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Abstract

We show that amalgamation of Heegaard splittings is unique.

The notion of amalgamation of Heegaard splittings has been used implicitly for at
least 15 years, but was first formalized by the author in [6]. Recently, the question as
to whether or not amalgamation of Heegaard splittings is unique has received closer
scrutiny. This note is an elaboration of [6, Proposition 2.8]. In particular, we establish
the uniqueness of amalgamations of Heegaard splittings.

For standard definitions and results pertaining to 3-manifolds, see [2] or [3].

Definition 1. A compression body is a 3-manifold W obtained from a closed ori-
entable surface S by attaching 2-handles to S × {0} ⊂ S × I and capping off any
resulting 2-sphere boundary components with 3-handles. We denote S × {1} by ∂+W
and ∂W − ∂+W by ∂−W . Dually, a compression body is an orientable 3-manifold
obtained from a closed orientable surface ∂−W × I or a 3− ball or a union of the two
by attaching 1-handles.

In the case where ∂−W = ∅, we also call W a handlebody.

Definition 2. A set of defining disks for a compression body W is a set of disks
{D1, . . . , Dn} properly embedded in W with ∂Di ⊂ ∂+W for i = 1, . . . , n such that
the result of cutting W along D1 ∪ · · · ∪Dn is homeomorphic to ∂−W × I or a 3-ball
in the case that W is a handlebody.

Definition 3. A Heegaard splitting of a 3-manifold M is a pair (V, W ) in which V , W
are compression bodies and such that M = V ∪ W and V ∩ W = ∂+V = ∂+W = S.
We call S the splitting surface or Heegaard surface. Two Heegaard splittings are
considered equivalent if their splitting surfaces are isotopic.

The definition of amalgamation is a lengthy one. It was formally introduced by
the author in [6], though it had been used implicitly by Casson, Gordon, Boileau,
Otal and others. See for instance [1]. The general idea is as follows: A pair of 3-
manifolds M1, M2 each with a Heegaard splitting are identified along components of
their boundary. This results in a 3-manifold M . The Heegaard splittings of M1, M2

are used to construct a Heegaard splitting of M called the amalgamation of the two
Heegaard splittings. One assumes that in each of M1, M2 the boundary components
along which the gluing occurs are contained in a single compression body. Roughly
speaking, the collars of the boundary components lying in this compression body are
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discarded and the remnants of the two compression bodies in M1 − collars identified
to the remnants of the two compression bodies in M2−collars. This is done in such a
way that the 1-handles that are attached to the collar on such a boundary component
in M1 become attached to the compression body in M2 that does not meet any of
the boundary components along which the gluing takes place and vice versa. For a
formal definition see below.

Definition 4. Let M1, M2 be 3-manifolds with R a closed subsurface of ∂M1 and S
a closed subsurface of ∂M2. Suppose that R is homeomorphic to S via a homeomor-
phism h. Let (X1, Y1), (X2, Y2) be Heegaard splittings of M1, M2. Choose N(R) ⊂
X1, N(S) ⊂ X2 such that this inclusion has the property that for some R′ ⊂ ∂M1\R
and S ′ ⊂ ∂M2\S, X1 = N(R∪R′)∪(1−handles) and X2 = N(S∪S ′)∪(1−handles).
To keep track of our choices, we denote the particular choice of N(R) by Nr and the
particular choice of N(S) by Ns. Here Nr is homeomorphic to R × I via a homeo-
morphism f and Ns is homeomorphic to S × I via a homeomorphism g. Let ∼ be the
equivalence relation on M1 ∪ M2 generated by

(1) x ∼ y if x, y ǫ η(R) and p1 · f(x) = p1 · f(y),

(2) x ∼ y if x, y ǫ η(S) and p1 · g(x) = p1 · g(y),

(3) x ∼ y if x ǫ R, y ǫ S and h(x) = y,

where p1 is projection onto the first coordinate. Perform isotopies so that for D
an attaching disk for a 1-handle in X1, D

′ an attaching disk for a 1-handle in X2,
[D]∩ [D′] = ∅. Set M = (M1 ∪M2)/ ∼, X = (X1∪Y2)/ ∼, and Y = (Y1∪X2)/ ∼. In
particular, (Nr ∪Ns/ ∼) ∼= R, S. Then X = Y2 ∪N(R′)∪ (1−handles), where the 1-
handles are attached to ∂+Y2 and connect ∂N(R′) to ∂+Y2. Hence X is a compression
body. Analogously, Y is a compression body. So (X, Y ) is a Heegaard splitting of M .
The splitting (X, Y ) is called the amalgamation of (X1, Y1) and (X2, Y2) along R, S
via h.

