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CHAPTER 5

The Heat and Schrödinger Equations

The heat, or diffusion, equation is

(5.1) ut = ∆u.

Section 4.A derives (5.1) as a model of heat flow.
Steady solutions of the heat equation satisfy Laplace’s equation. Using (2.4),

we have for smooth functions that

∆u(x) = lim
r→0+

−
∫

Br(x)

∆u dx

= lim
r→0+

n

r

∂

∂r

[
−
∫

∂Br(x)

u dS

]

= lim
r→0+

2n

r2

[
−
∫

∂Br(x)

u dS − u(x)

]
.

Thus, if u is a solution of the heat equation, then the rate of change of u(x, t) with
respect to t at a point x is proportional to the difference between the value of u at
x and the average of u over nearby spheres centered at x. The solution decreases
in time if its value at a point is greater than the nearby mean and increases if its
value is less than the nearby averages. The heat equation therefore describes the
evolution of a function towards its mean. As t → ∞ solutions of the heat equation
typically approach functions with the mean value property, which are solutions of
Laplace’s equation.

We will also consider the Schrödinger equation

iut = −∆u.

This PDE is a dispersive wave equation, which describes a complex wave-field that
oscillates with a frequency proportional to the difference between the value of the
function and its nearby means.

5.1. The initial value problem for the heat equation

Consider the initial value problem for u(x, t) where x ∈ Rn

ut = ∆u for x ∈ Rn and t > 0,

u(x, 0) = f(x) for x ∈ Rn.
(5.2)

We will solve (5.2) explicitly for smooth initial data by use of the Fourier transform,
following the presentation in [34]. Some of the main qualitative features illustrated
by this solution are the smoothing effect of the heat equation, the irreversibility of
its semiflow, and the need to impose a growth condition as |x| → ∞ in order to
pick out a unique solution.
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128 5. THE HEAT AND SCHRÖDINGER EQUATIONS

5.1.1. Schwartz solutions. Assume first that the initial data f : Rn → R is a
smooth, rapidly decreasing, real-valued Schwartz function f ∈ S (see Section 5.6.2).
The solution we construct is also a Schwartz function of x at later times t > 0, and
we will regard it as a function of time with values in S. This is analogous to
the geometrical interpretation of a first-order system of ODEs, in which the finite-
dimensional phase space of the ODE is replaced by the infinite-dimensional function
space S; we then think of a solution of the heat equation as a parametrized curve
in the vector space S. A similar viewpoint is useful for many evolutionary PDEs,
where the Schwartz space may be replaced other function spaces (for example,
Sobolev spaces).

By a convenient abuse of notation, we use the same symbol u to denote the
scalar-valued function u(x, t), where u : Rn×[0,∞) → R, and the associated vector-
valued function u(t), where u : [0,∞) → S. We write the vector-valued function
corresponding to the associated scalar-valued function as u(t) = u(·, t).

Definition 5.1. Suppose that (a, b) is an open interval in R. A function
u : (a, b) → S is continuous at t ∈ (a, b) if

u(t+ h) → u(t) in S as h → 0,

and differentiable at t ∈ (a, b) if there exists a function v ∈ S such that

u(t+ h)− u(t)

h
→ v in S as h → 0.

The derivative v of u at t is denoted by ut(t), and if u is differentiable for every
t ∈ (a, b), then ut : (a, b) → S denotes the map ut : t 7→ ut(t).

In other words, u is continuous at t if

u(t) = S-lim
h→0

u(t+ h),

and u is differentiable at t with derivative ut(t) if

ut(t) = S-lim
h→0

u(t+ h)− u(t)

h
.

We will refer to this derivative as a strong derivative if it is understood that we
are considering S-valued functions and we want to emphasize that the derivative is
defined as the limit of difference quotients in S.

We define spaces of differentiable Schwartz-valued functions in the natural way.
For half-open or closed intervals, we make the obvious modifications to left or right
limits at an endpoint.

Definition 5.2. The space C ([a, b];S) consists of the continuous functions

u : [a, b] → S.
The space Ck (a, b;S) consists of functions u : (a, b) → S that are k-times strongly

differentiable in (a, b) with continuous strong derivatives ∂j
t u ∈ C (a, b;S) for 0 ≤

j ≤ k, and C∞ (a, b;S) is the space of functions with continuous strong derivatives
of all orders.

Here we write C (a, b;S) rather than C ((a, b);S) when we consider functions
defined on the open interval (a, b). The next proposition describes the relationship
between the C1-strong derivative and the pointwise time-derivative.
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Proposition 5.3. Suppose that u ∈ C(a, b;S) where u(t) = u(·, t). Then
u ∈ C1(a, b;S) if and only if:

(1) the pointwise partial derivative ∂tu(x, t) exists for every x ∈ Rn and t ∈
(a, b);

(2) ∂tu(·, t) ∈ S for every t ∈ (a, b);
(3) the map t 7→ ∂tu(·, t) belongs C (a, b;S).

Proof. The convergence of functions in S implies uniform pointwise conver-
gence. Thus, if u(t) = u(·, t) is strongly continuously differentiable, then the point-
wise partial derivative ∂tu(x, t) exists for every x ∈ Rn and ∂tu(·, t) = ut(t) ∈ S,
so ∂tu ∈ C (a, b;S).

Conversely, if a pointwise partial derivative with the given properties exist,
then for each x ∈ Rn

u(x, t+ h)− u(x, t)

h
− ∂tu(x, t) =

1

h

∫ t+h

t

[∂su(x, s)− ∂tu(x, t)] ds.

Since the integrand is a smooth rapidly decreasing function, it follows from the
dominated convergence theorem that we may differentiate under the integral sign
with respect to x, to get

xα∂β

[
u(x, t+ h)− u(x, t)

h

]
=

1

h

∫ t+h

t

xα∂β [∂su(x, s)− ∂tu(x, t)] ds.

Hence, if ‖ · ‖α,β is a Schwartz seminorm (5.72), we have
∥∥∥∥
u(t+ h)− u(t)

h
− ∂tu(·, t)

∥∥∥∥
α,β

≤ 1

|h|

∣∣∣∣∣

∫ t+h

t

‖∂su(·, s)− ∂tu(·, t)‖α,β ds

∣∣∣∣∣
≤ max

t≤s≤t+h
‖∂su(·, s)− ∂tu(·, t)‖α,β ,

and since ∂tu ∈ C (a, b;S)

lim
h→0

∥∥∥∥
u(t+ h)− u(t)

h
− ∂tu(·, t)

∥∥∥∥
α,β

= 0.

It follows that

S-lim
h→0

[
u(t+ h)− u(t)

h

]
= ∂tu(·, t),

so u is strongly differentiable and ut = ∂tu ∈ C (a, b;S). �

We interpret the initial value problem (5.2) for the heat equation as follows: A
solution is a function u : [0,∞) → S that is continuous for t ≥ 0, so that it makes
sense to impose the initial condition at t = 0, and continuously differentiable for
t > 0, so that it makes sense to impose the PDE pointwise in t. That is, for
every t > 0, the strong derivative ut(t) is required to exist and equal ∆u(t) where
∆ : S → S is the Laplacian operator.

Theorem 5.4. If f ∈ S, there is a unique solution

(5.3) u ∈ C ([0,∞);S) ∩ C1 (0,∞;S)
of (5.2). Furthermore, u ∈ C∞ ([0,∞);S). The spatial Fourier transform of the
solution is given by

(5.4) û(k, t) = f̂(k)e−t|k|2 ,
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and for t > 0 the solution is given by

(5.5) u(x, t) =

∫

Rn

Γ(x− y, t)f(y) dy

where

(5.6) Γ(x, t) =
1

(4πt)n/2
e−|x|2/4t.

Proof. Since the spatial Fourier transform F is a continuous linear map on
S with continuous inverse, the time-derivative of u exists if and only if the time
derivative of û = Fu exists, and

F (ut) = (Fu)t .

Moreover, u ∈ C ([0,∞);S) if and only if û ∈ C ([0,∞);S), and u ∈ Ck (0,∞;S) if
and only if û ∈ Ck (0,∞;S).

Taking the Fourier transform of (5.2) with respect to x, we find that u(x, t) is
a solution with the regularity in (5.3) if and only if û(k, t) satisfies

(5.7) ût = −|k|2û, û(0) = f̂ , û ∈ C ([0,∞);S) ∩ C1 (0,∞;S) .
Equation (5.7) has the unique solution (5.4).

To show this in detail, suppose first that û satisfies (5.7). Then, from Propo-
sition 5.3, the scalar-valued function û(k, t) is pointwise-differentiable with respect
to t in t > 0 and continuous in t ≥ 0 for each fixed k ∈ Rn. Solving the ODE (5.7)
with k as a parameter, we find that û must be given by (5.4).

Conversely, we claim that the function defined by (5.4) is strongly differentiable
with derivative

(5.8) ût(k, t) = −|k|2f̂(k)e−t|k|2 .

To prove this claim, note that if α, β ∈ Nn
0 are any multi-indices, the function

kα∂β [û(k, t+ h)− û(k, t)]

has the form

â(k, t)
[
e−h|k|2 − 1

]
e−t|k|2 + h

|β|−1∑

i=0

hib̂i(k, t)e
−(t+h)|k|2

where â(·, t), b̂i(·, t) ∈ S, so taking the supremum of this expression we see that

‖û(t+ h)− û(t)‖α,β → 0 as h → 0.

Thus, û(·, t) is a continuous S-valued function in t ≥ 0 for every f̂ ∈ S. By a
similar argument, the pointwise partial derivative ût(·, t) in (5.8) is a continuous
S-valued function. Thus, Proposition 5.3 implies that û is a strongly continuously
differentiable function that satisfies (5.7). Hence u = F−1[û] satisfies (5.3) and is a
solution of (5.2). Moreover, using induction and Proposition 5.3 we see in a similar
way that u ∈ C∞ ([0,∞);S).

Finally, from Example 5.65, we have

F−1
[
e−t|k|2

]
=
(π
t

)n/2
e−|x|2/4t.

Taking the inverse Fourier transform of (5.4) and using the convolution theorem,
Theorem 5.67, we get (5.5)–(5.6). �
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The function Γ(x, t) in (5.6) is called the Green’s function or fundamental
solution of the heat equation in Rn. It is a C∞-function of (x, t) in Rn × (0,∞),
and one can verify by direct computation that

(5.9) Γt = ∆Γ if t > 0.

Also, since Γ(·, t) is a family of Gaussian mollifiers, we have

Γ(·, t) ⇀ δ in S ′ as t → 0+.

Thus, we can interpret Γ(x, t) as the solution of the heat equation due to an initial
point source located at x = 0. The solution is a spherically symmetric Gaussian
with spatial integral equal to one which spreads out and decays as t increases; its
width is of the order

√
t and its height is of the order t−n/2.

The solution at time t is given by convolution of the initial data with Γ(·, t).
For any f ∈ S, this gives a smooth classical solution u ∈ C∞ (Rn × [0,∞)) of the
heat equation which satisfies it pointwise in t ≥ 0.

5.1.2. Smoothing. Equation (5.5) also gives solutions of (5.2) for initial data
that is not smooth. To be specific, we suppose that f ∈ Lp, although one can also
consider more general data that does not grow too rapidly at infinity.

Theorem 5.5. Suppose that 1 ≤ p ≤ ∞ and f ∈ Lp(Rn). Define

u : Rn × (0,∞) → R

by (5.5) where Γ is given in (5.6). Then u ∈ C∞
0 (Rn × (0,∞)) and ut = ∆u in

t > 0. If 1 ≤ p < ∞, then u(·, t) → f in Lp as t → 0+.

Proof. The Green’s function Γ in (5.6) satisfies (5.9), and Γ(·, t) ∈ Lq for
every 1 ≤ q ≤ ∞, together with all of its derivatives. The dominated convergence
theorem and Hölder’s inequality imply that if f ∈ Lp and t > 0, we can differentiate
under the integral sign in (5.5) arbitrarily often with respect to (x, t) and that all
of these derivatives approach zero as |x| → ∞. Thus, u is a smooth, decaying
solution of the heat equation in t > 0. Moreover, Γt(x) = Γ(x, t) is a family of
Gaussian mollifiers and therefore for 1 ≤ p < ∞ we have from Theorem 1.28 that
u(·, t) = Γt ∗ f → f in Lp as t → 0+. �

The heat equation therefore immediately smooths any initial data f ∈ Lp(Rn)
to a function u(·, t) ∈ C∞

0 (Rn). From the Fourier perspective, the smoothing
is a consequence of the very rapid damping of the high-wavenumber modes at a

rate proportional to e−t|k|2 for wavenumbers |k|, which physically is caused by the
diffusion of thermal energy from hot to cold parts of spatial oscillations.

