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Abstract

Blebbing occurs when the cytoskeleton detaches from the cell membrane, resulting in the pressure-
driven flow of cytosol towards the area of detachment and the local expansion of the cell membrane.
Recent interest has focused on cells that use blebbing for migrating through three dimensional fibrous
matrices. In particular, metastatic cancer cells have been shown to use blebs for motility. A dynamic
computational model of the cell is presented that includes mechanics of and the interactions between the
intracellular fluid, the actin cortex, and the cell membrane. The computational model is used to explore
the relative roles in bleb formation time of cytoplasmic viscosity and drag between the cortex and the
cytosol. A regime of values for the drag coefficient and cytoplasmic viscosity values that match bleb
formation time scales is presented. The model results are then used to predict the Darcy permeability
and the volume fraction of the cortex.

Keywords: Blebbing, cell cortex, cell mechanics, intracellular fluid flow, immersed boundary method,
porous media

1 Introduction

In animal cells, the cell cortex is an actin-rich layer attached to the membrane (Alberts et al., 2002). Myosin
molecular motors pull on neighboring actin filaments to generate cortical tension. Because of this tension,
the cell is pressurized. If either the attachments between the membrane and cortex are broken, or the cortex
is ablated, cytoplasm flows into the site of detachment or ablation and the membrane expands (Charras &
Paluch, 2008). The resulting membrane protrusion is called a bleb, and the process is referred to as blebbing.
Eventually the cortex reforms and the bleb retracts. Blebbing has been observed in many cellular processes
such as apoptosis (Mills et al., 1998), cytokinesis (Fishkind et al., 1991), cell spreading (Erickson & Trinkaus,
1976), and motility (Fackler & Grosse, 2008). In particular, blebbing has been observed in migrating cancer
cells when extracellular matrix degrading proteins are inhibited (Wolf et al., 2003).

Little is known about control mechanisms of bleb growth. It has been hypothesized that cytoplasmic
rheology, membrane tension, and cortical reformation are involved in bleb formation (Charras et al., 2008;
Tinevez et al., 2009). The interactions and exact roles of these components are unclear. Mathematical
modeling can be used as a tool to elucidate the interplay and function of these components. Additionally, the
cytoplasm has been hypothesized to be elastic, poroelastic, and fluid. Different cytoplasmic models will affect
pressure propagation and bleb dynamics in the cell. A mathematical model can shed light on cytoplasmic
properties by looking at bleb formation time as a function of model parameters such as cytoplasmic viscosity.

Bleb modeling has addressed the case when the cell is in equilibrium (Sheetz et al., 2006; Tinevez et al.,
2009). For example, in Tinevez et al. (2009) Laplace’s law was used to investigate maximum bleb size as a
function of cortical tension. One dimensional scaling arguments are used to motivate a poroelastic model of
∗Email address: wanda@math.ucdavis.edu, §Corresponding author
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the cytoplasm in Charras et al. (2008). An energy minimization argument in Sheetz et al. (2006) predicts a
critical hole radius for bleb nucleation. Computational models have only recently been developed (Young &
Mitran, 2010).

Dynamic models that also take into account cellular morphology are necessary for understanding how cells
migrate in three dimensional fibrous matrices. As a first step towards this goal, we present a computational
model of bleb formation that includes the cytoplasm, cell membrane, actin cortex, and adhesion between the
membrane and cortex. The cytoplasm is modeled as a Newtonian fluid. The cell membrane and cortex are
modeled by elastic solids. Moreover, the cortex is treated as a permeable membrane that experiences drag as
it moves through the cytoplasm. We use the framework of the immersed boundary method to simulate our
model. Our computational model is then used to investigate the effects of cytoplasmic viscosity and cortical
drag on bleb formation time. We then estimate cortical permeability and volume fraction.

The rest of the paper is organized as follows. In section 2 we describe the model system and governing
equations. The numerical algorithm used to simulate the model equations is described in section 3. In section
4, we explain the initialization of the computation and quantify the effects of membrane and cortical elastic
parameters on bleb shape and size. We then utilize our computational model to explore the relationship
between cytoplasmic viscosity and cortical drag and present the results.

