulting gradient is second-order accurate at every point, and has the

form

(Gp)1 =
−2p1 + p2 + 2p3 − p4

2h
. (95)

If the ghost cell values are set using the formula

p0 = 2p1 − 2p3 + p4, (96)

this gradient can then be computed by using the standard centered difference

near the boundary. This method of setting the ghost cells extrapolates the

pressure to third order, but it uses a different set of grid points than the stan-
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dard quadratic polynomial extrapolation. After exploring the stability using

the model problem, we then explore both the stability and accuracy when

these gradients are used in the full Navier-Stokes equations. Note that the

discrete gradient operator applied to φ is the same for all tests.

5.1 Model Problem

We proved that the model problem is stable if gradient 0 is used to compute

the pressure gradient. We tested the stability of the model problem using the

pressure gradients 1, 2, and 2a for a large range of time steps and viscosities.

For different values of the cell width h, we varied the time step and viscosity

between h3 and h−3. We began the computation with zero pressure, but with

a random velocity, normalized to have 2-norm equal to 1. We used a random

velocity because it is likely to contain all frequencies. To determine the stability

we ran the computation until it was clear that the perturbation was growing

or decaying.

For projection method I, all pressure gradients produced stable schemes. For

projection method II, only gradient 2 (quadratic polynomial extrapolation for

the ghost cells) became unstable, while all the other gradients were stable

for all time steps and viscosities tested. Gradient 2 was stable for very small

viscosities and time steps, but was very often unstable. Our analysis predicted

that the higher order pressure correction is sensitive to perturbations at high

frequencies, and apparently this sensitivity can produce instability depending

on the gradient. However it was not clear why gradient 2 produced an unstable

scheme, while the other gradients were stable.
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In all of the schemes, high frequency oscillations dominated in the pressure

and the velocity after a few time steps. This is not surprising, because we

showed that the eigenvalues were an increasing function of the frequency of the

eigenvectors. For all the gradients except gradient 2, these oscillations decayed

in time. When gradient 2 became unstable, high frequency oscillations in both

the velocity and the pressure grew near the boundary. An example is displayed

in Fig.3. This particular computation was run with N = 32 cells, time step

h/2, viscosity 1, and using a parabola as the initial velocity. The velocity and

pressure are plotted after 200 time steps.

To see what is different about gradient 2, we examine how each of the gra-

dients act on a particular high frequency mode. Consider the grid function

ψj = (−1)j , which corresponds to the highest frequency mode that can be

represented on the grid. Note that the L1 norm of this mode is one. For points

not adjacent to the boundary, all of the gradients applied to this function

evaluate to zero. The values of the discrete pressure gradients at the first grid

point are shown in Table II. The values increase from pressure gradient 0 to

2, while pressure gradient 2a gives zero, damping this mode completely in the

pressure. In fact, it can be shown that if standard nth-order polynomial extrap-

olation, that is using the n closest interior grid points, is used to set the ghost

cell (as it is in gradients 0-2), the value of the gradient applied to ψ near the

boundary is 2n/h. Considering the grid point adjacent to the other boundary,

the L1 norm of these pressure gradients of ψ is 2n+1. As the analysis using

pressure gradient 0 showed, PM II is sensitive to high frequency modes, and

standard polynomial extrapolation of the pressure produced gradients that

increase the L1 norm of the highest frequency mode. This argument provides

some insight into why pressure gradient 2 produced an unstable scheme.
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5.2 Navier-Stokes Test

We now test the significance of the results of the model problem by solving the

two-dimensional Navier-Stokes equations. We use a test problem from Brown

et al. [6] for forced flow. The solution is

u = cos (2π (x− ω))
(
3y2 − 2y

)
(97)

v = 2π sin (2π (x− ω))
(
y3 − y2

)
(98)

p = −
ω′

2π
sin (2π (x− ω)) (sin (2πy)− 2πy + π)

− ν cos (2π (x− ω)) (−2 sin (2πy) + 2πy − π)

(99)

with ω = 1 + sin (2πt2). From this solution, the force which drives the flow

is calculated. The viscosity is set to one. Periodic boundary conditions are

used in the x-direction and Dirichlet boundary conditions are used in the y-

direction. The numerical solution is compared with the actual solution at time

t = 0.5. The time step used for each computation is ∆t = h/2, where h is the

grid spacing. The nonlinear terms are handled explicitly using the method of

Kim and Moin [20], given in (36).

The max norm of the errors are displayed in Table III for the horizontal

velocity, u, and in Table IV for the pressure. Tables V and VI give the L1 norm

of the errors for the velocity and pressure respectively. The errors in the vertical

velocity, v, are similar to those of u and are not displayed. For projection

method I, all the pressure gradients give essentially equivalent results. The

velocity is second-order accurate in both the L1 and maximum norm, and the

pressure is second-order accurate in the L1 norm, but appears to be order 3/2

accurate in the maximum norm.

For projection method II, pressure gradient 2 was sometimes unstable, and all
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the other gradients were stable. This agrees with the numerical results for the

model problem. Gradients 1 and 2a showed full second-order accuracy in the

pressure, but pressure gradient 0 showed order 3/2 accuracy. The method using

gradient 2 became unstable as time and space were refined. The instability

showed up in these refined cases, not because of the smaller time step or

space step, but because more time steps were taken. To test this we reran the

computation with h = 1/128 for more time steps, and the instability became

apparent by time step 418 (t ≈ 1.63).