Once the solution becomes smooth in space it also becomes smooth in time. In
general, however, the solution is not (right) differentiable with respect to t at t = 0,
and for rough initial data it satisfies the initial condition in an Lp-sense, but not
necessarily pointwise.

5.1.3. Irreversibility. For general ‘final’ data f ∈ S, we cannot solve the
heat equation backward in time to obtain a solution u : [−T, 0] → S, however small
we choose T > 0. The same argument as the one in the proof of Theorem 5.4
implies that any such solution would be given by (5.4). If, for example, we take
f ∈ S such that

f̂(k) = e−
√

1+|k|2
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then the corresponding solution

û(k, t) = e−t|k|2−
√

1+|k|2

grows exponentially as |k| → ∞ for every t < 0, and therefore u(t) does not belong
to S (or even S ′). Physically, this means that the temperature distribution f cannot
arise by thermal diffusion from any previous temperature distribution in S (or S ′).
The heat equation does, however, have a backward uniqueness property, meaning
that if f arises from a previous temperature distribution, then (under appropriate
assumptions) that distribution is unique [9].

Equivalently, making the time-reversal t 7→ −t, we see that Schwartz-valued
solutions of the initial value problem for the backward heat equation

ut = −∆u t > 0, u(x, 0) = f(x)

do not exist for every f ∈ S. Moreover, there is a loss of continuous dependence of
the solution on the data.

Example 5.6. Consider the one-dimensional heat equation ut = uxx with
initial data

fn(x) = e−n sin(nx)

and corresponding solution

un(x, t) = e−n sin(nx)en
2t.

Then fn → 0 uniformly together with of all its spatial derivatives as n → ∞, but

sup
x∈R

|un(x, t)| → ∞

as n → ∞ for any t > 0. Thus, the solution does not depend continuously on the

initial data in C∞
b (Rn). Multiplying the initial data fn by e−x2

, we can get an
example of the loss of continuous dependence in S.

It is possible to obtain a well-posed initial value problem for the backward
heat equation by restricting the initial data to a small enough space with a strong
enough norm — for example, to a suitable Gevrey space of C∞-functions whose
spatial derivatives decay at a sufficiently fast rate as their order tends to infinity.
These restrictions, however, limit the size of derivatives of all orders, and they are
too severe to be useful in applications.

Nevertheless, the backward heat equation is of interest as an inverse problem,
namely: Find the temperature distribution at a previous time that gives rise to an
observed temperature distribution at the present time. There is a loss of continu-
ous dependence in any reasonable function space for applications, because thermal
diffusion damps out large, rapid variations in a previous temperature distribution
leading to an imperceptible effect on an observed distribution. Special methods —
such as Tychonoff regularization — must be used to formulate such ill-posed inverse
problems and develop numerical schemes to solve them.1

1J. B. Keller, Inverse Problems, Amer. Math. Month. 83 ( 1976) illustrates the difficulty of
inverse problems in comparison with the corresponding direct problems by the example of guessing
the question to which the answer is “Nine W.” The solution is given at the end of this section.
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5.1.4. Nonuniqueness. A solution u(x, t) of the initial value problem for the
heat equation on Rn is not unique without the imposition of a suitable growth
condition as |x| → ∞. In the above analysis, this was provided by the requirement
that u(·, t) ∈ S, but the much weaker condition that u grows more slowly than

Cea|x|
2

as |x| → ∞ for some constants C, a is sufficient to imply uniqueness [9].

Example 5.7. Consider, for simplicity, the one-dimensional heat equation

ut = uxx.

As observed by Tychonoff (c.f. [21]), a formal power series expansion with respect
to x gives the solution

u(x, t) =

∞∑

n=0

g(n)(t)x2n

(2n)!

for some function g ∈ C∞(R+). We can construct a nonzero solution with zero
initial data by choosing g(t) to be a nonzero C∞-function all of whose derivatives
vanish at t = 0 in such a way that this series converges uniformly for x in compact
subsets of R and t > 0 to a solution of the heat equation. This is the case, for
example, if

g(t) = exp

(
− 1

t2

)
.

The resulting solution, however, grows very rapidly as |x| → ∞.

A physical interpretation of this nonuniqueness it is that heat can diffuse from
infinity into an unbounded region of initially zero temperature if the solution grows
sufficiently quickly. Mathematically, the nonuniqueness is a consequence of the
the fact that the initial condition is imposed on a characteristic surface t = 0 of
the heat equation, meaning that the heat equation does not determine the second-
order normal (time) derivative utt on t = 0 in terms of the second-order tangential
(spatial) derivatives u,Du,D2u.

According to the Cauchy-Kowalewski theorem [14], any non-characteristic Cauchy
problem with analytic initial data has a unique local analytic solution. If t ∈ R

denotes the normal variable and x ∈ Rn the transverse variable, then in solving
the PDE by a power series expansion in t we exchange one t-derivative for one
x-derivative and the convergence of the Taylor series in x for the analytic initial
data implies the convergence of the series for the solution in t. This existence and
uniqueness fails for a characteristic initial value problem, such as the one for the
heat equation.

The Cauchy-Kowalewski theorem is not as useful as its apparent generality sug-
gests because it does not imply anything about the stability or existence of solutions
under non-analytic perturbations, even arbitrarily smooth ones. For example, the
Cauchy-Kowalewski theorem is equally applicable to the initial value problem for
the wave equation

utt = uxx, u(x, 0) = f(x),

which is well-posed in every Sobolev space Hs(R), and the initial value problem for
the Laplace equation

utt = −uxx, u(x, 0) = f(x),
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which is ill-posed in every Sobolev space Hs(R).2

5.2. Generalized solutions

In this section we obtain generalized solutions of the initial value problem
of the heat equation as a limit of the smooth solutions constructed above. In
order to do this, we require estimates on the smooth solutions which ensure that
the convergence of initial data in suitable norms implies the convergence of the
corresponding solution.

5.2.1. Estimates for the Heat equation. Solutions of the heat equation
satisfy two basic spatial estimates, one in L2 and the L∞. The L2 estimate fol-
lows from the Fourier representation, and the L1 estimate follows from the spatial
representation. For 1 ≤ p < ∞, we let

‖f‖Lp =

(∫

Rn

|f |p dx

)1/p

denote the spatial Lp-norm of a function f ; also ‖f‖L∞ denotes the maximum or
essential supremum of |f |.

Theorem 5.8. Let u : [0,∞) → S(Rn) be the solution of (5.2) constructed in
Theorem 5.4 and t > 0. Then

‖u(t)‖L2 ≤ ‖f‖L2, ‖u(t)‖L∞ ≤ 1

(4πt)n/2
‖f‖L1.

Proof. By Parseval’s inequality and (5.4),

‖u(t)‖L2 = (2π)n‖û(t)‖L2 = (2π)n
∥∥∥e−t|k|2 f̂

∥∥∥
L2

≤ (2π)n‖f̂‖L2 = ‖f‖L2,

which gives the first inequality. From (5.5),

|u(x, t)| ≤
(
sup
x∈Rn

|Γ(x, t)|
)∫

Rn

|f(y)| dy,

and from (5.6)

|Γ(x, t)| = 1

(4πt)n/2
.

The second inequality then follows. �

Using the Riesz-Thorin theorem, Theorem 5.72, it follows by interpolation be-
tween (p, p′) = (2, 2) and (p, p′) = (∞, 1), that for 2 ≤ p ≤ ∞

(5.10) ‖u(t)‖Lp ≤ 1

(4πt)n(1/2−1/p)
‖f‖Lp′ .

This estimate is not particularly useful for the heat equation, because we can de-
rive stronger parabolic estimates for ‖Du‖L2, but the analogous estimate for the
Schrödinger equation is very useful.

A generalization of the L2-estimate holds in any Sobolev space Hs of functions
with s spatial L2-derivatives (see Section 5.C for their definition). Such estimates
of L2-norms of solutions or their derivative are typically referred to as energy es-
timates, although the corresponding L2-norms may not correspond to a physical

2Finally, here is the question to the answer posed above: Do you spell your name with a “V,”
Herr Wagner?



5.2. GENERALIZED SOLUTIONS 135

energy. In the case of the heat equation, the thermal energy (measured from a
zero-point energy at u = 0) is proportional to the integral of u.

Theorem 5.9. Suppose that f ∈ S and u ∈ C∞([0,∞);S) is the solution of
(5.2). Then for any s ∈ R and t ≥ 0

‖u(t)‖Hs ≤ ‖f‖Hs .

Proof. Using (5.4) and Parseval’s identity, and writing 〈k〉 = (1+ |k|2)1/2, we
find that

‖u(t)‖Hs = (2π)n
∥∥∥〈k〉se−t|k|2 f̂

∥∥∥
L2

≤ (2π)n
∥∥∥〈k〉sf̂

∥∥∥
L2

= ‖f‖Hs .

�

We can also derive this Hs-estimate, together with an additional a space-time
estimate for Du, directly from the equation without using the explicit solution. We
will use this estimate later to construct solutions of a general parabolic PDE by the
Galerkin method, so we derive it here directly.

For 1 ≤ p < ∞ and T > 0, the Lp-in-time-Hs-in-space norm of a function
u ∈ C ([0, T ];S) is given by

‖u‖Lp([0,T ];Hs) =

(∫ T

0

‖u(t)‖pHs dt

)1/p

.

The maximum-in-time-Hs-in-space norm of u is

(5.11) ‖u‖C([0,T ];Hs) = max
t∈[0,T ]

‖u(t)‖Hs .

In particular, if Λ = (I −∆)1/2 is the spatial operator defined in (5.75), then

‖u‖L2([0,T ];Hs) =

(∫ T

0

∫

Rn

|Λsu(x, t)|2 dxdt

)1/2

.

Theorem 5.10. Suppose that f ∈ S and u ∈ C∞ ([0, T ];S) is the solution of
(5.2). Then for any s ∈ R

‖u‖C([0,T ];Hs) ≤ ‖f‖Hs , ‖Du‖L2([0,T ];Hs) ≤
1√
2
‖f‖Hs .

Proof. Let v = Λsu. Then, since Λs : S → S is continuous and commutes
with ∆,

vt = ∆v, v(0) = g

where g = Λsf . Multiplying this equation by v, integrating the result over Rn, and
using the divergence theorem (justified by the continuous differentiability in time
and the smoothness and decay in space of v), we get

1

2

d

dt

∫
v2 dx = −

∫
|Dv|2 dx.

Integrating this equation with respect to t, we obtain for any T > 0 that

(5.12)
1

2

∫
v2(T ) dx+

∫ T

0

∫
|Dv(t)|2 dxdt =

1

2

∫
g2 dx.
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Thus,

max
t∈[0,T ]

∫
v2(t) dx ≤

∫
g2 dx,

∫ T

0

∫
|Dv(t)|2 dxdt ≤ 1

2

∫
g2 dx,

and the result follows. �

5.2.2. Hs-solutions. In this section we use the above estimates to obtain
generalized solutions of the heat equation as a limit of smooth solutions (5.5). In
defining generalized solutions, it is convenient to restrict attention to a finite, but
arbitrary, time-interval [0, T ] where T > 0. For s ∈ R, let C([0, T ];Hs) denote the
Banach space of continuous Hs-valued functions u : [0, T ] → Hs equipped with the
norm (5.11).

Definition 5.11. Suppose that T > 0, s ∈ R and f ∈ Hs. A function

u ∈ C ([0, T ];Hs)

is a generalized solution of (5.2) if there exists a sequence of Schwartz-solutions
un : [0, T ] → S such that un → u in C([0, T ];Hs) as n → ∞.

According to the next theorem, there is a unique generalized solution defined
on any time interval [0, T ] and therefore on [0,∞).

Theorem 5.12. Suppose that T > 0, s ∈ R and f ∈ Hs(Rn). Then there is
a unique generalized solution u ∈ C([0, T ];Hs) of (5.2). The solution is given by
(5.4).

Proof. Since S is dense in Hs, there is a sequence of functions fn ∈ S such
that fn → f in Hs. Let un ∈ C([0, T ];S) be the solution of (5.2) with initial
data fn. Then, by linearity, un − um is the solution with initial data fn − fm, and
Theorem 5.9 implies that

sup
t∈[0,T ]

‖un(t)− um(t)‖Hs ≤ ‖fn − fm‖Hs .

Hence, {un} is a Cauchy sequence in C([0, T ];Hs) and therefore there exists a
generalized solution u ∈ C([0, T ];Hs) such that un → u as n → ∞.