2 Mathematical Formulation

Our model of the cell includes a bilipid membrane and actin-rich cortex immersed in a fluid. The membrane
and cortex are linked to each other, mimicking adhesion (Fig. 1). The cell membrane and cortex are modeled
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Figure 1: Model Components. Adhesion links the discretized cortex ΓC (boxes) to the discretized cell
membrane ΓM (filled circles). Cytoplasmic fluid is located in the interior of the cell.

by active, elastic structures. Forces arising from these structures drive fluid motion. The cell membrane
moves with the fluid velocity, satisfying a no-slip condition. Because of the small length scales in the system,
the Reynolds number is small, and the fluid equations are given by Stokes flow,

µ∆~u−∇p+ ~fM + ~fAD + ~fD = ~0
∇ · ~u = 0.

(1)

The variable ~u is the fluid velocity (µm/s), p is the pressure (g/µm s2), and µ is the dynamic viscosity of the
fluid (P). The external fluid force densities (g/µm2 s2) arise from membrane elasticity ~fM , membrane-cortex

2



adhesion ~fAD, and cortical drag ~fD.
The cortical velocity is determined by an additional balance of forces on the cortex. Myosin motors

within the cortex generate active contractile tension. The other forces arise form adhesion to the membrane
and drag from the background fluid. Because the cortex is modeled as a permeable, elastic membrane, it
moves with a velocity separate from the fluid velocity, which is determined by the force balance equation

~F C
D + ~F C

C + ~F C
AD = ~0. (2)

Each term has units of force per unit area (g µm−1 s−2). The exact forms of each surface force density are
provided later. Cortical forces are communicated to the fluid through drag and membrane-cortex adhesion
forces.

The structures are represented by continuous one-dimensional curves ΓM (membrane) and ΓC (cortex)
immersed in a two-dimensional fluid domain. Each curve is parameterized by reference arc length s, and
their position is denoted by ~XM (s, t) (membrane) or ~XC(s, t) (cortex). We employ the immersed boundary
formulation where structures are represented in a moving, Lagrangian coordinate system, while fluid variables
are located on a fixed, Eulerian coordinate system (Peskin, 1977). We use this formulation because a moving
Lagrangian coordinate system is a natural choice for representing deforming mechanical structures. Likewise,
an Eulerian coordinate system is a natural choice for fluid variables. Also, the algorithm for communicating
between coordinate systems is straightforward to implement. To distinguish between structure and fluid
quantities, we use capital letters to indicate terms located on a structure and lower case letters for variables
associated with the fluid. Additionally, superscripts indicate the location of the velocities and force densities,
either membrane or cortex, i.e. The term ~U C

F is the fluid velocity located on the cortex, and ~F M
AD represents

adhesion force per unit area on the cell membrane. A surface force density on an immersed structure is
spread onto the fluid coordinates as follows,

~f(~x, t) = S(~F ) =
∫

Γ

~F (s, t)δ(~x− ~X(s, t))ds, (3)

where δ(~x) is the two-dimensional delta function. The notation S indicates spreading the force per unit area
from the Lagrangian (membrane) to force per unit volume in Eulerian (fluid) coordinates. The spreading
operator conserves force, i.e. ∫

Γ

~F dS =
∫

Ω

S(~F ) d~x. (4)

We interpolate from Eulerian to Lagrangian coordinates to obtain fluid quantities. For example, to obtain
the fluid velocity on ΓM , we use the interpolation operator,

~U M
F = S∗M (~u) =

∫
Ω

~u(~x, t)δ(~x− ~X(s, t))d~x, (5)

where Ω is the fluid domain.
Drag due to relative motion of the cortex is proportional to the difference between the cortical and fluid

velocities, i.e.
~F C
D = ξ

(
~U C
F − ~UC

)
, (6)

where ξ is the drag coefficient (g µm−2 s−1). The drag coefficient is inversely proportional to the permeability
of the cortex. We will explore this relationship more in section 4. Because all of the forces in the system
sum to zero, drag on the cortex is equal and opposite to forces exerted on the fluid. The drag force density
spread onto the Eulerian coordinates is denoted

~fD = −SC(~F C
D ). (7)

The cortex is modeled as a linear elastic material. At rest, it is under tension from actomyosin con-
tractility. The cortex also experiences tension proportional to the amount it is stretched. The constitutive

3



equation is given by,

TC(s, t) = γC + kC

(∣∣∣∂ ~XC

∂s

∣∣∣− 1

)
, (8)

where γC (pN/µm) represents resting tension and kC (pN/µm) is the cortical stiffness coefficient. The
elastic modulus EC is equal to kC/h, where h is the thickness of the cortex. We chose a reference arc length
parameterization of the cortex so that |∂ ~XC/∂s| is 1 when the cortex it is in its initial circular configuration.