6 Discussion

We have discussed the ideas behind projection methods for solving the incom-

pressible Navier-Stokes equations. A recent paper by Brown et al. [6] clarified

issues surrounding the boundary conditions, the pressure, and the accuracy of

projection methods. They may be the first to show full second-order accuracy

in the pressure. However, their analysis did not consider the stability of these

schemes. We have extended their results by analyzing stability. We showed

that on the MAC grid, all schemes are stable. However when an approxima-

tion projection is used, PM II is susceptible to instabilities, depending on how

the gradient is computed near the boundary.

This work was inspired by our observation of instabilities while experimenting

with an approximate projection method. In implementing PM II by computing

the pressure, it is required to choose a difference formula for the pressure at

points adjacent to the boundary. For a scheme that is supposed to be second-

order accurate point-wise, a natural choice for differencing the pressure is

the second-order, one-sided difference using the three points closest to the
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boundary, which in this paper we refer to as gradient 2. As we demonstrated

in this paper, this gradient produced an unstable scheme. It appears that using

a first-order pressure gradient (gradient 1) near the boundary is sufficient to

produce a stable, second-order accurate scheme. However the only gradient

for which we proved the scheme is stable is gradient 0, which did not show

second-order accuracy. We prefer gradient 2a, because, unlike gradient 1, it

damps high frequency errors of the form that appeared when the scheme was

unstable, as displayed in Fig.3. We did not prove that this scheme is stable,

but we have been using a code with gradient 2a for some time, and have not

noted any instabilities related to the projection method.

We have focused on approximate projection methods on cell-centered grids.

This is because cell-centered grids are particularly useful if high-resolution

upwinding is used for the nonlinear terms, and is more commonly used than

the vertex-centered grid. An approximate projection on a vertex-centered grid

was used for the numerical tests in [6], and no instabilities arose. As we showed,

the instabilities arose from the manner in which the pressure was differenced

near the boundary. On a node-centered grid, the pressure is computed at the

boundary, and so no extrapolation is required to difference the pressure.
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Fig.1 Examples of (a) vertex-centered grid and (b) cell-centered grid. All data

are located at the black dots.

Fig.2 Example of the MAC grid discretization. Velocities fields are stored at

the edges of the cell perpendicular to the component of the velocity, and

pressure (and other scalars) are stored at the cell centers.

Fig.3 The velocity and pressure are plotted after 200 time steps for the model

problem using pressure gradient 2. The computation was run withN = 32

cells, time step h/2, viscosity 1, and a parabolic profile as the initial

velocity.
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Table I

Possible ghost cell setting methods and the resulting pressure gradients used at the

left boundary.

type ghost cell formula pressure gradient

constant p0 = p1 (p2 − p1)/2h

linear p0 = 2p1 − p2 (p2 − p1)/h

quadratic p0 = 3p1 − 3p2 + p3 (−p3 + 4p2 − 3p1)/2h

Table II

Value of the discrete pressure gradient applied to ψj = (−1)j at grid point j = 1.

name pressure gradient (Gψ)1

0 (p2 − p1)/2h 1/h

1 (p2 − p1)/h 2/h

2 (−p3 + 4p2 − 3p1)/2h 8/h

2a (−2p1 + p2 + 2p3 − p4)/2h 0
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Table III

Max norm of error in horizontal velocity, u.

method pressure gradient 128 × 128 256 × 256 512 × 512 rate

PM I

0 9.86E-04 2.40E-04 5.93E-05 2.02

1 9.86E-04 2.40E-04 5.93E-05 2.02

2 9.86E-04 2.40E-04 5.93E-05 2.02

2a 9.86E-04 2.40E-04 5.93E-05 2.02

PM II

0 9.30E-04 2.34E-04 5.87E-05 2.00

1 9.30E-04 2.33E-04 5.86E-05 2.00

2 2.55E-03 3.69E-01 nan –

2a 9.30E-04 2.33E-04 5.86E-05 2.00
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Table IV

Max norm of error in pressure.

method pressure gradient 128 × 128 256 × 256 512 × 512 rate

PM I

0 2.33E-02 7.78E-03 4.03E-03 1.55

1 2.27E-02 8.61E-03 4.61E-03 1.49

2 2.31E-02 7.86E-03 4.37E-03 1.52

2a 2.29E-02 8.16E-03 4.42E-03 1.51

PM II

0 2.51E-02 1.20E-02 5.91E-03 1.44

1 9.90E-03 2.38E-03 5.86E-04 2.03

2 1.02E-02 3.22E+00 nan –

2a 9.94E-03 2.38E-03 5.88E-04 2.03
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Table V

L1 norm of the error in the horizontal velocity, u.

method pressure gradient 128 × 128 256 × 256 512 × 512 rate

PM I

0 1.78E-04 4.43E-05 1.10E-05 2.01

1 1.77E-04 4.39E-05 1.09E-05 2.01

2 1.78E-04 4.40E-05 1.10E-05 2.01

2a 1.77E-04 4.39E-05 1.09E-05 2.01

PM II

0 1.73E-04 4.35E-05 1.09E-05 2.00

1 1.73E-04 4.35E-05 1.09E-05 2.00

2 2.00E-04 4.17E-03 nan –

2a 1.73E-04 4.35E-05 1.09E-05 2.00
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Table VI

L1 norm of the error in the pressure.

method pressure gradient 128 × 128 256 × 256 512 × 512 rate

PM I

0 5.56E-03 1.30E-03 3.19E-04 2.04

1 5.58E-03 1.30E-03 3.18E-04 2.05

2 5.59E-03 1.31E-03 3.19E-04 2.05

2a 5.59E-03 1.30E-03 3.18E-04 2.05

PM II

0 1.61E-03 4.44E-04 1.30E-04 1.88

1 1.32E-03 3.16E-04 7.77E-05 2.03

2 1.18E-03 2.06E-01 nan –

2a 1.32E-03 3.16E-04 7.77E-05 2.03

48


