Advanced Calculus
 Math 127B, Winter 2005

Solutions: Final

1. Define $f_{n}, g_{n}:[0,1] \rightarrow \mathbb{R}$ by

$$
f_{n}(x)=\frac{n x^{2}}{1+n^{2} x^{2}}, \quad g_{n}(x)=\frac{n^{2} x}{1+n^{2} x^{2}} .
$$

Show that the sequences $\left(f_{n}\right),\left(g_{n}\right)$ converge pointwise on $[0,1]$, and determine their pointwise limits. Determine (with proof) whether or not each sequence converges uniformly on $[0,1]$.

Solution.

- As $n \rightarrow \infty$, we have $f_{n} \rightarrow 0$ and $g_{n} \rightarrow g$ pointwise, where

$$
g(x)= \begin{cases}1 / x & \text { if } 0<x \leq 1 \\ 0 & \text { if } x=0\end{cases}
$$

- Given $\epsilon>0$, choose $N=1 / \epsilon$. Then $n>N$ implies that

$$
\left|f_{n}(x)\right|=\frac{1}{n}\left(\frac{n x^{2}}{1 / n+n x^{2}}\right) \leq \frac{1}{n}<\epsilon \quad \text { for all } x \in[0,1] .
$$

Therefore f_{n} converges uniformly to 0 .

- The functions g_{n} are continuous, and their pointwise limit g is discontinuous. Since the uniform limit of continuous functions is continuous, $\left(g_{n}\right)$ does not converge uniformly.

2. Find all points $x \in \mathbb{R}$ where the following power series converges:

$$
\sum_{n=0}^{\infty} \frac{1}{1+n 2^{n}} x^{n}
$$

Solution.

- According to the ratio test, the radius of convergence R of the power series $\sum a_{n} x^{n}$ is given by

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

(provided that this limit exists). Hence the radius of convergence of the given power series is

$$
\begin{aligned}
R & =\lim _{n \rightarrow \infty} \frac{1+(n+1) 2^{n+1}}{1+n 2^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{1 /\left(n 2^{n}\right)+(1+1 / n) 2}{1 /\left(n 2^{n}\right)+1} \\
& =2
\end{aligned}
$$

- When $x=2$, the series is

$$
\sum_{n=0}^{\infty} \frac{2^{n}}{1+n 2^{n}}=\sum_{n=0}^{\infty} \frac{1}{n+2^{-n}}
$$

Since

$$
\frac{1}{n+2^{-n}} \geq \frac{1}{n+1}
$$

this series diverges by comparison with the divergent harmonic series

$$
\sum_{n=0}^{\infty} \frac{1}{n+1}
$$

- When $x=-2$, the series is

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}}{1+n 2^{n}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+2^{-n}}
$$

which converges by the alternating series test, since

$$
\frac{1}{n+2^{-n}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

and is decreasing in n.

- The power series therefore converges for $-2 \leq x<2$.

3. (a) Prove that the following series converge on \mathbb{R} to continuous functions:

$$
f(x)=\sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}, \quad g(x)=\sum_{n=1}^{\infty} \frac{\sin n x}{n^{3}} .
$$

(b) Prove that g is differentiable on \mathbb{R}, and $g^{\prime}=f$.

Solution.

- (a) Since

$$
\left|\frac{\cos n x}{n^{2}}\right| \leq \frac{1}{n^{2}}, \quad\left|\frac{\sin n x}{n^{3}}\right| \leq \frac{1}{n^{3}}
$$

for all $x \in \mathbb{R}$ and

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty, \quad \sum_{n=1}^{\infty} \frac{1}{n^{3}}<\infty
$$

the Weierstrass M-test implies that both series converge uniformly on \mathbb{R}. Since the terms in the series are continuous, and the uniform limit of continuous functions is continuous, the sums f, g are continuous.

- (b) Since the uniform convergence of Riemann integrable functions implies convergence of their Riemann integrals, we can integrate the series for f term-by-term over the interval $[0, x]$ (or $[x, 0]$ if $x<0$) to obtain

$$
\begin{aligned}
\int_{0}^{x} f(t) d t & =\sum_{n=1}^{\infty} \int_{0}^{x} \frac{\cos n t}{n^{2}} d t \\
& =\sum_{n=1}^{\infty} \frac{\sin n x}{n^{3}} \\
& =g(x) .
\end{aligned}
$$

Since f is continuous, the fundamental theorem of calculus implies that g is differentiable and $g^{\prime}=f$.
4. Let $a>0$. Give a definition of the following improper Riemann integral as a limit of Riemann integrals:

$$
\int_{2}^{\infty} \frac{1}{x(\log x)^{a}} d x
$$

For what values of a does this integral converge?

Solution.