A pure bilipid membrane cannot stretch. However, the cell membrane is a dynamic structure that flows,
unfurls, and exocytoses new material. (Charras et al., 2008; Sheetz et al., 2006). For simplicity, we model
the membrane as a linear elastic material. The implications of our the membrane model are explored further
in section 4. Membrane tension takes the same form as (8), i.e.

TM (s, t) = γM + kM

(∣∣∣∂ ~XM

∂s

∣∣∣− 1

)
, (9)

were γM (pN/µm) is membrane tension is a resting configuration, and kM (pN/µm) is the stiffness coefficient.
The value of |∂ ~XM/∂s| is 1 when the membrane it is in its initial circular configuration because of the curve
parameterization. The model parameters are further discussed in section 4.

The force densities ~FC and ~FM generated by membrane and cortical tension are given by

~F =
∂

∂s

(
T~τ
)
, (10)

where the vector tangent to the membrane or cortex is

~τ(s, t) =
∂ ~X/∂s

|∂ ~X/∂s|
. (11)

Adhesion forces keep the membrane and cortex attached. This is modeled by discrete elastic springs
connecting ΓM to ΓC (Fig. 1) with a stiffness coefficient kAD (pN/µm3) and a resting length lAD (µm),
given by,

F M
AD = −kAD

(
|| ~XM − ~XC || − lAD

) ~XM − ~XC

|| ~XM − ~XC ||
. (12)

The adhesion force density at a point on the cortex is equal and opposite to the force density at a corre-
sponding point on the membrane,

~F M
AD + ~F C

AD = ~0. (13)

The spread adhesion force on the membrane in (1) is defined to be

~fAD = S(~F M
AD). (14)

3 Numerical Formulation

The cell membrane and cortex are discretized on a moving Lagrangian grid parameterized by s. Each
discretized boundary has Nb points with initial uniform mesh spacing ∆s. Fluid quantities such as velocity
and pressure are located on a fixed, staggered Eulerian grid (Fig. 2). Periodic boundary conditions are used
on the fluid domain because the flow outside of the cell is relatively stationary. Communication between
grids is handled by the immersed boundary method (Peskin, 1977). To approximate the integrals in the
spreading and interpolation operators (Eqs. (3) and (5)), the delta function in one dimension is discretized
as follows,

δ(x) ≈ δ∆x(x) =

{ 1
4∆x

(
1 + cos

( πx

2∆x

))
, if |x| < 2∆x

0, otherwise
(15)
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Figure 2: Staggered grid for fluid variables. The horizontal component of the velocity vector u is stored
at filled squares. The vertical component v is stored at circles. Pressure is stored at the center of the
computational cell, denoted by crosses.

where ∆x is the spatial step size. In two dimensions, we have δ(~x) ≈ δ∆x(x)δ∆y(y). The discretization of
the spreading operator Eq. (3) is

~f n+1
i,j = ∆s

Nb∑
k=1

~Fn+1
k δ∆x(xi −Xn

k )δ∆y(yj − Y nk ), (16)

and the discrete interpolation operator Eq. (5) is given by,

~U n+1
k = ∆x∆y

∑
ij

~un+1
i,j δ∆x(xi −Xn

k )δ∆y(yj − Y nk ). (17)

At each time step, we solve for fluid velocity, pressure, external force densities, cortical velocity, and
positions of the membrane and cortex. Because the system has a large number of unknowns, and it is
nonlinear, we employ a fractional time stepping algorithm. The fractional time stepping that we use involves
lagging the force densities in time. Force densities at the current time step are computed using the boundary
configuration from the previous time step. Stokes equations (1) are then solved. Finally immersed boundaries
are updated with the appropriate fluid or cortical velocity.

Recall the surface force density balance on the cortex is ~F C
D + ~F C

C + ~F C
AD = ~0. Combining the previous

equation with (7), the explicit fluid velocity dependence from the drag force density term in (1) is removed.
The spread drag force then is

~fD = SC(~F C
AD) + SC(~F C

C ). (18)

The fluid equation (1) becomes

µ∆~u−∇p+ SM (~FM ) + SM (~F M
AD) + SC(~F C

AD) + SC(~F C
C ) = ~0. (19)

Because the above equation resembles that of forced Stokes flow, it is straightforward to solve. The update
for the position of the cortex is

d ~XC

dt
= ~UC . (20)
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Combining the cortical surface force density balance (2) with the definition of the drag surface force density
(6), we have

~UC = ~U C
F + ξ−1

(
~F C
C + ~F C

AD.
)
. (21)

In this way, the cortical surface force density balance is used to update the position of the cortex. Eqs. (19)
and (20) are solved in the algorithm described below.