Suppose that f, g ∈ Hs and u, v ∈ C([0, T ];Hs) are generalized solutions with
u(0) = f , v(0) = g. If un, vn ∈ C([0, T ];S) are approximate solutions with un(0) =
fn, vn(0) = gn, then

‖u(t)− v(t)‖Hs ≤ ‖u(t)− un(t)‖Hs + ‖un(t)− vn(t)‖Hs + ‖vn(t)− v(t)‖Hs

≤ ‖u(t)− un(t)‖Hs + ‖fn − gn‖Hs + ‖vn(t)− v(t)‖Hs

Taking the limit of this inequality as n → ∞, we find that

‖u(t)− v(t)‖Hs ≤ ‖f − g‖Hs .

In particular, if f = g then u = v, so a generalized solution is unique.
Finally, from (5.4) we have

ûn(k, t) = e−t|k|2 f̂n(k).

Taking the limit of this expression in C([0, T ]; Ĥs) as n → ∞, where Ĥs is the
weighted L2-space (5.74), we get the same expression for û. �



5.2. GENERALIZED SOLUTIONS 137

We may obtain additional regularity of generalized solutions in time by use of
the equation; roughly speaking, we can trade two space-derivatives for one time-
derivative.

Proposition 5.13. Suppose that T > 0, s ∈ R and f ∈ Hs(Rn). If u ∈
C([0, T ];Hs) is a generalized solution of (5.2), then u ∈ C1([0, T ];Hs−2) and

ut = ∆u in C([0, T ];Hs−2).

Proof. Since u is a generalized solution, there is a sequence of smooth so-
lutions un ∈ C∞([0, T ];S) such that un → u in C([0, T ];Hs) as n → ∞. These
solutions satisfy unt = ∆un. Since ∆ : Hs → Hs−2 is bounded and {un} is
Cauchy in Hs, we see that {unt} is Cauchy in C([0, T ];Hs−2). Hence there exists
v ∈ C([0, T ];Hs−2) such that unt → v in C([0, T ];Hs−2). We claim that v = ut.
For each n ∈ N and h 6= 0 we have

un(t+ h)− un(t)

h
=

1

h

∫ t+h

t

uns(s) ds in C([0, T ];S),

and in the limit n → ∞, we get that

u(t+ h)− u(t)

h
=

1

h

∫ t+h

t

v(s) ds in C([0, T ];Hs−2).

Taking the limit as h → 0 of this equation we find that ut = v and

u ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−2).

Moreover, taking the limit of unt = ∆un we get ut = ∆u in C([0, T ];Hs−2). �

More generally, a similar argument shows that u ∈ Ck([0, T ];Hs−2k) for any
k ∈ N. In contrast with the case of ODEs, the time derivative of the solution lies
in a different space than the solution itself: u takes values in Hs, but ut takes
values in Hs−2. This feature is typical for PDEs when — as is usually the case —
one considers solutions that take values in Banach spaces whose norms depend on
only finitely many derivatives. It did not arise for Schwartz-valued solutions, since
differentiation is a continuous operation on S.

The above proposition did not use any special properties of the heat equation.
For t > 0, solutions have greatly improved regularity as a result of the smoothing
effect of the evolution.

Proposition 5.14. If u ∈ C([0, T ];Hs) is a generalized solution of (5.2), where
f ∈ Hs for some s ∈ R, then u ∈ C∞((0, T ];H∞) where H∞ is defined in (5.76).

Proof. If s ∈ R, f ∈ Hs, and t > 0, then (5.4) implies that û(t) ∈ Ĥr

for every r ∈ R, and therefore u(t) ∈ H∞. It follows from the equation that
u ∈ C∞(0,∞;H∞). �

For general Hs-initial data, however, we cannot expect any improved regularity
in time at t = 0 beyond u ∈ Ck([0, T );Hs−2k). The H∞ spatial regularity stated
here is not optimal; for example, one can prove [9] that the solution is a real-analytic
function of x for t > 0, although it is not necessarily a real-analytic function of t.
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5.3. The Schrödinger equation

The initial value problem for the Schrödinger equation is

iut = −∆u for x ∈ Rn and t ∈ R,

u(x, 0) = f(x) for x ∈ Rn,
(5.13)

where u : Rn ×R → C is a complex-valued function. A solution of the Schrödinger
equation is the amplitude function of a quantum mechanical particle moving freely
in Rn. The function |u(·, t)|2 is proportional to the spatial probability density of
the particle.

More generally, a particle moving in a potential V : Rn → R satisfies the
Schrödinger equation

(5.14) iut = −∆u+ V (x)u.

Unlike the free Schrödinger equation (5.13), this equation has variable coefficients
and it cannot be solved explicitly for general potentials V .

Formally, the Schrödinger equation (5.13) is obtained by the transformation
t 7→ −it of the heat equation to ‘imaginary time.’ The analytical properties of
the heat and Schrödinger equations are, however, completely different and it is
interesting to compare them. The proofs are similar, and we leave them as an
exercise (or see [34]).

The Fourier solution of (5.13) is

(5.15) û(k, t) = e−it|k|2 f̂(k).

The key difference from the heat equation is that these Fourier modes oscillate
instead of decay in time, and higher wavenumber modes oscillate faster in time.
As a result, there is no smoothing of the initial data (measuring smoothness in the
L2-scale of Sobolev spaces Hs) and we can solve the Schrödinger equation both
forward and backward in time.

Theorem 5.15. For any f ∈ S there is a unique solution u ∈ C∞(R;S) of
(5.13). The spatial Fourier transform of the solution is given by (5.15), and

u(x, t) =

∫
Γ(x− y, t)f(y) dy

where

Γ(x, t) =
1

(4πit)n/2
e−i|x|2/4t.

We get analogous Lp estimates for the Schrödinger equation to the ones for the
heat equation.

Theorem 5.16. Suppose that f ∈ S and u ∈ C∞(R;S) is the solution of (5.13).
Then for all t ∈ R,

‖u(t)‖L2 ≤ ‖f‖L2, ‖u(t)‖L∞ ≤ 1

(4π|t|)n/2 ‖f‖L1,

and for 2 < p < ∞,

(5.16) ‖u(t)‖Lp ≤ 1

(4π|t|)n(1/2−1/p)
‖f‖Lp′ .
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Solutions of the Schrödinger equation do not satisfy a space-time estimate anal-
ogous to the parabolic estimate (5.12) in which we ‘gain’ a spatial derivative. In-
stead, we get only that the Hs-norm is conserved. Solutions do satisfy a weaker
space-time estimate, called a Strichartz estimate, which we derive in Section 5.6.1.

The conservation of theHs-norm follows from the Fourier representation (5.15),
but let us prove it directly from the equation.

Theorem 5.17. Suppose that f ∈ S and u ∈ C∞ (R;S) is the solution of
(5.13). Then for any s ∈ R

‖u(t)‖Hs = ‖f‖Hs for every t ∈ R.

Proof. Let v = Λsu, so that ‖u(t)‖Hs = ‖v(t)‖L2 . Then

ivt = −∆v

and v(0) = Λsf . Multiplying this PDE by the conjugate v̄ and subtracting the
complex conjugate of the result, we get

i (v̄vt + vv̄t) = v∆v̄ − v̄∆v.

We may rewrite this equation as

∂t|v|2 +∇ · [i (vDv̄ − v̄Dv)] = 0.

If v = u, this is the equation of conservation of probability where |u|2 is the proba-
bility density and i (uDū− ūDu) is the probability flux. Integrating the equation
over Rn and using the spatial decay of v, we get

d

dt

∫
|v|2 dx = 0,

and the result follows. �

We say that a function u ∈ C (R;Hs) is a generalized solution of (5.13) if it is
the limit of smooth Schwartz-valued solutions uniformly on compact time intervals.
The existence of such solutions follows from the preceding Hs-estimates for smooth
solutions.

Theorem 5.18. Suppose that s ∈ R and f ∈ Hs(Rn). Then there is a unique
generalized solution u ∈ C (R;Hs) of (5.13) given by

û(k) = e−it|k|2 f̂(k).

Moreover, for any k ∈ N, we have u ∈ Ck
(
R;Hs−2k

)
.

Unlike the heat equation, there is no smoothing of the solution and there is no
Hs-regularity for t 6= 0 beyond what is stated in this theorem.

5.4. Semigroups and groups

The solution of an n× n linear first-order system of ODEs for ~u(t) ∈ Rn,

~ut = A~u,

may be written as
~u(t) = etA~u(0) −∞ < t < ∞

where etA : Rn → Rn is the matrix exponential of tA. The finite-dimensionality of
the phase space Rn is not crucial here. As we discuss next, similar results hold for
any linear ODE in a Banach space generated by a bounded linear operator.
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5.4.1. Uniformly continuous groups. Suppose that X is a Banach space.
We denote by L(X) the Banach space of bounded linear operators A : X → X
equipped with the operator norm

‖A‖L(X) = sup
u∈X\{0}

‖Au‖X
‖u‖X

.

We say that a sequence of bounded linear operators converges uniformly if it con-
verges with respect to the operator norm.

For A ∈ L(X) and t ∈ R, we define the operator exponential by the series

(5.17) etA = I + tA+
1

2!
t2A2 + · · ·+ 1

n!
An + . . . .

This operator is well-defined. Its properties are similar to those of the real-valued
exponential function eat for a ∈ R and are proved in the same way.

Theorem 5.19. If A ∈ L(X) and t ∈ R, then the series in (5.17) converges
uniformly in L(X). Moreover, the function t 7→ etA belongs to C∞ (R;L(X)) and
for every s, t ∈ R

esAetA = e(s+t)A,
d

dt
etA = AetA.

Consider a linear homogeneous initial value problem

(5.18) ut = Au, u(0) = f ∈ X, u ∈ C1(R;X).

The solution is given by the operator exponential.

Theorem 5.20. The unique solution u ∈ C∞(R;X) of (5.18) is given by

u(t) = etAf.

Example 5.21. For 1 ≤ p < ∞, let A : Lp(R) → Lp(R) be the bounded
translation operator

Af(x) = f(x+ 1).

The solution u ∈ C∞(R;Lp) of the differential-difference equation

ut(x, t) = u(x+ 1, t), u(x, 0) = f(x)

is given by

u(x, t) =

∞∑

n=0

tn

n!
f(x+ n).

Example 5.22. Suppose that a ∈ L1(Rn) and define the bounded convolution
operator A : L2(Rn) → L2(Rn) by Af = a ∗ f . Consider the IVP

ut(x, t) =

∫

Rn

a(x− y)u(y) dy, u(x, 0) = f(x) ∈ L2(Rn).

Taking the Fourier transform of this equation and using the convolution theorem,
we get

ût(k, t) = (2π)nâ(k)û(k, t), û(k, 0) = f̂(k).

The solution is
û(k, t) = e(2π)

nâ(k)tf̂(k).

It follows that

u(x, t) =

∫
g(x− y, t)f(y) dy
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where the Fourier transform of g(x, t) is given by

ĝ(k, t) =
1

(2π)n
e(2π)

nâ(k)t.

Since a ∈ L1(Rn), the Riemann-Lebesgue lemma implies that â ∈ C0(R
n), and

therefore ĝ(·, t) ∈ Cb(R
n) for every t ∈ R. Since convolution with g corresponds

to multiplication of the Fourier transform by a bounded multiplier, it defines a
bounded linear map on L2(Rn).

The solution operators T(t) = etA of (5.18) form a uniformly continuous one-
parameter group. Conversely, any uniformly continuous one-parameter group of
transformations on a Banach space is generated by a bounded linear operator.

Definition 5.23. Let X be a Banach space. A one-parameter, uniformly
continuous group on X is a family {T(t) : t ∈ R} of bounded linear operators
T(t) : X → X such that:

(1) T(0) = I;
(2) T(s)T(t) = T(s+ t) for all s, t ∈ R;
(3) T(h) → I uniformly in L(X) as h → 0.

Theorem 5.24. If {T(t) : t ∈ R} is a uniformly continuous group on a Banach
space X, then:

(1) T ∈ C∞ (R;L(X));
(2) A = Tt(0) is a bounded linear operator on X;
(3) T(t) = etA for every t ∈ R.

Note that the differentiability (and, in fact, the analyticity) of T(t) with respect
to t is implied by its continuity and the group property T(s)T(t) = T(s+ t). This is
analogous to what happens for the real exponential function: The only continuous
functions f : R → R that satisfy the functional equation

(5.19) f(0) = 1, f(s)f(t) = f(s+ t) for all s, t ∈ R

are the exponential functions f(t) = eat for a ∈ R, and these functions are analytic.
Some regularity assumption on f is required in order for (5.19) to imply that f

is an exponential function. If we drop the continuity assumption, then the function
defined by f(0) = 1 and f(t) = 0 for t 6= 0 also satisfies (5.19). This function and
the exponential functions are the only Lebesgue measurable solutions of (5.19). If
we drop the measurability requirement, then we get many other solutions.

