
Advanced Calculus
Math 127B, Winter 2005

Solutions: Final

1. Define fn, gn : [0, 1] → R by

fn(x) =
nx2

1 + n2x2
, gn(x) =

n2x

1 + n2x2
.

Show that the sequences (fn), (gn) converge pointwise on [0, 1], and determine
their pointwise limits. Determine (with proof) whether or not each sequence
converges uniformly on [0, 1].

Solution.

• As n →∞, we have fn → 0 and gn → g pointwise, where

g(x) =
{

1/x if 0 < x ≤ 1,
0 if x = 0.

• Given ε > 0, choose N = 1/ε. Then n > N implies that

|fn(x)| = 1

n

(
nx2

1/n + nx2

)
≤ 1

n
< ε for all x ∈ [0, 1].

Therefore fn converges uniformly to 0.

• The functions gn are continuous, and their pointwise limit g is discon-
tinuous. Since the uniform limit of continuous functions is continuous,
(gn) does not converge uniformly.
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2. Find all points x ∈ R where the following power series converges:

∞∑
n=0

1

1 + n2n
xn.

Solution.

• According to the ratio test, the radius of convergence R of the power
series

∑
anx

n is given by

R = lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣
(provided that this limit exists). Hence the radius of convergence of
the given power series is

R = lim
n→∞

1 + (n + 1)2n+1

1 + n2n

= lim
n→∞

1/(n2n) + (1 + 1/n)2

1/(n2n) + 1
= 2.

• When x = 2, the series is

∞∑
n=0

2n

1 + n2n
=

∞∑
n=0

1

n + 2−n
.

Since
1

n + 2−n
≥ 1

n + 1

this series diverges by comparison with the divergent harmonic series

∞∑
n=0

1

n + 1
.

• When x = −2, the series is

∞∑
n=0

(−1)n2n

1 + n2n
=

∞∑
n=0

(−1)n

n + 2−n
,
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which converges by the alternating series test, since

1

n + 2−n
→ 0 as n →∞

and is decreasing in n.

• The power series therefore converges for −2 ≤ x < 2.
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3. (a) Prove that the following series converge on R to continuous functions:

f(x) =
∞∑

n=1

cos nx

n2
, g(x) =

∞∑
n=1

sin nx

n3
.

(b) Prove that g is differentiable on R, and g′ = f .

Solution.

• (a) Since ∣∣∣cos nx

n2

∣∣∣ ≤ 1

n2
,

∣∣∣∣sin nx

n3

∣∣∣∣ ≤ 1

n3

for all x ∈ R and

∞∑
n=1

1

n2
< ∞,

∞∑
n=1

1

n3
< ∞

the Weierstrass M -test implies that both series converge uniformly on
R. Since the terms in the series are continuous, and the uniform limit
of continuous functions is continuous, the sums f , g are continuous.

• (b) Since the uniform convergence of Riemann integrable functions im-
plies convergence of their Riemann integrals, we can integrate the series
for f term-by-term over the interval [0, x] (or [x, 0] if x < 0) to obtain∫ x

0

f(t) dt =
∞∑

n=1

∫ x

0

cos nt

n2
dt

=
∞∑

n=1

sin nx

n3

= g(x).

Since f is continuous, the fundamental theorem of calculus implies that
g is differentiable and g′ = f .
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4. Let a > 0. Give a definition of the following improper Riemann integral
as a limit of Riemann integrals:∫ ∞

2

1

x(log x)a
dx.

For what values of a does this integral converge?

Solution.

• We define ∫ ∞

2

1

x(log x)a
dx = lim

b→∞

∫ b

2

1

x(log x)a
dx.

• Let

I(b) =

∫ b

2

1

x(log x)a
dx.

Making the substitution u = log x, we get

I(b) =

∫ log b

log 2

1

ua
du.

For a 6= 1, we have

I(b) =

[
u1−a

1− a

]log b

log 2

=
(log b)1−a − (log 2)1−a

1− a
,

which diverges as b →∞ if a < 1. If a > 1, then

I(b) → (log 2)1−a

a− 1
as b →∞.

If a = 1, then

I(b) = [log u]log b
log 2

= log(log b)− log(log 2)

→ ∞ as b →∞.

• The improper integral therefore converges when a > 1, and then∫ ∞

2

1

x(log x)a
dx =

(log 2)1−a

a− 1
.
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5. Define f : [0, 1] → R by

f(x) =

{
x if x ∈ Q,
0 if x /∈ Q.

Is f Riemann integrable on [0, 1]? Prove your answer.

Solution.

• The function f is not Riemann integrable.

• Suppose that P = {t0, t1, . . . , tn} is any partition of [0, 1] (so t0 = 0,
tn = 1, and tk−1 < tk). Since every interval [tk−1, tk] contains irrational
numbers, we have

m (f, [tk−1, tk]) = inf {f(x) : x ∈ [tk−1, tk]} = 0.

The lower Darboux sum of f is therefore given by

L(f, P ) =
n∑

k=1

m (f, [tk−1, tk]) (tk − tk−1) = 0,

and the lower Darboux integral of f is

L(f) = sup {L(f, P ) : P is a partition of [0, 1]} = 0.

• Since the rational numbers are dense in any interval, we have

M (f, [tk−1, tk]) = sup {f(x) : x ∈ [tk−1, tk]} = tk.