- We define

$$
\int_{2}^{\infty} \frac{1}{x(\log x)^{a}} d x=\lim _{b \rightarrow \infty} \int_{2}^{b} \frac{1}{x(\log x)^{a}} d x .
$$

- Let

$$
I(b)=\int_{2}^{b} \frac{1}{x(\log x)^{a}} d x
$$

Making the substitution $u=\log x$, we get

$$
I(b)=\int_{\log 2}^{\log b} \frac{1}{u^{a}} d u
$$

For $a \neq 1$, we have

$$
\begin{aligned}
I(b) & =\left[\frac{u^{1-a}}{1-a}\right]_{\log 2}^{\log b} \\
& =\frac{(\log b)^{1-a}-(\log 2)^{1-a}}{1-a}
\end{aligned}
$$

which diverges as $b \rightarrow \infty$ if $a<1$. If $a>1$, then

$$
I(b) \rightarrow \frac{(\log 2)^{1-a}}{a-1} \quad \text { as } b \rightarrow \infty
$$

If $a=1$, then

$$
\begin{aligned}
I(b) & =[\log u]_{\log 2}^{\log b} \\
& =\log (\log b)-\log (\log 2) \\
& \rightarrow \infty \quad \text { as } b \rightarrow \infty .
\end{aligned}
$$

- The improper integral therefore converges when $a>1$, and then

$$
\int_{2}^{\infty} \frac{1}{x(\log x)^{a}} d x=\frac{(\log 2)^{1-a}}{a-1}
$$

5. Define $f:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

Is f Riemann integrable on $[0,1]$? Prove your answer.

Solution.

- The function f is not Riemann integrable.
- Suppose that $P=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ is any partition of $[0,1]$ (so $t_{0}=0$, $t_{n}=1$, and $t_{k-1}<t_{k}$). Since every interval $\left[t_{k-1}, t_{k}\right]$ contains irrational numbers, we have

$$
m\left(f,\left[t_{k-1}, t_{k}\right]\right)=\inf \left\{f(x): x \in\left[t_{k-1}, t_{k}\right]\right\}=0
$$

The lower Darboux sum of f is therefore given by

$$
L(f, P)=\sum_{k=1}^{n} m\left(f,\left[t_{k-1}, t_{k}\right]\right)\left(t_{k}-t_{k-1}\right)=0
$$

and the lower Darboux integral of f is

$$
L(f)=\sup \{L(f, P): P \text { is a partition of }[0,1]\}=0 .
$$

- Since the rational numbers are dense in any interval, we have

$$
M\left(f,\left[t_{k-1}, t_{k}\right]\right)=\sup \left\{f(x): x \in\left[t_{k-1}, t_{k}\right]\right\}=t_{k}
$$

Define $\ell:[0,1] \rightarrow \mathbb{R}$ by $\ell(x)=x$. Then

$$
\begin{aligned}
U(f, P) & =\sum_{k=1}^{n} M\left(f,\left[t_{k-1}, t_{k}\right]\right)\left(t_{k}-t_{k-1}\right) \\
& =\sum_{k=1}^{n} t_{k}\left(t_{k}-t_{k-1}\right) \\
& =U(\ell, P) .
\end{aligned}
$$

Therefore

$$
U(f)=\inf \{U(f, P): P \text { is a partition of }[0,1]\}=U(\ell)
$$

Since ℓ is Riemann integrable,

$$
U(\ell)=\int_{0}^{1} x d x=\frac{1}{2}
$$

So $U(f)=1 / 2$. Thus $U(f)>L(f)$, and f is not Riemann integrable.
6. Suppose that

$$
F(x)= \begin{cases}-x^{2} & \text { for }-1 \leq x<0 \\ x^{2}+2 & \text { for } 0 \leq x \leq 1\end{cases}
$$

Evaluate the Riemann-Stieltjes integral

$$
\int_{-1}^{1} e^{x^{2}} d F(x)
$$

Briefly justify your computations.

Solution.

- We write $F=F_{1}+F_{2}$, where

$$
\begin{aligned}
& F_{1}(x)= \begin{cases}0 & \text { for }-1 \leq x<0 \\
2 & \text { for } 0 \leq x \leq 1\end{cases} \\
& F_{2}(x)= \begin{cases}-x^{2} & \text { for }-1 \leq x<0 \\
x^{2} & \text { for } 0 \leq x \leq 1\end{cases}
\end{aligned}
$$

- Using standard properties of the Riemann-Stieltjes integral, and its expression for jump and continuously differentiable integrators, we get

$$
\begin{aligned}
\int_{-1}^{1} e^{x^{2}} d F(x) & =\int_{-1}^{1} e^{x^{2}} d F_{1}(x)+\int_{-1}^{1} e^{x^{2}} d F_{2}(x) \\
& =\int_{-1}^{1} e^{x^{2}} d F_{1}(x)+\int_{-1}^{0} e^{x^{2}} d F_{2}(x)+\int_{0}^{1} e^{x^{2}} d F_{2}(x) \\
& =e^{0} \cdot 2+\int_{-1}^{0} e^{x^{2}} d\left(-x^{2}\right)+\int_{0}^{1} e^{x^{2}} d\left(x^{2}\right) \\
& =2-\int_{-1}^{0} 2 x e^{x^{2}} d x+\int_{0}^{1} 2 x e^{x^{2}} d x \\
& =2-\left[e^{x^{2}}\right]_{-1}^{0}+\left[e^{x^{2}}\right]_{0}^{1} \\
& =2-(1-e)+(e-1) \\
& =2 e
\end{aligned}
$$