The time stepping algorithm to update the system from tn = n∆t to tn+1 is as follows:

1. Compute immersed boundary surface force densities ~FC , ~FM , and ~FAD based on current membrane
and cortex position. Derivatives are approximated with centered differences.

2. Spread the force densities onto nearby Eulerian points using Eq. (16).

3. Solve Stokes equations with external forces densities. For simplicity, the cytoplasmic fluid is taken to
be equal to the extracellular fluid with viscosity µ. We take the divergence of Eq. (19) and solve a
Poisson equation for the pressure p. Once the pressure is computed, we solve Eq. (19) for each velocity
component ~u = (u, v). Approximate the derivatives in Laplacian terms with centered differences,
resulting in the standard 5-point second order Laplacian. Fast Fourier transforms are used to solve the
Poisson equations.

4. Interpolate the fluid velocity to the membrane and cortex using Eq. (17).

5. Update the boundary positions with the appropriate velocities. The membrane update is

~Xn+1
M = ~X n

M + ∆tS∗M
(
~un+1

)
= ~X n

M + ∆t~U n+1
F . (22)

The cortical update is

~Xn+1
C = ~X n

C + ∆t
(

1
ξ

(
~F n+1
C + ~F n+1

AD

)
+ S∗C(~un+1)

)
. (23)

4 Computational Experiments

In this section, we begin by discussing the model parameters and the set-up of the computational experiments.
Membrane and cortical elastic parameters are varied to determine their effect on steady state bleb size and
shape. We then quantify bleb formation time, and use this value to investigate the effects of varying
cytoplasmic viscosity and drag over several orders of magnitude. We relate the drag coefficient in our model
to permeability of the cortex, and use this value to estimate the volume fraction of the cortex.

4.1 Parameters and simulation

A summary of model parameters from experimental data is listed in Table 1. The parameters for membrane
and cortical tension are consistent with other studies (Charras et al., 2008). Note that measurements of
viscosity and bleb formation time vary over several orders of magnitude. The cytoplasm is a complex
material consisting of liquid cytosol, cytoskeleton, organelles, and proteins. Experimental values of viscosity
depend on the assumed cytoplasmic model. For example, an effective viscosity is a bulk measurement based
on the viscosity of the liquid cytosol and cytoskeleton. However, in a poroelastic gel cytoplasmic model, the
viscosity of the liquid cytosol without the cytoskeleton is reported, and this value is typically lower than an
effective cytoplasmic viscosity (Charras et al., 2008; Keren et al., 2009). Later in this section, we vary the
viscosity to determine the effect on bleb formation time.

The cortex ΓC and membrane ΓM are initially circles parameterized by arc length in a reference con-
figuration: ΓC = rC(cos(s/rC), sin(s/rC)) for 0 ≤ s < 2πrC and ΓM = rM (cos(s/rM ), sin(s/rM )) for
0 ≤ s < 2πrM . The grid step size ∆x used for most of the simulations in the following sections is 0.46875
µm (see Table 1). The distance between the membrane and cortex was chosen to be small, but above grid
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Table 1: Model parameters and sources.
Symbol Quantity Value Source
rM Cell radius 10 µm Tinevez et al. (2009)
γM Membrane surface tension 40 pN/µm Tinevez et al. (2009)
kM Membrane stiffness coefficient 4 pN/µm
rC Cortex radius 9.0625 µm
γC Cortical tension 250 pN/µm Tinevez et al. (2009)
kC Cortical stiffness coefficient 100 pN/µm Tinevez et al. (2009)

Charras et al. (2005)
kAD Adhesion stiffness coefficient 267 pN/µm3

lAD 0.001 µm
µ Cytosolic viscosity 10−2 − 10 P Kreis et al. (1982)

Wirtz (2009)
ξ Drag coefficient 10−2 − 101 g µm−2 s−1

− Bleb formation time 5-30 s Charras & Paluch (2008)
Tinevez et al. (2009)

L Fluid computational domain size 30 µm
∆x Fluid grid step size L/64
∆s Initial structure grid step size 2πr∆x/(4L)

scaling. We use the value of 0.9375 µm. This value is equal to 2∆x for the grid size listed in Table 1 where
most of the results in this section are computed on.