Example 5.25. If f = eg where g : R → R satisfies

g(0) = 0, g(s) + g(t) = g(s+ t),

then f satisfied (5.19). The linear functions g(t) = at satisfy this functional equa-
tion for any a ∈ R, but there are many other non-measurable solutions. To “con-
struct” examples, consider R as a vector space over the field Q of rational num-
bers, and let {eα ∈ R : α ∈ I} denote an algebraic basis. Given any values
{cα ∈ R : α ∈ I} define g : R → R such that g(eα) = cα for each α ∈ I, and if
x =

∑
xαeα is the finite expansion of x ∈ R with respect to the basis, then

g
(∑

xαeα

)
=
∑

xαcα.
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5.4.2. Strongly continuous semigroups. We may consider the heat equa-
tion and other linear evolution equations from a similar perspective to the Banach
space ODEs discussed above. Significant differences arise, however, as a result of
the fact that the Laplacian and other spatial differential operators are unbounded
maps of a Banach space into itself. In particular, the solution operators associated
with unbounded operators are strongly but not uniformly continuous functions of
time, and we get solutions that are, in general, continuous but not continuously dif-
ferentiable. Moreover, as in the case of the heat equation, we may only be able to
solve the equation forward in time, which gives us a semigroup of solution operators
instead of a group.

Abstracting the notion of a family of solution operators with continuous tra-
jectories forward in time, we are led to the following definition.

Definition 5.26. Let X be a Banach space. A one-parameter, strongly contin-
uous (or C0) semigroup on X is a family {T(t) : t ≥ 0} of bounded linear operators
T(t) : X → X such that

(1) T(0) = I;
(2) T(s)T(t) = T(s+ t) for all s, t ≥ 0;
(3) T(h)f → f strongly in X as h → 0+ for every f ∈ X .

The semigroup is said to be a contraction semigroup if ‖T(t)‖ ≤ 1 for all t ≥ 0,
where ‖ · ‖ denotes the operator norm.

The semigroup property (2) holds for the solution maps of any well-posed au-
tonomous evolution equation: it says simply that we can solve for time s + t by
solving for time t and then for time s. Condition (3) means explicitly that

‖T(t)f − f‖X → 0 as t → 0+.

If this holds, then the semigroup property (2) implies that T(t + h)f → T(t)f
in X as h → 0 for every t > 0, not only for t = 0 [8]. The term ‘contraction’
in Definition 5.26 is not used in a strict sense, and the norm of the solution of a
contraction semigroup is not required to be strictly decreasing in time; it may for
example, remain constant.

The heat equation

(5.20) ut = ∆u, u(x, 0) = f(x)

is one of the primary motivating examples for the theory of semigroups. For definite-
ness, we suppose that f ∈ L2, but we could also define a heat-equation semigroup
on other Hilbert or Banach spaces, such as Hs or Lp for 1 < p < ∞.

From Theorem 5.12 with s = 0, for every f ∈ L2 there is a unique generalized
solution u : [0,∞) → L2 of (5.20), and therefore for each t ≥ 0 we may define a
bounded linear map T(t) : L2 → L2 by T(t) : f 7→ u(t). The operator T(t) is
defined explicitly by

T(0) = I, T(t)f = Γt ∗ f for t > 0,

T̂(t)f(k) = e−t|k|2 f̂(k).
(5.21)

where the ∗ denotes spatial convolution with the Green’s function Γt(x) = Γ(x, t)
given in (5.6).

We also use the notation

T(t) = et∆
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and interpret T(t) as the operator exponential of t∆. The semigroup property then
becomes the usual exponential formula

e(s+t)∆ = es∆et∆.

Theorem 5.27. The solution operators {T(t) : t ≥ 0} of the heat equation
defined in (5.21) form a strongly continuous contraction semigroup on L2(Rn).

Proof. This theorem is a restatement of results that we have already proved,
but let us verify it explicitly. The semigroup property follows from the Fourier
representation, since

e−(s+t)|k|2 = e−s|k|2e−t|k|2 .

It also follows from the spatial representation, since

Γs+t = Γs ∗ Γt.

The probabilistic interpretation of this identity is that the sum of independent
Gaussian random variables is a Gaussian random variable, and the variance of the
sum is the sum of the variances.

Theorem 5.12, with s = 0, implies that the semigroup is strongly continuous
since t 7→ T(t)f belongs to C

(
[0,∞);L2

)
for every f ∈ L2. Finally, it is immediate

from (5.21) and Parseval’s theorem that ‖T(t)‖ ≤ 1 for every t ≥ 0, so the semigroup
is a contraction semigroup. �

An alternative way to view this result is that the solution maps

T(t) : S ⊂ L2 → S ⊂ L2

constructed in Theorem 5.4 are defined on a dense subspace S of L2, and are
bounded on L2, so they extend to bounded linear maps T(t) : L2 → L2, which
form a strongly continuous semigroup.

Although for every f ∈ L2 the trajectory t 7→ T(t)f is a continuous function
from [0,∞) into L2, it is not true that t 7→ T(t) is a continuous map from [0,∞)
into the space L(L2) of bounded linear maps on L2 since T(t+h) does not converge
to T(t) as h → 0 uniformly with respect to the operator norm.

Proposition 5.13 implies a solution t 7→ T(t)f belongs to C1
(
[0,∞);L2

)
if

f ∈ H2, but for f ∈ L2 \H2 the solution is not differentiable with respect to t in L2

at t = 0. For every t > 0, however, we have from Proposition 5.14 that the solution
belongs to C∞ (0,∞;H∞). Thus, the the heat equation semiflow maps the entire
phase space L2 forward in time into a dense subspace H∞ of smooth functions. As
a result of this smoothing, we cannot reverse the flow to obtain a map backward in
time of L2 into itself.

5.4.3. Strongly continuous groups. Conservative wave equations do not
smooth solutions in the same way as parabolic equations like the heat equation,
and they typically define a group of solution maps both forward and backward in
time.

Definition 5.28. Let X be a Banach space. A one-parameter, strongly con-
tinuous (or C0) group on X is a family {T(t) : t ∈ R} of bounded linear operators
T(t) : X → X such that

(1) T(0) = I;
(2) T(s)T(t) = T(s+ t) for all s, t ∈ R;
(3) T(h)f → f strongly in X as h → 0 for every f ∈ X .
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If X is a Hilbert space and each T(t) is a unitary operator on X , then the group is
said to be a unitary group.

Thus {T(t) : t ∈ R} is a strongly continuous group if and only if {T(t) : t ≥ 0}
is a strongly continuous semigroup of invertible operators and T(−t) = T−1(t).

Theorem 5.29. Suppose that s ∈ R. The solution operators {T(t) : t ∈ R} of
the Schrödinger equation (5.13) defined by

(5.22) (T̂(t)f)(k) = e−it|k|2 f̂(k).

form a strongly continuous, unitary group on Hs(Rn).

Unlike the heat equation semigroup, the Schrödinger equation is a dispersive
wave equation which does not smooth solutions. The solution maps {T(t) : t ∈ R}
form a group of unitary operators on L2 which map Hs onto itself (c.f. Theo-
rem 5.17). A trajectory u(t) belongs to C1(R;L2) if and only if u(0) ∈ H2, and
u ∈ Ck(R;L2) if and only if u(0) ∈ H1+k. If u(0) ∈ L2 \ H2, then u ∈ C(R;L2)
but u is nowhere strongly differentiable in L2 with respect to time. Nevertheless,
the continuous non-differentiable trajectories remain close in L2 to the differen-
tiable trajectories. This dense intertwining of smooth trajectories and continuous,
non-differentiable trajectories in an infinite-dimensional phase space is not easy to
imagine and has no analog for ODEs.

The Schrödinger operators T(t) = eit∆ do not form a strongly continuous group
on Lp(Rn) when p 6= 2. Suppose, for contradiction, that T(t) : Lp → Lp is bounded
for some 1 ≤ p < ∞, p 6= 2 and t ∈ R \ {0}. Then since T(−t) = T ∗(t), duality

implies that T(−t) : Lp′ → Lp′

is bounded, and we can assume that 1 ≤ p < 2

without loss of generality. From Theorem 5.16, T(t) : Lp → Lp′

is bounded, and

thus for every f ∈ Lp ∩ Lp′ ⊂ L2

‖f‖Lp = ‖T(t)T(−t)f‖Lp ≤ C1 ‖T(−t)f‖Lp′ ≤ C1C2 ‖f‖Lp′ .

This estimate is false if p 6= 2, so T(t) cannot be bounded on Lp.

5.4.4. Generators. Given an operator A that generates a semigroup, we may
define the semigroup T(t) = etA as the collection of solution operators of the
equation ut = Au. Alternatively, given a semigroup, we may ask for an operator A
that generates it.

Definition 5.30. Suppose that {T(t) : t ≥ 0} is a strongly continuous semi-
group on a Banach spaceX . The generatorA of the semigroup is the linear operator
in X with domain D(A),

A : D(A) ⊂ X → X,

defined as follows:

(1) f ∈ D(A) if and only if the limit

lim
h→0+

[
T(h)f − f

h

]

exists with respect to the strong (norm) topology of X ;
(2) if f ∈ D(A), then

Af = lim
h→0+

[
T(h)f − f

h

]
.
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To describe which operators are generators of a semigroup, we recall some
definitions and results from functional analysis. See [8] for further discussion and
proofs of the results.

Definition 5.31. An operator A : D(A) ⊂ X → X in a Banach space X is
closed if whenever {fn} is a sequence of points in D(A) such that fn → f and
Afn → g in X as n → ∞, then f ∈ D(A) and Af = g.

Equivalently, A is closed if its graph

G(A) = {(f, g) ∈ X ×X : f ∈ D(A) and Af = g}
is a closed subset of X ×X .

Theorem 5.32. If A is the generator of a strongly continuous semigroup {T(t)}
on a Banach space X, then A is closed and its domain D(A) is dense in X.

Example 5.33. If T(t) is the heat-equation semigroup on L2, then the L2-limit

lim
h→0+

[
T(h)f − f

h

]

exists if and only if f ∈ H2, and then it is equal to ∆f . The generator of the
heat equation semigroup on L2 is therefore the unbounded Laplacian operator with
domain H2,

∆ : H2(Rn) ⊂ L2(Rn) → L2(Rn).

If fn → f in L2 and ∆fn → g in L2, then the continuity of distributional deriva-
tives implies that ∆f = g and elliptic regularity theory (or the explicit Fourier
representation) implies that f ∈ H2. Thus, the Laplacian with domain H2(Rn) is
a closed operator in L2(Rn). It is also self-adjoint.

Not every closed, densely defined operator generates a semigroup: the powers
of its resolvent must satisfy suitable estimates.

Definition 5.34. Suppose that A : D(A) ⊂ X → X is a closed linear operator
in a Banach space X and D(A) is dense in X . A complex number λ ∈ C is in the
resolvent set ρ(A) of A if λI − A : D(A) ⊂ X → X is one-to-one and onto. If
λ ∈ ρ(A), the inverse

(5.23) R(λ,A) = (λI −A)
−1

: X → X

is called the resolvent of A.

The open mapping (or closed graph) theorem implies that if A is closed, then
the resolvent R(λ,A) is a bounded linear operator on X whenever it is defined.
This is because (f,Af) 7→ λf −Af is a one-to-one, onto map from the graph G(A)
of A to X , and G(A) is a Banach space since it is a closed subset of the Banach
space X ×X .

The resolvent of an operator A may be interpreted as the Laplace transform of
the corresponding semigroup. Formally, if

ũ(λ) =

∫ ∞

0

u(t)e−λt dt

is the Laplace transform of u(t), then taking the Laplace transform with respect to
t of the equation

ut = Au u(0) = f,
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we get

λũ− f = Aũ.

For λ ∈ ρ(A), the solution of this equation is

ũ(λ) = R(λ,A)f.

This solution is the Laplace transform of the time-domain solution

u(t) = T(t)f

with R(λ,A) = T̃(t), or

(λI −A)
−1

=

∫ ∞

0

e−λtetA dt.

This identity can be given a rigorous sense for the generators A of a semigroup, and
it explains the connection between semigroups and resolvents. The Hille-Yoshida
theorem provides a necessary and sufficient condition on the resolvents for an op-
erator to generate a strongly continuous semigroup.