7. (a) Find the Taylor series of $e^{-x}($ at $x=0)$.
(b) Give an expression for the remainder $R_{n}(x)$ between e^{-x} and its Taylor polynomial of degree $n-1$ involving an intermediate point y between 0 and x.
(c) Prove from your expression in (b) that the Taylor series for e^{-x} converges to e^{-x} for every $x \in \mathbb{R}$. (Don't use general theorems.)

Solution.

- (a) Let $f(x)=e^{-x}$. Then

$$
f^{(k)}(x)=(-1)^{k} e^{-x}
$$

The k th Taylor coefficient of f is

$$
a_{k}=\frac{f^{(k)}(0)}{k!}=\frac{(-1)^{k}}{k!} .
$$

The Taylor series of e^{-x} is therefore

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} x^{k}=1-x+\frac{1}{2!} x^{2}-\frac{1}{3!} x^{3}+\ldots
$$

- (b) By the Taylor remainder theorem,

$$
\begin{equation*}
e^{-x}=\sum_{k=0}^{n-1} \frac{(-1)^{k}}{k!} x^{k}+R_{n}(x), \tag{1}
\end{equation*}
$$

where

$$
R_{n}(x)=\frac{(-1)^{n} e^{-y}}{n!} x^{n}
$$

for some y between 0 and x.

- (c) If $x>0$, then $0<y<x$ and $e^{-y}<1$. Hence

$$
\left|R_{n}(x)\right|<\frac{x^{n}}{n!} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

(Note that if $c_{n}=x^{n} / n$! then $c_{n+1} / c_{n}=x /(n+1)<1 / 2$ for $n>2 x$, so $c_{n} \rightarrow 0$ as $n \rightarrow \infty$ for every $x>0$.) Taking the limit as $n \rightarrow \infty$ in (1), we obtain that

$$
e^{-x}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} x^{k} .
$$

If $x<0$, then $e^{-y}<e^{-x}$, and the Taylor series also converges, since

$$
\left|R_{n}(x)\right|<e^{-x} \frac{|x|^{n}}{n!} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

8. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x^{2}[\sin (1 / x)-2] & \text { for } x \neq 0 \\ 0 & \text { for } x=0\end{cases}
$$

(a) Prove that $f(x)$ has a strict maximum at $x=0$ (i.e. $f(0)>f(x)$ for all $x \neq 0$).
(b) Prove that f is differentiable on \mathbb{R}.
(c) Prove that f is not increasing on the interval $(-\epsilon, 0)$ and f is not decreasing on the interval $(0, \epsilon)$ for any $\epsilon>0$.

Solution.

- (a) We have $f(0)=0$. If $x \neq 0$, then since $\sin (1 / x) \leq 1$

$$
f(x) \leq x^{2}[1-2] \leq-x^{2}<0
$$

- (b) The function f is differentiable at any nonzero x since it is a product and composition of differentiable functions. At $x=0$ the function is differentiable, with $f^{\prime}(0)=0$, since

$$
\lim _{x \rightarrow 0}\left\{\frac{f(x)-f(0)}{x-0}\right\}=\lim _{x \rightarrow 0}\left\{x\left[\sin \left(\frac{1}{x}\right)-2\right]\right\}=0
$$

- (c) For $x \neq 0$, we compute using the chain and product rules that

$$
f^{\prime}(x)=-\cos \left(\frac{1}{x}\right)+2 x\left[\sin \left(\frac{1}{x}\right)-2\right] .
$$

If $|x| \leq 1 / 12$ then

$$
\left|2 x\left[\sin \left(\frac{1}{x}\right)-2\right]\right| \leq 6|x|<\frac{1}{2}
$$

so

$$
-\cos \left(\frac{1}{x}\right)-\frac{1}{2}<f^{\prime}(x)<-\cos \left(\frac{1}{x}\right)+\frac{1}{2} .
$$

It follows that $f^{\prime}<0$ (hence f is strictly decreasing) in any interval where $\cos (1 / x)>1 / 2$, and $f^{\prime}>0$ (hence f is strictly increasing) in any interval where $\cos (1 / x)<-1 / 2$. Since there exist such intervals arbitrarily close to 0 , the function f is not increasing throughout any interval $(-\epsilon, 0)$, nor is it decreasing throughout any interval $(0, \epsilon)$.

- This example shows that a differentiable function may attain a maximum at a point even though it's not increasing on any interval to the left of the point or decreasing on any interval to the right.