At equilibrium, the cortical velocity and fluid velocity are both zero, and the membrane and cortex are
stationary. From equation (21), adhesive force per unit area balances cortical force per unit area. Taking
(21) in the normal direction to the cortex yields

~FCAD · ~n+ ~F C
C · ~n = kAD (rM − rC − lAD)− γC

rC
= 0. (24)

Substituting in the values for rM , rC , γC , and the adhesion resting length lAD = 0.001 µm we obtain the
stiffness coefficient for the adhesion force density, kAD = 267 pN/µm3 from (24).

Before blebbing is initiated, the system is in equilibrium, and there is no fluid flow. Cortical tension due to
actomyosin contractility is the dominant contributor in generating intracellular pressure. Forces from cortical
tension are transmitted to the membrane through adhesion. Membrane-cortex adhesive forces balance forces
from cortical contraction. Because the membrane is impermeable, forces from adhesion, membrane tension
and cortical tension are balanced by internal pressure.

Blebbing is initiated by removing membrane-cortex adhesion in a small region as shown in Figure 3. We
chose the region to be from −π/32 < θ < π/32, corresponding to a bleb hole diameter of about 2 µm.

Results from a simulation are shown in Figure 4. Model parameters used in the simulation are listed in
Table 1. The drag coefficient was set to 11 g µm−2 s−1 and the viscosity was set to 100 times the viscosity
of water (1 P). After the adhesion is removed, forces from cortical tension are no longer transmitted to
the membrane in a small region. As a result, pressure is reduced in a small area near the site of removed
adhesion. This causes the cytoplasm to flow, expanding the membrane. Because the membrane is assumed
to be a linear elastic material in our model, the bleb reaches a maximum steady state size when forces due to
membrane elasticity balance the intracellular pressure. The process results in a new steady state membrane
and cortex configuration (final time value in Figure 4). The membrane and cortex stiffness coefficients play
a large role in bleb size which is investigated in the next section.

4.2 Effects of membrane and cortical elasticity on bleb size

Experimental values of the elastic modulus of the cell cortex EC have been reported to range from 34 Pa
for alveolar epithelial cells (Laurent et al., 2002) to 2000 Pa for filamin deficient M2 cells (Charras et al.,
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Figure 3: A bleb is initiated by removing membrane-cortex adhesion in a small region. The diameter of the
bleb hole is about 2 µm.
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Figure 4: Color field indicating Pressure (Pa) with µ = 1 P and ξ = 11 g µm−2 s−1. Note the initial pressure
is lower across the cortex near the bleb nucleation site. The grid size used was 64 × 64.
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2005). Taking the cortical thickness to be 0.1 µm (Tinevez et al., 2009), the cortical stiffness coefficient
kC is equal to the elastic modulus times the cortical thickness and ranges from 3 to 200 pN/µm. There is
no experimental value for the effective elastic modulus of the membrane that takes into account membrane
unfurling, flow, and exocytosis. Therefore we simulated our model over a range of cortical elastic moduli
and membrane stiffness coefficients to understand their contribution to bleb shape and expansion dynamics.

To quantify bleb size, we first measure cell width, which is defined to be the horizontal distance from the
leftmost membrane point to the rightmost membrane point (Figure 5). The initial cell diameter of 20 µm
is then subtracted from the cell width to obtain bleb size. It should be noted that the leftmost membrane
point moves less than 1% during the simulations presented in this section.

Cell Width

Figure 5: Cell width is defined to be the distance from the leftmost point on the membrane to the rightmost
point. This value is subtracted from the initial cell diameter of 20 µm to give a measurement of bleb size.
Bleb size reaches a steady state value that is used to measure bleb formation time.

Steady state bleb size as a function of membrane stiffness coefficient and cortical elastic modulus is listed
in Table 2. Fluid viscosity was set to µ = 10 P and drag was ξ = 11 g µm−2 s−1. Additional parameters
are listed in Table 1. The membrane did not achieve a steady state configuration for the (kM , EC) pairs
of (2, 10), (2, 101.5), and (2, 102). For these value pairs, intracellular pressure is above the threshold where
membrane tension can resist bleb expansion (Tinevez et al., 2009). The steady state membrane configuration
near the bleb is shown in Fig. 6. If the cortex is relatively soft, for example when EC = 10 pN/µm2, the
bleb is relatively broad and does not achieve the circular shape observed experimentally. Above the value of
kM = 6 pN/µm, bleb size is about 1 µm. Thus we chose kM = 4 pN/µm and EC = 1000 pN/µm2 to obtain
a bleb size of about 1 µm with a circular morphology.

