MAT 127B-01 Winter 05 Midterm 1 Answers

1. (20 pts) Consider the power series

$$
\sum_{n=1}^{\infty} \frac{3^{n}}{n} x^{2 n}
$$

a. Compute its radius R of convergence.
b. Does it converge at $x= \pm R$, explain your answer.

Answer:
a. Let $y=x^{2}$. The new power series

$$
\sum_{n=1}^{\infty} \frac{3^{n}}{n} y^{n}
$$

has radius of convergence that is $\frac{1}{\beta}$ where

$$
\beta=\lim \sup \left|\frac{3^{n}}{n}\right|^{\frac{1}{n}}=3
$$

Hence the series converges for $|y|<\frac{1}{3}$ or equivalently $\left|x^{2}\right|<\frac{1}{3}$ or $|x|<\sqrt{\frac{1}{3}}$.
So $R=\sqrt{\frac{1}{3}}$.
b. At $x= \pm R= \pm \sqrt{\frac{1}{3}}$ the series is

$$
\sum_{n=1}^{\infty} \frac{3^{n}}{n}\left(\pm \sqrt{\frac{1}{3}}\right)^{2 n}=\sum_{n=1}^{\infty} \frac{1}{n}
$$

which diverges.
2. (20 pts) Consider the sequence of functions $f_{n}(x)=x-x^{n}$.
a. Does this sequence converge pointwise on $[0,1]$? If so what is the limit function?
b. Does this sequence converge uniformly on $[0,1]$? Prove your answer.
c. Does this sequence converge uniformly on $[0, a]$ where $0<a<1$? Prove your answer.

Answer:
a.

$$
\lim _{n \rightarrow \infty}=f(x)=\left\{\begin{array}{cc}
x & x \in[0,1) \\
0 & x=1
\end{array}\right.
$$

b. The convergence cannot be uniform on $[0,1]$ because the pointwise limit $f(x)$ is not continuous on $[0,1]$.
c.

$$
\sup _{[0, a]}\left|f(x)-f_{n}(x)\right|=\sup _{[0, a]}\left|x^{n}\right|=a^{n}
$$

which goes to zero as $n \rightarrow \infty$. Hence the convergence is uniform on $[0, a]$.
3. (20 pts) Show that $\sum_{n=1}^{\infty} \frac{\sin n x}{n^{3}}$ converges to a continuous function on $(-\infty, \infty)$.

Answer:
We use the Weierstrass M test.

$$
\left|\frac{\sin n x}{n^{3}}\right| \leq \frac{1}{n^{3}}=M_{n}
$$

and

$$
\sum_{n=1}^{\infty} M_{n}=\sum_{n=1}^{\infty} \frac{1}{n^{3}}<\infty
$$

Hence the series converges uniformly on $(-\infty, \infty)$ and so the limiting function is continuous.
4. (20 pts) Suppose $f_{n}(x)$ converges uniformly on $[a, b]$ to a bounded function $f(x)$ and $g_{n}(x)$ converges uniformly on $[a, b]$ to a bounded function $g(x)$. Show that $h_{n}(x)=f_{n}(x) g_{n}(x)$ converges uniformly to $h(x)=f(x) g(x)$.

Answer:
Suppose $f(x)$ and $g(x)$ are bounded by M. Given any $0<\epsilon<M$ there exists an N such that if $n>N$ then $\left|f_{n}(x)-f(x)\right|<\epsilon$ and $\left|g_{n}(x)-g(x)\right|<\epsilon$. If $n>N$ then $\left|f_{n}(x)\right| \leq|f(x)|+\left|f_{n}(x)-f(x)\right|<M+\epsilon<2 M$. Now
$\left|f_{n}(x) g_{n}(x)-f(x) g(x)\right| \leq\left|f_{n}(x) g_{n}(x)-f_{n}(x) g(x)\right|+\left|f_{n}(x) g(x)-f(x) g(x)\right|$
so

$$
\begin{gathered}
\left|f_{n}(x) g_{n}(x)-f(x) g(x)\right| \leq\left|f_{n}(x)\right|\left|g_{n}(x)-g(x)\right|+\left|f_{n}(x)-f(x)\right||g(x)| \\
\left|f_{n}(x) g_{n}(x)-f(x) g(x)\right|<2 M \epsilon+M \epsilon=3 M \epsilon
\end{gathered}
$$

5. (20 pts) Find the power series of the function

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

that satisfies the differential equation

$$
f^{\prime}(x)=x f(x)+1, \quad f(0)=0
$$

Answer:
Since $f(0)=0$ we have $a_{0}=0$. We substitute the power series into the differential equation and obtain

$$
\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty} a_{n} x^{n+1}+1
$$

or equivalently

$$
\sum_{k=0}^{\infty}(k+1) a_{k+1} x^{k}=\sum_{k=1}^{\infty} a_{k-1} x^{k}+1
$$

If we equate the coefficients of like powers of x we obtain that $a_{1}=1$ and for $k>0$

$$
a_{k+1}=\frac{1}{k+1} a_{k-1}
$$

Hence we conclude that

$$
a_{k}=\left\{\begin{array}{cc}
0 & k \text { even } \\
\frac{1}{k(k-2)(k-4) \cdots 1} & k \text { odd }
\end{array}\right.
$$