Theorem 5.35. A linear operator A : D(A) ⊂ X → X in a Banach space X
is the generator of a strongly continuous semigroup {T(t); t ≥ 0} on X if and only
if there exist constants M ≥ 1 and a ∈ R such that the following conditions are
satisfied:

(1) the domain D(A) is dense in X and A is closed;
(2) every λ ∈ R such that λ > a belongs to the resolvent set of A;
(3) if λ > a and n ∈ N, then

(5.24) ‖R(λ,A)n‖ ≤ M

(λ− a)n

where the resolvent R(λ,A) is defined in (5.23).

In that case,

(5.25) ‖T(t)‖ ≤ Meat for all t ≥ 0.

This theorem is often not useful in practice because the condition on arbitrary
powers of the resolvent is difficult to check. For contraction semigroups, we have
the following simpler version.

Corollary 5.36. A linear operator A : D(A) ⊂ X → X in a Banach space X
is the generator of a strongly continuous contraction semigroup {T(t); t ≥ 0} on X
if and only if:

(1) the domain D(A) is dense in X and A is closed;
(2) every λ ∈ R such that λ > 0 belongs to the resolvent set of A;
(3) if λ > 0, then

(5.26) ‖R(λ,A)‖ ≤ 1

λ
.

This theorem follows from the previous one since

‖R(λ,A)n‖ ≤ ‖R(λ,A)‖n ≤ 1

λn
.

The crucial condition here is that M = 1. We can always normalize a = 0, since if
A satisfies Theorem 5.35 with a = α, then A− αI satisfies Theorem 5.35 with a =
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0. Correspondingly, the substitution u = eαtv transforms the evolution equation
ut = Au to vt = (A− αI)v.

The Lumer-Phillips theorem provides a more easily checked condition (that A
is ‘m-dissipative’) for A to generate a contraction semigroup. This condition often
follows for PDEs from a suitable energy estimate.

Definition 5.37. A closed, densely defined operator A : D(A) ⊂ X → X in a
Banach space X is dissipative if for every λ > 0

(5.27) λ‖f‖ ≤ ‖(λI −A) f‖ for all f ∈ D(A).

The operator A is maximally dissipative, or m-dissipative for short, if it is dissipa-
tive and the range of λI −A is equal to X for some λ > 0.

The estimate (5.27) implies immediately that λI − A is one-to-one. It also
implies that the range of λI − A : D(A) ⊂ X → X is closed. To see this, suppose
that gn belongs to the range of λI −A and gn → g in X . If gn = (λI −A)fn, then
(5.27) implies that {fn} is Cauchy since {gn} is Cauchy, and therefore fn → f for
some f ∈ X . Since A is closed, it follows that f ∈ D(A) and (λI−A)f = g. Hence,
g belongs to the range of λI −A.

The range of λI − A may be a proper closed subspace of X for every λ > 0;
if, however, A is m-dissipative, so that λI − A is onto X for some λ > 0, then one
can prove that λI −A is onto for every λ > 0, meaning that the resolvent set of A
contains the positive real axis {λ > 0}. The estimate (5.27) is then equivalent to
(5.26). We therefore get the following result, called the Lumer-Phillips theorem.

Theorem 5.38. An operator A : D(A) ⊂ X → X in a Banach space X is the
generator of a contraction semigroup on X if and only if:

(1) A is closed and densely defined;
(2) A is m-dissipative.

Example 5.39. Consider ∆ : H2(Rn) ⊂ L2(Rn) → L2(Rn). If f ∈ H2, then
using the integration-by-parts property of the weak derivative on H2 we have for
λ > 0 that

‖(λI −∆) f‖2L2 =

∫
(λf −∆f)

2
dx

=

∫ [
λ2f2 − 2λf∆f + (∆f)

2
]
dx

=

∫ [
λ2f2 + 2λDf ·Df + (∆f)

2
]
dx

≥ λ2

∫
f2 dx.

Hence,

λ‖f‖L2 ≤ ‖(λI −∆) f‖L2

and ∆ is dissipative. The range of λI − ∆ is equal to L2 for any λ > 0, as one
can see by use of the Fourier transform (in fact, I −∆ is an isometry of H2 onto
L2). Thus, ∆ is m-dissipative. The Lumer-Phillips theorem therefore implies that
∆ : H2 ⊂ L2 → L2 generates a strongly continuous semigroup on L2(Rn), as we
have seen explicitly by use of the Fourier transform.
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Thus, in order to show that an evolution equation

ut = Au u(0) = f

in a Banach space X generates a strongly continuous contraction semigroup, it is
sufficient to check that A : D(A) ⊂ X → X is a closed, densely defined, dissipative
operator and that for some λ > 0 the resolvent equation

λf −Af = g

has a solution f ∈ X for every g ∈ X .

Example 5.40. The linearized Kuramoto-Sivashinsky (KS) equation is

ut = −∆u−∆2u.

This equation models a system with long-wave instability, described by the back-
ward heat-equation term −∆u, and short wave stability, described by the forth-
order diffusive term −∆2u. The operator

A : H4(Rn) ⊂ L2(Rn) → L2(Rn), Au = −∆u−∆2u

generates a strongly continuous semigroup on L2(Rn), or Hs(Rn). One can verify
this directly from the Fourier representation,

[̂etAf ](k) = et(|k|
2−|k|4)f̂(k),

but let us check the hypotheses of the Lumer-Phillips theorem instead. Note that

(5.28) |k|2 − |k|4 ≤ 3

16
for all |k| ≥ 0.

We claim that Ã = A−αI is m-dissipative for α ≤ 3/16. First, Ã is densely defined

and closed, since if fn ∈ H4 and fn → f , Ãfn → g in L2, the Fourier representation
implies that f ∈ H4 and Ãf = g. If f ∈ H4, then using (5.28), we have

∥∥∥λf − Ãf
∥∥∥
2

=

∫

Rn

(
λ+ α− |k|2 + |k|4

)2 ∣∣∣f̂(k)
∣∣∣
2

dk

≥ λ

∫

Rn

∣∣∣f̂(k)
∣∣∣
2

dk

≥ λ‖f‖2L2,

which means that Ã is dissipative. Moreover, λI − Ã : H4 → L2 is one-to-one and
onto for any λ > 0, since (λI − Ã)f = g if and only if

f̂(k) =
ĝ(k)

λ+ α− |k|2 + |k|4 .

Thus, Ã is m-dissipative, so it generates a contraction semigroup on L2. It follows
that A generates a semigroup on L2(Rn) such that

∥∥etA
∥∥
L(L2)

≤ e3t/16,

corresponding to M = 1 and a = 3/16 in (5.25).

Finally, we state Stone’s theorem, which gives an equivalence between self-
adjoint operators acting in a Hilbert space and strongly continuous unitary groups.
Before stating the theorem, we give the definition of an unbounded self-adjoint
operator. For definiteness, we consider complex Hilbert spaces.
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Definition 5.41. Let H be a complex Hilbert space with inner-product

(·, ·) : H×H → C.

An operator A : D(A) ⊂ H → H is self-adjoint if:

(1) the domain D(A) is dense in H;
(2) x ∈ D(A) if and only if there exists z ∈ H such that (x,Ay) = (z, y) for

every y ∈ D(A);
(3) (x,Ay) = (Ax, y) for all x, y ∈ D(A).

Condition (2) states that D(A) = D(A∗) where A∗ is the Hilbert space adjoint
of A, in which case z = Ax, while (3) states that A is symmetric on its domain.
A precise characterization of the domain of a self-adjoint operator is essential; for
differential operators acting in Lp-spaces, the domain can often be described by the
use of Sobolev spaces. The next result is Stone’s theorem (see e.g. [44] for a proof).

Theorem 5.42. An operator iA : D(iA) ⊂ H → H in a complex Hilbert space
H is the generator of a strongly continuous unitary group on H if and only if A is
self-adjoint.

Example 5.43. The generator of the Schrödinger group on Hs(Rn) is the self-
adjoint operator

i∆ : D(i∆) ⊂ Hs(Rn) → Hs(Rn), D(i∆) = Hs+2(Rn).

Example 5.44. Consider the Klein-Gordon equation

utt −∆u+ u = 0

in Rn. We rewrite this as a first-order system

ut = v, vt = ∆u,

which has the form wt = Aw where

w =

(
u
v

)
, A =

(
0 I

∆− I 0

)
.

We let

H = H1(Rn)⊕ L2(Rn)

with the inner product of w1 = (u1, v1), w2 = (u2, v2) defined by

(w1, w2)H = (u1, u2)H1 + (v1, v2)L2 , (u1, u2)H1 =

∫
(u1u2 +Du1 ·Du2) dx.

Then the operator

A : D(A) ⊂ H → H, D(A) = H2(Rn)⊕H1(Rn)

is self-adjoint and generates a unitary group on H.
We can instead take

H = L2(Rn)⊕H−1(Rn), D(A) = H1(Rn)⊕ L2(Rn)

and get a unitary group on this larger space.
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5.4.5. Nonhomogeneous equations. The solution of a linear nonhomoge-
neous ODE

(5.29) ut = Au + g, u(0) = f

may be expressed in terms of the solution operators of the homogeneous equation
by the variation of parameters, or Duhamel, formula.

Theorem 5.45. Suppose that A : X → X is a bounded linear operator on a
Banach space X and T(t) = etA is the associated uniformly continuous group. If
f ∈ X and g ∈ C(R;X), then the solution u ∈ C1(R;X) of (5.29) is given by

(5.30) u(t) = T(t)f +

∫ t

0

T(t− s)g(s) ds.

This solution is continuously strongly differentiable and satisfies the ODE (5.29)
pointwise in t for every t ∈ R. We refer to such a solution as a classical solution. For
a strongly continuous group with an unbounded generator, however, the Duhamel
formula (5.30) need not define a function u(t) that is differentiable at any time t
even if g ∈ C(R;X).

Example 5.46. Let {T(t) : t ∈ R} be a strongly continuous group on a Banach
space X with generator A : D(A) ⊂ X → X , and suppose that there exists g0 ∈ X
such that T(t)g0 /∈ D(A) for every t ∈ R. For example, if T(t) = eit∆ is the
Schrödinger group on L2(Rn) and g0 /∈ H2(Rn), then T(t)g0 /∈ H2(Rn) for every
t ∈ R. Taking g(t) = T(t)g0 and f = 0 in (5.30) and using the semigroup property,
we get

u(t) =

∫ t

0

T(t− s)T(s)g0 ds =

∫ t

0

T(t)g0 ds = tT(t)g0.

This function is continuous but not differentiable with respect to t, since T(t)f is
differentiable at t0 if and only if T(t0)f ∈ D(A).

It may happen that the function u(t) defined in (5.30) is is differentiable with
respect to t in a distributional sense and satisfies (5.29) pointwise almost everywhere
in time. We therefore introduce two other notions of solution that are weaker than
that of a classical solution.

Definition 5.47. Suppose that A be the generator of a strongly continuous
semigroup {T(t) : t ≥ 0}, f ∈ X and g ∈ L1 ([0, T ];X). A function u : [0, T ] → X
is a strong solution of (5.29) on [0, T ] if:

(1) u is absolutely continuous on [0, T ] with distributional derivative ut ∈
L1 (0, T ;X);

(2) u(t) ∈ D(A) pointwise almost everywhere for t ∈ (0, T );
(3) ut(t) = Au(t) + g(t) pointwise almost everywhere for t ∈ (0, T );
(4) u(0) = f .

A function u : [0, T ] → X is a mild solution of (5.29) on [0, T ] if u is given by (5.30)
for t ∈ [0, T ].

Every classical solution is a strong solution and every strong solution is a mild
solution. As Example 5.46 shows, however, a mild solution need not be a strong
solution.
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The Duhamel formula provides a useful way to study semilinear evolution equa-
tions of the form

(5.31) ut = Au+ g(u)

where the linear operator A generates a semigroup on a Banach space X and

g : D(F ) ⊂ X → X

is a nonlinear function. For semilinear PDEs, g(u) typically depends on u but none
of its spatial derivatives and then (5.31) consists of a linear PDE perturbed by a
zeroth-order nonlinear term.

If {T(t)} is the semigroup generated by A, we may replace (5.31) by an integral
equation for u : [0, T ] → X

(5.32) u(t) = T(t)u(0) +

∫ t

0

T(t− s)g (u(s)) ds.

We then try to show that solutions of this integral equation exist. If these solutions
have sufficient regularity, then they also satisfy (5.31).

In the standard Picard approach to ODEs, we would write (5.31) as

(5.33) u(t) = u(0) +

∫ t

0

[Au(s) + g (u(s))] ds.