Proposition 1. Let (X1, Y1) and (X2, Y2) be Heegaard splittings of M1 and M2 re-
spectively. Furthermore, let R, S be closed surfaces with R ⊂ ∂−X1 ⊂ ∂M1 and
S ⊂ ∂−X2 ⊂ ∂M2 and let h : R → S be a homeomorphism. Then the amalgamation
of (X1, Y1) and (X2, Y2) along R, S via h is well defined.

Proof: For the purposes of this proof, we must consider the decompositions (X1, Y1)
and (X2, Y2) to be rigid decompositions (rather than being defined, merely, up to
isotopy). Then, given these (rigid) Heegaard splittings (X1, Y1) and (X2, Y2) of M1

and M2 respectively, we choose (rigid) regular neighborhoods N(R), N(S). Indeed,
any two choices of regular neighborhoods of R, S are isotopic by the isotopy uniqueness
of regular neighborhoods. (See [5].) But different (rigid) choices determine different
sets of attaching disks. In the end, we need to establish that these (rigid) choices do
not affect the outcome of the amalgamation (up to isotopy).

Denote a choice of regular neighborhood of R by Nr and the attaching disks for Nr

in X1 by Dr. Denote a choice of regular neighborhood of S by Ns and the attaching
disks for Ns in X2 by Ds. Our choices of regular neighborhood determine product
structures. Denote the boundary component of Nr that contains the attaching disks
Dr, i.e., the frontier of Nr, by ∂1Nr and the frontier of Ns by by ∂1Ns.
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A small isotopy ensures that near ∂1Nr, (M1\Nr)∩X1 is a product Dr × I (in an
extension of the product structure defined by the regular neighborhood Nr). Likewise,
a small isotopy ensures that near ∂1N

′

r
, (M1\N

′

r
) ∩ X ′

1 is a product D′

r
× I (in an

extension of the product structure defined by the regular neighborhood N ′

r
). Likewise,

a small isotopy ensures that near ∂1Ns, (M2\Ns) ∩ X2 is a product Ds × I (in an
extension of the product structure defined by the regular neighborhood Ns). Because
they occur outside of Nr, N

′

r
and Ns, these small isotopies can also be performed after

amalgamation, hence they do not affect the result of the amalgamation.

Our first task is to show that there is a choice of regular neighborhood Ñr of
R with a single attaching disk per component of R, S and such that the result of
amalgamation with choices Nr, Ns is isotopic to the result of amalgamation with
choices Ñr, Ns.

D
~

rD

Figure 1: Schematic rendition of D̃ after first isotopy

Consider a component of ∂1Nr and all components of Dr lying therein. Choose a
circle c in this component of ∂1Nr that bounds a disk D̃ (in this component of ∂1Nr)
that contains all said components of Dr. Furthermore, choose c so that [D̃]∩ [D′] = ∅
for all components D′ of Ds and the equivalence relation given in the definition of
amalgamation. Alter D̃ by a small isotopy that pushes the interior of D̃ into the
interior of Nr. Abusing notation slightly, we continue to denote the disk resulting
from this isotopy by D̃. See Figure 1.

D
~

Figure 2: Schematic rendition of D̃ after second isotopy
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Now consider an isotopy of D̃ that reverses the aforementioned isotopy, but that
also isotopes the portion of X1 lying above D̃ upwards. See Figure 2. We may assume
that this isotopy is constant outside of a small neighborhood of D̃. We denote this
isotopy by L.

Cutting X1 along D̃ defines a new regular neighborhood of R. We denote the
resulting regular neighborhood of R by Ñr.