4.3 Experiments on cytoplasmic viscosity and cortical drag

In this subsection, we present computational experiments to determine the relative roles of cytoplasmic
viscosity and cortical drag on the dynamics of bleb formation. As previously mentioned, the viscosity of the
cytoplasm can be interpreted differently depending on the underlying cytoplasmic model. In our model, the
cytoplasm is modeled as a Newtonian fluid, and we interpret cytoplasmic viscosity to be a bulk, effective
viscosity. Experimental measurements for the effective viscosity of the cytoplasm vary over several orders
of magnitude, ranging from 1 to 1,000 times the viscosity of water (Kreis et al., 1982; Mastro et al., 1984;
Wirtz, 2009). Cortical drag corresponds to permeability of the cortex. We explore this connection in detail
in section 4.4. The bleb formation time scale in our model is determined by the cortical drag coefficient and
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Table 2: Bleb size in µm as a function of cortical elastic modulus EC = kC/h pN/µm2 (h = cortical thickness)
and membrane stiffness coefficient kM pN/µm. Bold numbers indicate the values used for the remainder of
the manuscript.

Membrane
Stiffness
Coefficient
(pN/µm)

Cortical Elastic Modulus (pN/µm2)

101 101.5 102 102.5 103 103.5 104

2 − − − 2.3 1.8 1.6 1.5
4 1.8 1.6 1.4 1.3 1.2 1.1 1.1
6 1.1 1.1 1.1 1.0 1.0 1.0 0.9
8 1.0 0.9 0.9 0.9 0.9 0.9 0.9
10 0.9 0.9 0.9 0.9 0.8 0.8 0.8

kM = 4 pN/µm, EC = 103 pN/µm2

kM = 4 pN/µm, EC = 104 pN/µm2

kM = 4 pN/µm, EC = 10 pN/µm2

kM = 2 pN/µm, EC = 102.5 pN/µm2

Figure 6: Steady state membrane configuration for several values of membrane stiffness coefficients and
cortical elastic moduli.
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cytoplasmic viscosity. By analyzing the viscosity-drag parameter space, we determine their relative roles in
setting this time scale, and identify the values of viscosity and drag that match experimentally measured
bleb formation times.

We begin by quantifying the relative contribution of viscous and drag forces from the simulation shown
in Figure 4. We computed the ratio of the max norm of the viscous force density µ∆~u to the max norm of
the drag force density ~fD. Figure 7 shows the norm of the viscous force density divided by the drag force
density over time. Initially, the drag force density is about 30 times the viscous force density, then levels off
at 200 times the viscous force density. Thus we conclude drag forces dominate throughout this simulation.

|| μ
 Δ
u→
 || m

ax
 / 

|| 
f→ D
 || m

ax

0

0.01

0.02

0.03

Time

0 5 10 15 20

Figure 7: Maximum norm of the viscous force density divided by the drag force density over time. Data are
taken from the simulation in Fig. 4. Drag forces dominate viscous forces.

Before a thorough exploration of the viscosity-drag parameter space, we define how we quantify bleb
formation time. The steady state shape is independent of the viscosity and drag and is determined only
by the cortex and membrane stiffnesses. The viscosity and drag determine the dynamics of the approach
to steady state. Figure 8 shows the time course of bleb size, as defined in section 4.2, for several viscosity
values with the drag coefficient set to 0.1 g µm−2 s−1. We define bleb formation time as the amount of time
it takes for the bleb size to reach 90% of its steady state value.

To determine the the relative roles of drag and viscosity on bleb formation, we simulated our model for
viscosities from 0.1 to 1000 P and drag coefficients from 10−2 to 10 g µm−2 s−1. For each (µ, ξ) pair, we
measured the time when bleb size reached 90% of the steady state bleb size of 1.2 µm. The results are
shown in Fig. 9. Reported bleb formation times range from 5-30 seconds (Charras & Paluch, 2008; Tinevez
et al., 2009). Taking the value of cytoplasmic viscosity to be 0.1-1 P (10-100 times more viscous than water),
the drag coefficient must be larger than 1 g µm−2 s−1 to obtain experimentally measured bleb formation
times. Additionally, Figure 9 shows two regimes. For large viscosity and small drag coefficient values, bleb
formation time depends only on cytoplasmic viscosity. For small viscosity and large drag coefficient values,
cortical drag sets the time scale.