The advantage of (5.32) over (5.33) is that we have replaced the unbounded operator
A by the bounded solution operators {T(t)}. Moreover, since T(t−s) acts on g(u(s))
it is possible for the regularizing properties of the linear operators T to compensate
for the destabilizing effects of the nonlinearity F . For example, in Section 5.5
we study a semilinear heat equation, and in Section 5.6 to prove the existence of
solutions of a nonlinear Schrödinger equation.

5.4.6. Non-autonomous equations. The semigroup property T(s)T(t) =
T(s+ t) holds for autonomous evolution equations that do not depend explicitly on
time. One can also consider time-dependent linear evolution equations in a Banach
space X of the form

ut = A(t)u

where A(t) : D (A(t)) ⊂ X → X . The solution operators T(t; s) from time s to
time t of a well-posed nonautonomous equation depend separately on the initial
and final times, not just on the time difference; they satisfy

T(t; s)T(s; r) = T(t; r) for r ≤ s ≤ t.

The time-dependence of A makes such equations more difficult to analyze from
the semigroup viewpoint than autonomous equations. First, since the domain of
A(t) depends in general on t, one must understand how these domains are related
and for what times a solution belongs to the domain. Second, the operators A(s),
A(t) may not commute for s 6= t, meaning that one must order them correctly with
respect to time when constructing solution operators T(t; s).

Similar issues arise in using semigroup theory to study quasi-linear evolution
equations of the form

ut = A(u)u

in which, for example, A(u) is a differential operator acting on u whose coefficients
depend on u (see e.g. [44] for further discussion). Thus, while semigroup theory
is an effective approach to the analysis of autonomous semilinear problems, its
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application to nonautonomous or quasilinear problems often leads to considerable
technical difficulties.

5.5. A semilinear heat equation

Consider the following initial value problem for u : Rn × [0, T ] → R:

(5.34) ut = ∆u+ λu− γum, u(x, 0) = g(x)

where λ, γ ∈ R and m ∈ N are parameters. This PDE is a scalar, semilinear
reaction diffusion equation. The solution u = 0 is linearly stable when λ < 0 and
linearly unstable when λ > 0. The nonlinear reaction term is potentially stabilizing
if γ > 0 and m is odd or m is even and solutions are nonnegative (they remain
nonegative by the maximum principle). For example, if m = 3 and γ > 0, then
the spatially-independent reaction ODE ut = λu−γu3 has a supercritical pitchfork
bifurcation at u = 0 as λ passes through 0. Thus, (5.34) provides a model equation
for the study of bifurcation and loss of stability of equilbria in PDEs.

We consider (5.34) on Rn since this allows us to apply the results obtained ear-
lier in the Chapter for the heat equation on Rn. In some respects, the behavior this
IBVP on a bounded domain is simpler to analyze. The negative Laplacian on Rn

does not have a compact resolvent and has a purely continuous spectrum [0,∞). By
contrast, negative Laplacian on a bounded domain, with say homogeneous Dirich-
let boundary conditions, has compact resolvent and a discrete set of eigenvalues
λ1 < λ2 ≤ λ3 ≤ . . . . As a result, only finitely many modes become unstable as λ
increases, and the long time dynamics of (5.34) is essentially finite-dimensional in
nature.

Equations of the form
ut = ∆u+ f(u)

on a bounded one-dimensional domain were studied by Chafee and Infante (1974),
so this equation is sometimes called the Chafee-Infante equation. We consider here
the special case with

(5.35) f(u) = λu − γum

so that we can focus on the essential ideas. We do not attempt to obtain an optimal
result; our aim is simply to illustrate how one can use semigroup theory to prove the
existence of solutions of semilinear parabolic equations such as (5.34). Moreover,
semigroup theory is not the only possible approach to such problems. For example,
one can also use a Galerkin method.

5.5.1. Motivation. We will use the linear heat equation semigroup to refor-
mulate (5.34) as a nonlinear integral equation in an appropriate function space and
apply a contraction mapping argument.

To motivate the following analysis, we proceed formally at first. Suppose that
A = −∆ generates a semigroup e−tA on some space X , and let F be the non-
linear operator F (u) = f(u), meaning that F is composition with f regarded as
an operator on functions. Then (5.34) maybe written as the abstract evolution
equation

ut = −Au+ F (u), u(0) = g.

Using Duhamel’s formula, we get

u(t) = e−tAg +

∫ t

0

e−(t−s)AF (u(s)) ds.
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We use this integral equation to define mild solutions of the equation.
We want to formulate the integral equation as a fixed point problem u = Φ(u)

on a space of Y -valued functions u : [0, T ] → Y . There are many ways to achieve
this. In the framework we use here, we choose spaces Y ⊂ X such that: (a)
F : Y → X is locally Lipschitz continuous; (b) e−tA : X → Y for t > 0 with
integrable operator norm as t → 0+. This allows the smoothing of the semigroup
to compensate for a loss of regularity in the nonlinearity.

As we will show, one appropriate choice in 1 ≤ n ≤ 3 space dimensions is
X = L2(Rn) and Y = H2α(Rn) for n/4 < α < 1. Here H2α(Rn) is the L2-
Sobolev space of fractional order 2α defined in Section 5.C. We write the order of
the Sobolev space as 2α because H2α(Rn) = D (Aα) is the domain of the αth-power
of the generator of the semigroup.

5.5.2. Mild solutions. Let A denote the negative Laplacian operator in L2,

(5.36) A : D(A) ⊂ L2(Rn) → L2(Rn), A = −∆, D(A) = H2(Rn).

We define A as an operator acting in L2 because we can study it explicitly by use
of the Fourier transform.

As discussed in Section 5.4.2, A is a closed, densely defined positive operator,
and −A is the generator of a strongly continuous contraction semigroup

{e−tA : t ≥ 0}

on L2(Rn). The Fourier representation of the semigroup operators is

(5.37) e−tA : L2(Rn) → L2(Rn), ̂(e−tAh)(k) = e−t|k|2 ĥ(k).

If t > 0 we have for any α > 0 that

e−tA : L2(Rn) → H2α(Rn).

This property expresses the instantaneous smoothing of solutions of the heat equa-
tion c.f. Proposition 5.14.

We define the nonlinear operator

(5.38) F : H2α(Rn) → L2(Rn), F (h)(x) = λh(x) − γhm(x).

In order to ensure that F takes values in L2 and has good continuity properties,
we assume that α > n/4. The Sobolev embedding theorem (Theorem 5.79) implies
that H2α(Rn) →֒ C0(R

n). Hence, if h ∈ H2α, then h ∈ L2 ∩ C0, so h ∈ Lp for
every 2 ≤ p ≤ ∞, and F (h) ∈ L2 ∩ C0. We then define mild H2α-valued solutions
of (5.34) as follows.

Definition 5.48. Suppose that T > 0, α > n/4, and g ∈ H2α(Rn). A mild
H2α-valued solution of (5.34) on [0, T ] is a function

u ∈ C
(
[0, T ];H2α(Rn)

)

such that

(5.39) u(t) = e−tAg +

∫ t

0

e−(t−s)AF (u(s)) ds for every 0 ≤ t ≤ T ,

where e−tA is given by (5.37), and F is given by (5.38).
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5.5.3. Existence. In order to prove a local existence result, we choose α large
enough that the nonlinear term is well-behaved by Sobolev embedding, but small
enough that the norm of the semigroup maps from L2 into H2α is integrable as
t → 0+. As we will see, this is the case if n/4 < α < 1, so we restrict attention to
1 ≤ n ≤ 3 space dimensions.

Theorem 5.49. Suppose that 1 ≤ n ≤ 3 and n/4 < α < 1. Then there exists
T > 0, depending only on α, n, ‖g‖H2α , and the coefficients of f , such that (5.34)
has a unique mild solution u ∈ C

(
[0, T ];H2α

)
in the sense of Definition 5.48.

Proof. We write (5.39) as

u = Φ(u),

Φ : C
(
[0, T ];H2α

)
→ C

(
[0, T ];H2α

)
,

Φ(u)(t) = e−tAg +

∫ t

0

e−(t−s)AF (u(s)) ds.

(5.40)

We will show that Φ defined in (5.40) is a contraction mapping on a suitable ball in
C
(
[0, T ];H2α

)
. We do this in a series of Lemmas. The first Lemma is an estimate

of the norm of the semigroup operators on the domain of a fractional power of the
generator.

Lemma 5.50. Let e−tA be the semigroup operator defined in (5.37) and α > 0.
If t > 0, then

e−tA : L2(Rn) → H2α(Rn)

and there is a constant C = C(α, n) such that

∥∥e−tA
∥∥
L(L2,H2α)

≤ Cet

tα
.

Proof. Suppose that h ∈ L2(Rn). Using the Fourier representation (5.37) of

e−tA as multiplication by e−t|k|2 and the definition of the H2α-norm, we get that

∥∥e−tAh
∥∥2
H2α = (2π)n

∫

Rn

(
1 + |k|2

)2α
e−2t|k|2

∣∣∣ĥ(k)
∣∣∣
2

dk

≤ (2π)n sup
k∈Rn

[(
1 + |k|2

)2α
e−2t|k|2

] ∫

Rn

∣∣∣ĥ(k)
∣∣∣
2

dk.

Hence, by Parseval’s theorem,
∥∥e−tAh

∥∥
H2α ≤ M‖h‖L2

where

M = (2π)n/2 sup
k∈Rn

[(
1 + |k|2

)2α
e−2t|k|2

]1/2
.

Writing 1 + |k|2 = x, we have

M = (2π)n/2et sup
x≥1

[
xαe−tx

]
≤ Cet

tα
.

and the result follows. �

Next, we show that Φ is a locally Lipschitz continuous map on the space
C
(
[0, T ];H2α(Rn)

)
.



5.5. A SEMILINEAR HEAT EQUATION 155

Lemma 5.51. Suppose that α > n/4. Let Φ be the map defined in (5.40) where
F is given by (5.38), A is given by (5.36) and g ∈ H2α(Rn). Then

(5.41) Φ : C
(
[0, T ];H2α(Rn)

)
→ C

(
[0, T ];H2α(Rn)

)

and there exists a constant C = C(α,m, n) such that

‖Φ(u)− Φ(v)‖C([0,T ];H2α)

≤ CT 1−α
(
1 + ‖u‖m−1

C([0,T ];H2α) + ‖v‖m−1
C([0,T ];H2α)

)
‖u− v‖C([0,T ];H2α)

for every u, v ∈ C
(
[0, T ];H2α

)
.

Proof. We write Φ in (5.40) as

Φ(u)(t) = e−tAg +Ψ(u)(t), Ψ(u)(t) =

∫ t

0

e−(t−s)AF (u(s)) ds.

Since g ∈ H2α and {e−tA : t ≥ 0} is a strongly continuous semigroup on H2α, the
map t 7→ e−tAg belongs to C

(
[0, T ];H2α

)
. Thus, we only need to prove the result

for Ψ.
The fact that Ψ(u) ∈ C

(
[0, T ];H2α

)
if u ∈ C

(
[0, T ];H2α

)
follows from the

Lipschitz continuity of Ψ and a density argument. Thus, we only need to prove the
Lipschitz estimate.

If u, v ∈ C
(
[0, T ];H2α

)
, then using Lemma 5.50 we find that

‖Ψ(u)(t)−Ψ(v)(t)‖H2α ≤ C

∫ t

0

e(t−s)

|t− s|α ‖F (u(s))− F (v(s))‖L2 ds

≤ C sup
0≤s≤T

‖F (u(s))− F (v(s))‖L2

∫ t

0

1

|t− s|α ds.

Evaluating the s-integral, with α < 1, and taking the supremum of the result over
0 ≤ t ≤ T , we get

(5.42) ‖Ψ(u)−Ψ(v)‖L∞(0,T ;H2α) ≤ CT 1−α ‖F (u)− F (v)‖L∞(0,T ;L2) .

From (5.35), if g, h ∈ C0 ⊂ H2α we have

‖F (g)− F (h)‖L2 ≤ |λ| ‖g − h‖L2 + |γ| ‖gm − hm‖L2

and

‖gm − hm‖L2 ≤ C
(
‖g‖m−1

L∞ + ‖h‖m−1
L∞

)
‖g − h‖L2 .