Claim 1: The result of amalgamation with choices Nr, Ns is isotopic to the result of
amalgamation with choices Ñr, Ns.

Figure 3: Schematic rendition before amalgamation

Figure 4: Schematic rendition after amalgamation with choices Nr, Ns

Figure 5: Result of the isotopy L
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Since [D̃] ∩ [D′] = ∅ for all components D′ of D′

s
, a copy of D̃ (after the first

isotopy) survives the amalgamation with choices Nr, Ns. See Figures 3 and 4.

Thus we may apply the isotopy L to obtain the result of amalgamation with
choices Ñr, Ns. See Figure 5. This proves Claim 1. //

A symmetric argument shows that given any choices of regular neighborhoods
Nr, Ns of R, S, there are choices Ñr, Ñs of R, S, the latter each with a single attaching
disk per component, such that the result of amalgamation with choices Nr, Ns is
isotopic to the result of amalgamation with choices Ñr, Ñs.

Claim 2: Suppose that (X1, Y1), (X
′

1, Y
′

1) are isotopic (rigid) Heegaard splittings of M1

with given choices of regular neighborhoods Nr ⊂ X1, N ′

r
⊂ X ′

1. Further suppose that
(X2, Y2) is a (rigid) Heegaard splitting of M2 with given choice of regular neighborhood
Ns ⊂ X2. Then the result of amalgation of (X1, Y1) and (X2, Y2) is isotopic to the
result of amalgamation of (X ′

1, Y
′

1) and (X2, Y2).

For ease of exposition, we will assume, as we may, that for each component of the
regular neighborhoods of Nr, N

′

r
and Ns, there is only one attaching disk. Choose a

component of Nr and denote it by (Nr)c. Denote the corresponding component of N ′

r

by (N ′

r
)c and that of Ns by (Ns)c. Furthermore, denote the attaching disks for these

components by Dr, D
′

r
and Ds, respectively. A regular neighborhood of M1 in M

intersects the amalgamations of the above Heegaard splittings in (Nr\(Ds × I), Y1 ∪
(Ds × I)) and (N ′

r
\(Ds × I), Y ′

1 ∪ (Ds × I)), respectively. See Figures 6 and 7.

Figure 6: The amalgamation of (X1, Y1) with (X2, Y2)

Figure 7: The amalgamation of (X1, Y1) with (X2, Y2) after the isotopies

Here M contains a copy of M1\Nr, a shrunk version of M1, that we denote by M̂1.
By construction, M̂1 is homeomorphic to the copy of M1\N

′

r
contained in M . Hence
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we also denote the latter by M̂1. In M1, Y1 is isotopic to Y ′

1 . To establish Claim 2, it
suffices to show that in the regular neighborhood of M̂1 in M , Y1∪ (Ds×I) is isotopic
to Y ′

1 ∪ (Ds × I). To this end, note that Dr, D
′

r
and Ds are regular neighborhoods of

points r, r′ and s, respectively. Thus Dr, D
′

r
and Ds can be shrunk arbitrarily small via

isotopies. These isotopies can be performed either before or after the amalgamations
and hence do not affect the outcome of the amalgamations.

The regular neighborhood of M̂1 in M contains a collar lying in M\M̂1. We
take the product structure on this collar determined by an extension of the product
structure on Ns. Denote a vertical arc in this collar with endpoint s by α. An isotopy
taking Y1 to Y ′

1 may move s. Extend the isotopy of Y1 over η(α) in such a way that
the other endpoint of α is fixed. At the end of this isotopy, α is an arc in the collar
with endpoints on opposite ends of the collar and can hence be isotoped to be vertical
and thus to coincide with the original α. By transversality, r and s remain disjoint
during these isotopies, hence so do Dr and Ds.

Figure 8: The arc α before the isotopy

Figure 9: The arc α after the first isotopy

Figure 10: The arc α after the second isotopy

Amalgamating the resulting (rigid) Heegaard splittings at each stage of these
two isotopies provides an isotopy between the result of amalgamating (X1, Y1) with
(X2, Y2) and the result of amalgamating (X ′

1, Y
′

1) with (X2, Y2). This proves Claim 2.
//

The proposition now follows from a symmetric argument for M2.
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