We verified our results with a convergence study on three grid refinements. The number of grid points
on the three levels was N × N, with N = 64, 128, and 256. We used µ = 10 P and ξ = 1 g µm−2 s−1.
Bleb formation time varied by 6% from the N = 64 to 128 refinement, and by 2% from N = 128 to 256
refinement. Our results are consistent with first order convergence.
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Figure 8: Time coarse of bleb size, as described in section 4.2, for different viscosities and drag coefficient
ξ = 0.1 g µm−2 s−1. Bleb size approaches the steady state value of 1.2 µm indicated by the dotted line.
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Figure 9: The color field shows bleb formation times in seconds for different viscosity (P) and drag coefficient
values (g µm−2 s−1). The solid contours indicate bleb formation times of 1,5, 10, 20, and 30 seconds. The
mesh was computed with cubic interpolation of the original data that consisted of 20 evenly spaced (µ, ξ)
points from (10−1, 10−2) to (103, 10).

12



4.4 Interpretation of results

Another way to interpret the drag coefficient is to relate it to the permeability of the cortex. Flow through
a porous medium is described by Darcy’s law (Bear, 1972)

Up =
k[p]
µa

, (25)

where Up (µm/s) is the porous slip velocity, [p] (g µm−1s−2) is the pressure jump, k (µm2) is the permeability
of the material, and a (µm) is the thickness of the material. In our model, the force density balance on the
cortex is

ξ
(
~UC − ~U C

F

)
= ~F C

C + ~F C
AD. (26)

The porous slip velocity is
Up =

(
~UC − ~U C

F

)
· ~n = Fn/ξ, (27)

where Fn is the normal component of the cortical force density. From (25) and (27), the expression for the
permeability of the cortex is

k =
µaFn
ξ[p]

. (28)

The jump in the normal fluid stress across the cortex generates a jump in the pressure of [p] = Fn|∂ ~XC/∂s|
(Kim & Peskin, 2006; Stockie, 2009). Therefore, the permeability in terms of our model parameters is

k =
µa

ξ|∂ ~XC/∂s|
. (29)

We take |∂ ~XC/∂s| to be its initial value of 1. Cortical thickness a is 0.1 µm (Tinevez et al., 2009). We let the
value of cytoplasmic viscosity µ be 0.1 P (Charras et al., 2008). In our computational experiments, the drag
coefficient ξ varies from from 10−2 to 10 g µm2s−1 (Table 1 and Figure 9). Plugging the values of |∂ ~XC/∂s|,
a, µ, and the range of ξ into (29), the resulting permeability k varies from 10−7 to 10−2 µm2. We found large
drag values match experimental bleb formation times for µ = 0.1 P. Using the value of ξ = 10 g µm2 s−1, the
corresponding permeability estimate is on the order of k = 10−7 µm2. Our prediction for the permeability
of the cortex is in line with experimentally measured biological materials. For example, the permeability of
water through collagen fibers with radius 10−3µm and a volume fraction of 0.215 is 5 × 10−7µm2 (Jackson
& James, 1986).

Cytoplasmic permeability has been estimated in other contexts. In the lamellipodium of a keratocyte,
permeability was estimated to be 10−3 µm2 in Keren et al. (2009). The cytoplasmic permeability throughout
the cell was estimated at 10−4 µm2 in Charras et al. (2008). Both of these estimates assume the intracellular
cytoplasm is a porous medium whereas in our model, all drag is located at the cortex. This might explain
why the permeability estimates in Charras et al. (2008); Keren et al. (2009) are larger.

We also calculate the volume fraction in the cortex using our estimate for permeability. An analytic
formula for the permeability of rods randomly oriented in three dimensions was given in Spielman & Goren
(1968),

1
φ

=
4
3

+
10
3

√
k

λ

K1(λ/
√
k)

K0(λ/
√
k)
, (30)

where φ is the volume fraction, λ is the radius of the fibers, and K0 and K1 are modified Bessel functions of
the 0-th and 1-st kind respectively. It should be noted that this formula is consistent with the experimentally
measured collagen permeability and volume fraction data mentioned in the previous paragraph. In our case,
we take λ to be the radius of an actin bundle, which we estimate to be 10−2 µm. Taking k = 10−7 µm2, we
obtain the volume fraction φ = 0.7 from (30). Equation (30) is highly sensitive to the choice of λ. If we take
λ to be the radius of an actin monomer, about 10−3 µm, then the volume fraction drops to φ = 0.39. We
estimate the volume fraction of the cortex to be a range from 0.4 to 0.7. This is the first estimate for the
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volume fraction of the cortex. The range of predicted cortical volume fractions is high, but it is in agreement
with other estimates. For example, the volume fraction of cytoskeleton throughout the cell was estimated
to be 0.8 in Charras et al. (2008), and 0.5 in a keratocyte lamellipodium (Keren et al., 2009).