Hence, using the Sobolev inequality ‖g‖L∞ ≤ C‖g‖H2α for α > n/4 and the fact
that ‖g‖L2 ≤ ‖g‖H2α , we get that

‖F (g)− F (h)‖L2 ≤ C
(
1 + ‖g‖m−1

H2α + ‖h‖m−1
H2α

)
‖g − h‖H2α ,

which means that F : H2α → L2 is locally Lipschitz continuous.3 The use of this
result in (5.42) proves the Lemma. �

3Actually, under the assumptions we make here, F : H2α
→ H2α is locally Lipschitz con-

tinuous as a map from H2α into itself, and we don’t need to use the smoothing properties of the
heat equation semigroup to obtain a fixed point problem in C([0, T ];H2α), so perhaps this wasn’t
the best example to choose! For stronger nonlinearities, however, it would be necessary to use the
smoothing.
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The existence theorem now follows by a standard contraction mapping argu-
ment. If ‖g‖H2α = R, then

∥∥e−tAg
∥∥
H2α ≤ R for every 0 ≤ t ≤ T

since {e−tA} is a contraction semigroup on H2α. Therefore, if we choose

E =
{
u ∈ C([0, T ];H2α : ‖u‖C([0,T ];H2α) ≤ 2R

}

we see from Lemma 5.51 that Φ : E → E if we choose T > 0 such that

CT 1−α
(
1 + 2Rm−1

)
= θR

where 0 < θ < 1. Moreover, in that case

‖Φ(u)− Φ(v)‖C([0,T ];H2α) ≤ θ ‖u− v‖C([0,T ];H2α) for every u, v ∈ E.

The contraction mapping theorem then implies the existence of a unique solution
u ∈ E. �

This result can be extended and improved in many directions. In particular, if
A is the negative Laplacian acting in Lp(Rn),

A : W 2,p(Rn) ⊂ Lp(Rn) → Lp(Rn), A = −∆.

then one can prove that −A is the generator of a strongly continuous semigroup on
Lp for every 1 < p < ∞. Moreover, we can define fractional powers of A

Aα : D(Aα) ⊂ Lp(Rn) → Lp(Rn).

If we choose 2p > n and n/2p < α < 1, then Sobolev embedding implies that
D(Aα) →֒ C0 and the same argument as the one above applies. This gives the
existence of local mild solutions with values in D(Aα) in any number of space
dimensions. The proof of the necessary estimates and embedding theorems is more
involved that the proofs above if p 6= 2, since we cannot use the Fourier transform
to obtain out explicit solutions.

More generally, this local existence proof extends to evolution equations of the
form ([41], §15.1)

ut +Au = F (u),

where we look for mild solutions u ∈ C([0, T ];X) taking values in a Banach space
X and there is a second Banach spaces Y such that:

(1) e−tA : X → X is a strongly continuous semigroup for t ≥ 0;
(2) F : X → Y is locally Lipschitz continuous;
(3) e−tA : Y → X for t > 0 and for some α < 1

∥∥e−tA
∥∥
L(X,Y )

≤ C

tα
for 0 < t ≤ T .

In the above example, we used X = H2α and Y = L2. If A is a sectorial operator
that generates an analytic semigroup on Y , then one can define fractional powersAα

of A, and the semigroup {e−tA} satisfies the above properties with X = D(Aα) for
0 ≤ α < 1 [36]. Thus, one gets a local existence result provided that F : D(Aα) →
L2 is locally Lipschitz, with an existence-time that depends on the X-norm of the
initial data.

In general, the X-norm of the solution may blow up in finite time, and one gets
only a local solution. If, however, one has an a priori estimate for ‖u(t)‖X that is
global in time, then global existence follows from the local existence result.
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5.6. The nonlinear Schrödinger equation

The nonlinear Schrödinger (NLS) equation is

(5.43) iut = −∆u− λ|u|αu

where λ ∈ R and α > 0 are constants. In many applications, such as the asymptotic
description of weakly nonlinear dispersive waves, we get α = 2, leading to the
cubically nonlinear NLS equation.

A physical interpretation of (5.43) is that it describes the motion of a quantum
mechanical particle in a potential V = −λ|u|α which depends on the probability
density |u|2 of the particle c.f. (5.14). If λ 6= 0, we can normalize λ = ±1 so the
magnitude of λ is not important; the sign of λ is, however, crucial.

If λ > 0, then the potential becomes large and negative when |u|2 becomes
large, so the particle ‘digs’ its own potential well; this tends to trap the particle
and further concentrate is probability density, possibly leading to the formation of
singularities in finite time if n ≥ 2 and α ≥ 4/n. The resulting equation is called
the focusing NLS equation.

If λ < 0, then the potential becomes large and positive when |u|2 becomes
large; this has a repulsive effect and tends to make the probability density spread
out. The resulting equation is called the defocusing NLS equation. The local L2-
existence result that we obtain here for subcritical nonlinearities 0 < α < 4/n is,
however, not sensitive to the sign of λ.

The one-dimensional cubic NLS equation

iut + uxx + λ|u|2u = 0

is completely integrable. If λ > 0, this equation has localized traveling wave so-
lutions called solitons in which the effects of nonlinear self-focusing balance the
tendency of linear dispersion to spread out the the wave. Moreover, these solitons
preserve their identity under nonlinear interactions with other solitons. Such lo-
calized solutions exist for the focusing NLS equation in higher dimensions, but the
NLS equation is not integrable if n ≥ 2, and in that case the soliton solutions are
not preserved under nonlinear interactions.

In this section, we obtain an existence result for the NLS equation. The linear
Schrödinger equation group is not smoothing, so we cannot use it to compensate for
the nonlinearity at a fixed time as we did in Section 5.5 for the semilinear equation.
Instead, we use some rather delicate space-time estimates for the linear Schrödinger
equation, called Strichartz estimates, to recover the powers lost by the nonlinearity.
We derive these estimates first.

5.6.1. Strichartz estimates. The Strichartz estimates for the Schrödinger
equation (5.13) may be derived by use of the interpolation estimate in Theorem 5.16
and the Hardy-Littlewood-Sobolev inequality in Theorem 5.77. The space-time
norm in the Strichartz estimate is Lq(R) in time and Lr(Rn) in space for suitable
exponents (q, r), which we call an admissible pair.

Definition 5.52. The pair of exponents (q, r) is an admissible pair if

(5.44)
2

q
=

n

2
− n

r
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where 2 < q < ∞ and

(5.45) 2 < r <
2n

n− 2
if n ≥ 3

or 2 < r < ∞ if n = 1, 2.

The Strichartz estimates continue to hold for some endpoints with q = 2 or
q = ∞, but we will not consider these cases here.

Theorem 5.53. Suppose that {T(t) : t ∈ R} is the unitary group of solution
operators of the Schrödinger equation on Rn defined in (5.22) and (q, r) is an
admissible pair as in Definition 5.52.

(1) For f ∈ L2(Rn), let u(t) = T(t)f . Then u ∈ Lq (R;Lr), and there is a
constant C(n, r) such that

(5.46) ‖u‖Lq(R;Lr) ≤ C‖f‖L2.

(2) For g ∈ Lq′(R;Lr′), let

v(t) =

∫ ∞

−∞

T(t− s)g(s) ds.

Then v ∈ Lq′(R;Lr′)∩C(R;L2) and there is a constant C(n, r) such that

‖v‖L∞(R;L2) ≤ C ‖g‖Lq′ (R;Lr′) ,(5.47)

‖v‖Lq(R;Lr) ≤ C ‖g‖Lq′ (R;Lr′) .(5.48)

Proof. By a density argument, it is sufficient to prove the result for smooth
functions. We therefore assume that g ∈ C∞

c (R;S) is a smooth Schwartz-valued
function with compact support in time and f ∈ S. We prove the inequalities in
reverse order.

Using the interpolation estimate Theorem 5.16, we have for 2 < r < ∞ that

‖v(t)‖Lr ≤
∫ ∞

−∞

‖g(s)‖Lr′

(4π|t− s|)n(1/2−1/r)
ds.

If r is admissible, then 0 < n(1/2 − 1/r) < 1. Thus, taking the Lq-norm of this
inequality with respect to t and using the Hardy-Littlewood-Sobolev inequality
(Theorem 5.77) in the result, we find that

‖v‖Lq(R;Lr) ≤ C ‖g‖Lp(R;Lr′)

where p is given by
1

p
= 1 +

1

q
+

n

r
− n

2
.

If q, r satisfy (5.44), then p = q′, and we get (5.48).
Using Fubini’s theorem and the unitary group property of T(t), we have

(v(t), v(t))L2(Rn) =

∫ ∞

−∞

∫ ∞

−∞

(T(t− r)g(r),T(t − s)g(s))L2(Rn) drds

=

∫ ∞

−∞

∫ ∞

−∞

(T(s− r)g(r), g(s))L2(Rn) drds

=

∫ ∞

−∞

(v(s), g(s))L2(Rn) ds.
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Using Hölder’s inequality and (5.48) in this equation, we get

‖v(t)‖2L2(Rn) ≤ ‖v‖Lq(R;Lr) ‖g‖Lq′ (R;Lr′) ≤ C ‖g‖2Lq′ (R;Lr′ ) .

Taking the supremum of this inequality over t ∈ R, we obtain (5.47). In fact, since

v(t) = T(t)

∫ ∞

−∞

T(−s)g(s) ds

v ∈ C(R;L2) is an L2-solution of the homogeneous Schrödinger equation and
‖v(t)‖L2(Rn) is independent of t.

If f ∈ S, u(t) = T(t)f , and g ∈ C∞
c (R;S), then using (5.48) we get

∫ ∞

−∞

(u(t), g(t))L2 dt =

∫ ∞

−∞

(T(t)f, g(t))L2 dt

=

(
f,

∫ ∞

−∞

T(−t)g(t) dt

)

L2

≤ ‖f‖L2

∥∥∥∥
∫ ∞

−∞

T(−t)g(t) dt

∥∥∥∥
L2

≤ C ‖f‖L2 ‖g‖Lq′ (R;Lr′ ) .

It then follows by duality and density that

‖u‖Lq(R;Lr) = sup
g∈C∞

c (R;S)

∫∞

−∞ (u(t), g(t))L2 dt

‖g‖Lq′ (R;Lr′)

≤ C ‖f‖L2 ,

which proves (5.46). �

This estimate describes a dispersive smoothing effect of the Schrödinger equa-
tion. For example, the Lr-spatial norm of the solution may blow up at some time,
but it must be finite almost everywhere in t. Intuitively, this is because if the
Fourier modes of the solution are sufficiently in phase at some point in space and
time that they combine to form a singularity, then dispersion pulls them apart at
later times.

Although the above proof of the Schrödinger equation Strichartz estimates is
elementary, in the sense that given the interpolation estimate for the Schrödinger
equation and the one-dimensional Hardy-Littlewood-Sobolev inequality it uses only
Hölder’s inequality, it does not explicitly clarify the role of dispersion (beyond the
dispersive decay of solutions in time). An alternative point of view is in terms of
restriction theorems for the Fourier transform.

The Fourier solution of the Schrödinger equation (5.13) is

u(x, t) =

∫

Rn

f̂(k)eik·x+i|k|2t dk.

Thus, the space-time Fourier transform û(k, τ) of u(x, t),

û(k, τ) =
1

(2π)n+1

∫
u(x, t)eik·x+iτt dxdt,

is a measure supported on the paraboloid τ + |k|2 = 0. This surface has non-
singular curvature, which is a geometrical expression of the dispersive nature of the
Schrödinger equation. The Strichartz estimates describe a boundedness property
of the restriction of the Fourier transform to curved surfaces.
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As an illustration of this phenomenon, we state the Tomas-Stein theorem on
the restriction of the Fourier transform in Rn+1 to the unit sphere Sn.

Theorem 5.54. Suppose that f ∈ Lp(Rn+1) with

1 ≤ p ≤ 2n+ 4

n+ 4

and let ĝ = f̂
∣∣∣
Sn
. Then there is a constant C(p, n) such that

‖ĝ‖L2(Sn) ≤ C ‖f‖Lp(Rn+1) .

5.6.2. Local L2-solutions. In this section, we use the Strichartz estimates
for the linear Schrödinger equation to obtain a local existence result for solutions
of the nonlinear Schrödinger equation with initial data in L2.

If X is a Banach space and T > 0, we say that u ∈ C([0, T ];X) is a mild
X-valued solution of (5.43) if it satisfies the Duhamel-type integral equation

(5.49) u = T(t)f + iλ

∫ t

0

T(t− s) {|u|α(s)u(s)} ds for t ∈ [0, T ]

where T(t) = eit∆ is the solution operator of the linear Schrödinger equation defined
by (5.22). If a solution of (5.49) has sufficient regularity then it is also a solution of
(5.43), but here we simply take (5.49) as our definition of a solution. We suppose
that t ≥ 0 for definiteness; the same arguments apply for t ≤ 0.

Before stating an existence theorem, we explain the idea of the proof, which
is based on the contraction mapping theorem. We write (5.49) as a fixed-point
equation

u = Φ(u) Φ(u)(t) = T(t)f + iλΨ(u)(t),(5.50)

Ψ(u)(t) =

∫ t

0

T(t− s) {|u|α(s)u(s)} ds.(5.51)

We want to find a Banach space E of functions u : [0, T ] → Lr and a closed ball
B ⊂ E such that Φ : B → B is a contraction mapping when T > 0 is sufficiently
small.