Define ` : [0, 1] → R by `(x) = x. Then

U(f, P ) =
n∑

k=1

M (f, [tk−1, tk]) (tk − tk−1)

=
n∑

k=1

tk (tk − tk−1)

= U(`, P ).

Therefore

U(f) = inf {U(f, P ) : P is a partition of [0, 1]} = U(`).
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Since ` is Riemann integrable,

U(`) =

∫ 1

0

x dx =
1

2
.

So U(f) = 1/2. Thus U(f) > L(f), and f is not Riemann integrable.
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6. Suppose that

F (x) =

{
−x2 for −1 ≤ x < 0,
x2 + 2 for 0 ≤ x ≤ 1.

Evaluate the Riemann-Stieltjes integral∫ 1

−1

ex2

dF (x).

Briefly justify your computations.

Solution.

• We write F = F1 + F2, where

F1(x) =

{
0 for −1 ≤ x < 0,
2 for 0 ≤ x ≤ 1,

F2(x) =

{
−x2 for −1 ≤ x < 0,
x2 for 0 ≤ x ≤ 1.

• Using standard properties of the Riemann-Stieltjes integral, and its
expression for jump and continuously differentiable integrators, we get∫ 1

−1

ex2

dF (x) =

∫ 1

−1

ex2

dF1(x) +

∫ 1

−1

ex2

dF2(x)

=

∫ 1

−1

ex2

dF1(x) +

∫ 0

−1

ex2

dF2(x) +

∫ 1

0

ex2

dF2(x)

= e0 · 2 +

∫ 0

−1

ex2

d
(
−x2

)
+

∫ 1

0

ex2

d
(
x2

)
= 2−

∫ 0

−1

2xex2

dx +

∫ 1

0

2xex2

dx

= 2−
[
ex2

]0

−1
+

[
ex2

]1

0

= 2− (1− e) + (e− 1)

= 2e.
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7. (a) Find the Taylor series of e−x (at x = 0).

(b) Give an expression for the remainder Rn(x) between e−x and its Taylor
polynomial of degree n− 1 involving an intermediate point y between 0 and
x.

(c) Prove from your expression in (b) that the Taylor series for e−x converges
to e−x for every x ∈ R. (Don’t use general theorems.)

Solution.

• (a) Let f(x) = e−x. Then

f (k)(x) = (−1)k e−x.

The kth Taylor coefficient of f is

ak =
f (k)(0)

k!
=

(−1)k

k!
.

The Taylor series of e−x is therefore

∞∑
k=0

(−1)k

k!
xk = 1− x +

1

2!
x2 − 1

3!
x3 + . . . .

• (b) By the Taylor remainder theorem,

e−x =
n−1∑
k=0

(−1)k

k!
xk + Rn(x), (1)

where

Rn(x) =
(−1)ne−y

n!
xn

for some y between 0 and x.

• (c) If x > 0, then 0 < y < x and e−y < 1. Hence

|Rn(x)| < xn

n!
→ 0 as n →∞.

(Note that if cn = xn/n! then cn+1/cn = x/(n + 1) < 1/2 for n > 2x,
so cn → 0 as n → ∞ for every x > 0.) Taking the limit as n → ∞ in
(1), we obtain that

e−x =
∞∑

k=0

(−1)k

k!
xk.
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If x < 0, then e−y < e−x, and the Taylor series also converges, since

|Rn(x)| < e−x |x|n

n!
→ 0 as n →∞.

10



8. Define f : R → R by

f(x) =

{
x2 [sin(1/x)− 2] for x 6= 0,
0 for x = 0.

(a) Prove that f(x) has a strict maximum at x = 0 (i.e. f(0) > f(x) for all
x 6= 0).

(b) Prove that f is differentiable on R.

(c) Prove that f is not increasing on the interval (−ε, 0) and f is not de-
creasing on the interval (0, ε) for any ε > 0.

Solution.

• (a) We have f(0) = 0. If x 6= 0, then since sin(1/x) ≤ 1

f(x) ≤ x2 [1− 2] ≤ −x2 < 0.

• (b) The function f is differentiable at any nonzero x since it is a product
and composition of differentiable functions. At x = 0 the function is
differentiable, with f ′(0) = 0, since

lim
x→0

{
f(x)− f(0)

x− 0

}
= lim

x→0

{
x

[
sin

(
1

x

)
− 2

]}
= 0.

• (c) For x 6= 0, we compute using the chain and product rules that

f ′(x) = − cos

(
1

x

)
+ 2x

[
sin

(
1

x

)
− 2

]
.

If |x| ≤ 1/12 then ∣∣∣∣2x [
sin

(
1

x

)
− 2

]∣∣∣∣ ≤ 6|x| < 1

2
,

so

− cos

(
1

x

)
− 1

2
< f ′(x) < − cos

(
1

x

)
+

1

2
.

It follows that f ′ < 0 (hence f is strictly decreasing) in any interval
where cos(1/x) > 1/2, and f ′ > 0 (hence f is strictly increasing) in
any interval where cos(1/x) < −1/2. Since there exist such intervals
arbitrarily close to 0, the function f is not increasing throughout any
interval (−ε, 0), nor is it decreasing throughout any interval (0, ε).
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• This example shows that a differentiable function may attain a maxi-
mum at a point even though it’s not increasing on any interval to the
left of the point or decreasing on any interval to the right.
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