Average pore size can be computed from volume fraction. In Chatterjee (2010), a formula relating average
pore size 〈r〉 to volume fraction φ is presented for the case of a spatially uniform and randomly oriented
network of cylindrical fibers with radius λ,

〈r〉 =
λ

2

√
π

α
eα
(
erf(1−

√
α)
)
, (31)

where α = ln (1/(1− φ)) and erf is the error function. Taking φ = 0.7 from the previous volume fraction
calculation, average pore size is about 1/3 times the fiber radius or 3 nm if λ = 10−2 µm. Typical cortical
pore sizes are reported from 20 to 200 nm in Charras et al. (2006). These numbers are based on images
from scanning electron microscopy. The pore size appears to be comparable to the fiber size in these images
(Figure 6 in Charras et al. (2006)). One likely reason for our underestimate of the average pore size is that
we consider average pore size. Larger pores are easier to visualize and quantify in the microscopy images. It
is more difficult to obtain a mean pore size. Additionally, our low estimate of pore size may result from the
assumption that the drag force is localized to the cortex. If the drag force inside the cell due to cytoskeleton
and organelles is included, this may predict a higher cortical permeability and a larger pore size. Internal
cytoskeleton could be included in this modeling framework, but such an extension is nontrivial and beyond
the scope of the current work.

5 Discussion

We have presented a computational model of bleb formation that includes the cytoplasm, cell membrane,
cortex, and adhesion between the membrane and cortex. A novel feature of our model is that the cortex
is treated as a porous elastic structure that moves with a separate velocity due to drag between the cortex
and cytoplasmic fluid. The role of the cortical elastic modulus and membrane stiffness coefficient on bleb
shape and steady state times was investigated. We measured bleb formation time over a range of values
in the drag-viscosity parameter space because the timescale of bleb formation is set by these parameters in
our model. We identified two regimes. Viscosity dominates the dynamics in one regime, and drag plays a
significant role in the other. A typical value for cytoplasmic viscosity is 10 times the viscosity of water (0.1
P) (Charras et al., 2008; Keren et al., 2009). Using this value, we calculated the permeability to be 10−7

µm2 and a range of volume fractions of the cortex from 0.4 to 0.7. These values suggest the cortex is tightly
packed with a gap size about one third the size of the fiber radius. Experimental evidence suggests that the
gap size is larger and volume fraction is smaller. In our model, intracellular drag is attributed to the cortex.
Other factors such as the drag on the internal cytoskeleton may contribute to bleb dynamics.

The computational model presented here is a two dimensional model. Because the dynamics are deter-
mined by flow through the cortex and membrane expansion, we do not expect that the time and bleb size
scales would substantially change from those computed by a three dimensional model. In our simulations
blebbing was initiated by removing adhesion between the membrane and the cortex. If blebbing were ini-
tiated by ablating the cortex, there may be significant differences two and three dimensional models. The
elastic stresses near a cut in a circular membrane may be very different from the stresses around a hole in
a spherical membrane. However, a two dimensional model facilitates rapid parameter studies that would be
be computationally expensive in a three dimensional model. The data from this study gives us a starting
point for more detailed quantitative computational experiments with a three dimensional model.

Experiments show that secondary blebs are slightly smaller than the primary bleb (Tinevez et al., 2009).
In our model, multiple blebs are all the same size (data not shown). This is because not much pressure
is relieved by bleb expansion. It is not known what relieves intracellular pressure. One hypothesis is that
internal compression of the cytoskeleton plays a significant role (Tinevez et al., 2009). Our model can be
extended to quantify the contributions of cytoskeletal compressibility and internal drag on bleb dynamics
by treating the material on the inside of the cell as poroelastic. This will be the subject of future work.
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Our approach to incorporating porosity into the immersed boundary method is different from previous
work. In Kim & Peskin (2006); Stockie (2009), the porous slip velocity is proportional to the immersed
boundary force density in the normal direction. In our model, we have two force density balances. One from
the fluid equation and one on the cell cortex. The force density balance on the cortex determines the porous
slip velocity, which allows for slip in the tangential direction.

The model presented here is a first step towards understanding the dynamics of blebbing, which is
particularly important for understanding three dimensional cell motility. An advantage of using the immersed
boundary method is that it is straightforward to add additional components to the model, such as cytoplasmic
elasticity and sub-cellular structures. The framework of our model allows for future explorations on the role
of these structures in blebbing and in intracellular pressure propagation.
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