As discussed in Section 5.4.3, the Schrödinger operators T(t) form a strongly
continuous group on Lp only if p = 2. Thus if f ∈ L2, then

Φ : C
(
[0, T ];L2/(α+1)

)
→ C

(
[0, T ];L2

)
,

but Φ does not map the space C ([0, T ];Lr) into itself for any exponent 1 ≤ r ≤ ∞.
If α is not too large, however, there are exponents q, r such that

(5.52) Φ : Lq (0, T ;Lr) → Lq (0, T ;Lr) .

This happens because, as shown by the Strichartz estimates, the linear solution
operator T can regain the space-time regularity lost by the nonlinearity. (For a
brief discussion of vector-valued Lp-spaces, see Section 6.A.)

To determine values of q, r for which (5.52) holds, we write

Lq (0, T ;Lr) = Lq
tL

r
x

for short, and consider the action of Φ defined in (5.50)–(5.51) on such a space.
First, consider the term Tf in (5.50) which is independent of u. Theorem 5.53

implies that Tf ∈ Lq
tL

r
x if f ∈ L2 for any admissible pair (q, r).
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Second, consider the nonlinear term Ψ(u) in (5.51). We have

‖ |u|αu ‖Lq

tL
r
x
=

[∫ T

0

(∫

Rn

|u|r(α+1) dx

)q/r

dt

]1/q

=

[∫ T

0

(∫

Rn

|u|r(α+1) dx

)q(α+1)/r(α+1)

dt

](α+1)/q(α+1)

= ‖u‖α+1

L
q(α+1)
t L

r(α+1)
x

.

Thus, if u ∈ Lq1
t Lr1

x then |u|αu ∈ L
q′2
t L

r′2
x where

(5.53) q1 = q′2(α+ 1), r1 = r′2(α+ 1).

If (q2, r2) is an admissible pair, then the Strichartz estimate (5.48) implies that

Ψ(u) ∈ Lq2
t Lr2

x .

In order to ensure that Ψ preserves the Lr
x-norm of u, we need to choose r = r1 = r2,

which implies that r = r′(α+ 1), or

(5.54) r = α+ 2.

If r is given by (5.54), then it follows from Definition 5.52 that

(q2, r2) = (q, α+ 2)

is an admissible pair if

(5.55) q =
4(α+ 2)

nα

and 0 < α < 4/(n− 2), or 0 < α < ∞ if n = 1, 2. In that case, we have

Ψ : Lq1
t Lα+2

x → Lq
tL

α+2
x

where

(5.56) q1 = q′(α+ 1).

In order for Ψ to map Lq
tL

α+2
x into itself, we need Lq1

t ⊃ Lq
t or q1 ≤ q. This

condition holds if α + 2 ≤ q or α ≤ 4/n. In order to prove that Φ is a contraction
we will interpolate in time from Lq1

t to Lq
t , which requires that q1 < q or α < 4/n.

A similar existence result holds in the critical case α = 4/n but the proof requires
a more refined argument which we do not describe here.

Thus according to this discussion,

Φ : Lq
tL

α+2
x → Lq

tL
α+2
x

if q is given by (5.55) and 0 < α < 4/n. This motivates the hypotheses in the
following theorem.

Theorem 5.55. Suppose that 0 < α < 4/n and

q =
4(α+ 2)

nα
.

For every f ∈ L2(Rn), there exists

T = T (‖f‖L2, n, α, λ) > 0
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and a unique solution u of (5.49) with

u ∈ C
(
[0, T ];L2(Rn)

)
∩ Lq

(
0, T ;Lα+2(Rn)

)
.

Moreover, the solution map f 7→ u is locally Lipschitz continuous.

Proof. For T > 0, let E be the Banach space

E = C
(
[0, T ];L2

)
∩ Lq

(
0, T ;Lα+2

)

with norm

(5.57) ‖u‖E = max
[0,T ]

‖u(t)‖L2 +

(∫ T

0

‖u(t)‖qLα+2 dt

)1/q

and let Φ be the map in (5.50)–(5.51). We claim that Φ(u) is well-defined for u ∈ E
and Φ : E → E.

The preceding discussion shows that Φ(u) ∈ Lq
tL

α+2
x if u ∈ Lq

tL
α+2
x . Writing

CtL
2
x = C

(
[0, T ];L2

)
, we see that T(·)f ∈ CtL

2
x since f ∈ L2 and T is a strongly

continuous group on L2. Moreover, (5.47) implies that Ψ(u) ∈ CtL
2
x since Ψ(u)

is the uniform limit of smooth functions Ψ(uk) such that uk → u in Lq
tL

α+2
x c.f.

(5.71). Thus, Φ : E → E.
Next, we estimate ‖Φ(u)‖E and show that there exist positive numbers

T = T (‖f‖L2, n, α, λ) , a = a (‖f‖L2, n, α)

such that Φ maps the ball

(5.58) B = {u ∈ E : ‖u‖E ≤ a}

into itself.
First, we estimate ‖Tf‖E. Since T is a unitary group, we have

(5.59) ‖Tf‖CtL2
x
= ‖f‖L2

while the Strichartz estimate (5.46) implies that

(5.60) ‖Tf‖Lq

tL
α+2
x

≤ C‖f‖L2.

Thus, there is a constant C = C(n, α) such that

(5.61) ‖Tf‖E ≤ C‖f‖L2.

In the rest of the proof, we use C to denote a generic constant depending on n and
α.

Second, we estimate ‖Ψ(u)‖E where Ψ is given by (5.51). The Strichartz esti-
mate (5.47) gives

‖Ψ(u)‖CtL2
x
≤ C‖ |u|α+1 ‖

Lq′

t L
(α+2)′
x

≤ C‖u‖α+1

L
q′(α+1)
t L

(α+2)′(α+1)
x

≤ C‖u‖α+1

L
q1
t Lα+2

x

(5.62)
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where q1 is given by (5.56). If φ ∈ Lp(0, T ) and 1 ≤ p ≤ q, then Hölder’s inequality
with r = q/p ≥ 1 gives

‖φ‖Lp(0,T ) =

(∫ T

0

1 · |φ(t)|p dt
)1/p

≤



(∫ T

0

1r
′

dt

)1/r′ (∫ T

0

|φ(t)|pr dt
)1/r



1/p

≤ T 1/p−1/q‖φ‖Lq(0,T ).

(5.63)

Using this inequality with p = q1 in (5.62), we get

(5.64) ‖Ψ(u)‖CtL2
x
≤ CT θ‖u‖α+1

Lq

tL
α+2
x

where θ = (α+ 1)(1/q1 − 1/q) > 0 is given by

(5.65) θ = 1− nα

4
.

We estimate ‖Ψ(u)‖Lq

tL
α+2
x

in a similar way. The Strichartz estimate (5.48)

and the Hölder estimate (5.63) imply that

(5.66) ‖Ψ(u)‖Lq

tL
α+2
x

≤ C‖u‖α+1

L
q1
t Lα+2

x

≤ CT θ‖u‖α+1

Lq

tL
α+2
x

.

Thus, from (5.64) and (5.66), we have

(5.67) ‖Ψ(u)‖E ≤ CT θ‖u‖α+1

Lq

tL
α+2
x

.

Using (5.61) and (5.67), we find that there is a constant C = C(n, α) such that

(5.68) ‖Φ(u)‖E ≤ ‖Tf‖E + |λ| ‖Ψ(u)‖E ≤ C‖f‖L2 + C|λ|T θ‖u‖α+1

Lq

tL
α+2
x

for all u ∈ E. We choose positive constants a, T such that

a ≥ 2C‖f‖L2, 0 < 2C|λ|T θaα ≤ 1.

Then (5.68) implies that Φ : B → B where B ⊂ E is the ball (5.58).
Next, we show that Φ is a contraction on B. From (5.50) we have

(5.69) Φ(u)− Φ(v) = iλ [Ψ(u)−Ψ(v)] .

Using the Strichartz estimates (5.47)–(5.48) in (5.51) as before, we get

(5.70) ‖Ψ(u)−Ψ(v)‖E ≤ C ‖ |u|αu− |v|αv ‖
Lq′

t L
(α+2)′

x

.

For any α > 0 there is a constant C(α) such that

| |w|αw − |z|αz | ≤ C (|w|α + |z|α) |w − z| for all w, z ∈ C.

Using the identity

(α + 2)′ =
α+ 2

α+ 1
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and Hölder’s inequality with r = α+ 1, r′ = (α + 1)/α, we get that

‖ |u|αu− |v|αv ‖
L

(α+2)′

x

=

(∫
| |u|αu− |v|αv |(α+2)′

dx

)1/(α+2)′

≤ C

(∫
(|u|α + |v|α)(α+2)′ |u− v|(α+2)′

dx

)1/(α+2)′

≤ C

(∫
(|u|α + |v|α)r

′(α+2)′
dx

)1/r′(α+2)′

(∫
|u− v|r(α+2)′

dx

)1/r(α+2)′

≤ C
(
‖u‖αLα+2

x
+ ‖v‖αLα+2

x

)
‖u− v‖Lα+2

x

We use this inequality in (5.70) followed by Hölder’s inequality in time to get

‖Ψ(u)−Ψ(v)‖E ≤ C

(∫ T

0

[
‖u‖αLα+2

x
+ ‖v‖αLα+2

x

]q′
‖u− v‖q

′

Lα+2
x

dt

)1/q′

≤ C

(∫ T

0

[
‖u‖αLα+2

x
+ ‖v‖αLα+2

x

]p′q′

dt

)1/p′q′

(∫ T

0

‖u− v‖pq
′

Lα+2
x

dt

)1/pq′

.

Taking p = q/q′ > 1 we get

‖Ψ(u)−Ψ(v)‖E ≤ C

(∫ T

0

[
‖u(t)‖αp

′q′

Lα+2
x

+ ‖v(t)‖αp
′q′

Lα+2
x

]
dt

)1/pq′

‖u− v‖Lq

tL
α+2
x

.

Interpolating in time as in (5.63), we have

∫ T

0

‖u(t)‖αp
′q′

Lα+2
x

dt ≤
(∫ T

0

1αp
′q′r′ dt

)1/r′ (∫ T

0

‖u(t)‖αp
′q′r

Lα+2
x

dt

)1/r

and taking αp′q′r = q, which implies that 1/p′q′r′ = θ where θ is given by (5.65),
we get

(∫ T

0

‖u(t)‖αp
′q′

Lα+2
x

dt

)1/r

≤ T θ ‖u− v‖Lq

tL
α+2
x

.

It therefore follows that

(5.71) ‖Ψ(u)−Ψ(v)‖E ≤ CT θ
(
‖u‖αLq

tL
α+2
x

+ ‖v‖αLq

tL
α+2
x

)
‖u− v‖Lq

tL
α+2
x

.

Using this result in (5.69), we get

‖Φ(u)− Φ(v)‖E ≤ C|λ|T θ (‖u‖αE + ‖v‖αE) ‖u− v‖E .

Thus if u, v ∈ B,

‖Φ(u)− Φ(v)‖E ≤ 2C|λ|T θaα ‖u− v‖E .
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Choosing T > 0 such that 2C|λ|T θaα < 1, we get that Φ : B → B is a contraction,
so it has a unique fixed point in B. Since we can choose the radius a of B as large
as we wish by taking T small enough, the solution is unique in E.

The Lipshitz continuity of the solution map follows from the contraction map-
ping theorem. If Φf denotes the map in (5.50), Φf1 ,Φf2 : B → B are contractions,
and u1, u2 are the fixed points of Φf1 , Φf2 , then

‖u1 − u2‖E ≤ C ‖f1 − f2‖L2 +K ‖u1 − u2‖E
where K < 1. Thus

‖u1 − u2‖E ≤ C

1−K
‖f1 − f2‖L2 .

�

This local existence theorem implies the global existence of L2-solutions for
subcritical nonlinearities 0 < α < 4/n because the existence time depends only the
L2-norm of the initial data and one can show that the L2-norm of the solution is
constant in time.

For more about the extensive theory of the nonlinear Schrödinger equation and
other nonlinear dispersive PDEs see, for example, [6, 29, 39, 40].




	Chapter 5. The Heat and Schrödinger Equations
	5.1. The initial value problem for the heat equation
	5.2. Generalized solutions
	5.3. The Schrödinger equation
	5.4. Semigroups and groups 
	5.5. A semilinear heat equation
	5.6. The nonlinear Schrödinger equation


