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HEEGAARD SPLITTINGS OF SEIFERT FIBERED SPACES
WITH BOUNDARY

JENNIFER SCHULTENS

ABSTRACT. We give the classification theorem for Heegaard splittings of fiber-
wise orientable Seifert fibered spaces with nonempty boundary. A thin position
argument yields a reducibility result which, by induction, shows that all Hee-
gaard splittings of such manifolds are vertical in the sense of Lustig-Moriah.
Algebraic arguments allow a classification of the vertical Heegaard splittings.

l. INTRODUCTION

Seifert manifolds were the first 3-manifolds known to possess distinct Hee-
gaard splittings. In [8] Moriah and later in [1] Boileau, Collins and Zieschang
described distinct Heegaard splittings of Seifert manifolds which fiber over S2
and possess three exceptional fibers. In particular, they described two struc-
turally different types of Heegaard splittings for these manifolds: vertical Hee-
gaard splittings and horizontal Heegaard splittings. We here extend the notion
of a vertical Heegaard splitting to arbitrary Seifert manifolds and prove the
following:

Theorem 4.2. An irreducible Heegaard splitting of a fiberwise orientable Seifert
manifold with nonempty boundary is vertical.

In most cases, Theorem 4.2 establishes the complete classification of Hee-
gaard splittings for the manifolds in question. Since their vertical Heegaard
splittings may be classified using work of Lustig [6] and of Lustig-Moriah [7].

Theorem 5.1. Let M be a fiberwise orientable Seifert fibered space with non-

empty boundary and with Seifert invariants {g,e; ar, Bi,...,ax, Bi}. Let
B={i| B # £ (mod «,); i = 1, ..., k}. Then the two vertical Hee-
gaard splittings F(i\, ..., in; j1,...,j1) and F(Cy, ..., s j1s .., ji) are
isotopic if and only if BN {iy, ..., ix}=B0O{L, ..., L),

We review definitions of compression bodies and Heegaard splittings (cf.

(ry.

Definitions. For M a manifold, denote the boundary of M by M. For S a
submanifold of A, denote a closed regular neighborhood of S in M by N(S)
and denote an open regular neighborhood of S in M by #5(S).
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A compression body W is a 3-manifold which may be constructed by adding 2-
handles to a (surface) x I along a collection of disjoint simple closed curves on
(surface) x {0}, and capping off any resulting 2-sphere boundary components
with 3-balls. The component (surface) x {1} of OW is denoted by 9, W and
the surface 9W — 9, W , which may or may not be connected, is denoted by
O_W  If O_W =, then W isa handlebody. 1f W =3, W x I, W is called
a trivial compression body.

A Heegaard splitting of M is a pair (W1, W) of compression bodies, such
that M = Wi UW; and W, N W, = 0. W, =3, W, = F, for some connected
closed orientable surface F . This F is called the splitting surface of (W], W) .
Two Heegaard splittings of M are considered equivalent, if their splitting sur-
faces are isotopic. A Heegaard splitting is reducible if there exists an essen-
tial simple closed curve ¢ ¢ F that bounds embedded disks in both W, and
W, . A Heegaard splitting is irreducible if it is not reducible, A stabilization
of (W, W,) is a Heegaard splitting which is obtained by taking the connected
sum of pairs of (M?, W) and a finite number of (53, T) summands, where
T is the standard unknotted torus in S3. Note that a Heegaard splitting of an
irreducible manifold is reducible if and only if it is a stabilization [3, Haken’s
theorem).

By Epstein’s Theorem, a Seifert fibered space is a compact 3-manifold that
admits a foliation into circles. We call this foliation a Seifert fibration and we
call the leaves of the foliation the fibers of the Seifert fibration. If we identify
each fiber to a point, we obtain a surface P, called the base of the Seifert
fibration. Note that in general, the natural projection map p: M — P does not
define a fiber bundle in the usual sense, unless we exclude a finite number of

points xy, ..., x; of P and the corresponding fibers e;, ..., e, of M. The
points xi, ..., x; are called exceptional points and the fibers ey, ..., e, are
called exceptional fibers. We will denote ep U ... Ue by E.

Let D; be a closed regular neighborhood of x;. Then V; = p~ YD) is a
solid torus. This ¥} is itself a Seifert fibered space, called a fibered solid torus.
Note that, in general, the fibration of Vi is not the product fibration (in which
fibers would be {point} x S').

We will call M a fiberwise orientable Seifert fibered space, if both M and P
are orientable. To a fiberwise orientable Seifert fibered space M there is associ-
ated a set of invariants {g,e; o, B, ..., ay, fi}. The invariant g denotes
the genus of P. The invariants (a;, i) are associated to the exceptional fiber
¢;. They are determined by the fibered solid torus V. Indeed, if V; is fibered
by (p, g) torus knots, then we set «; = p and require that 0 < f#;, < o, and
that ;-9 =1 mod p. The rational Euler number e eliminates any resulting
ambiguity. For a definition of ¢ and more detail see (13].

Set S = closure(P ~ (D;U...UDy)). Then M — (V1U...UV) isan ordinary
circle bundle over the surface S. Since P is orientable and has nonempty
boundary, H2(S, (J(0D,)) is trivial. Thus the Euler class of the bundle M —
(ViU...U¥) over P—(D,U...U Dy) is trivial and hence this bundle is trivial.
In particular, if M has no exceptional fibers, then M = SxS!' and S isa
compact orientable surface.

We construct vertical Heegaard splittings for A/ . This definition extends
that of Lustig and Moriah [7] to the case of compact fiberwise orientable Seifert
manifolds.
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FiGUre 1.1. A collection of e{rcs defining vertical Heegaard splittings

Roughly speaking, vertical Heegaard splittings are those for which each ex-
ceptional fiber appears as the core of a 1-handle in one of the compression
bodies. In order to distinguish the various vertical splittings we need to be
more precise. Consider a copy of S, together with all the curves here defined,
in M. Denote the components of 85 — (9D, U...U aDy) by CY, ..., C™.
Let xp be a point in int(S). For J=2,...,m,let ¢/ be asimple arc in S
connecting xo to C/. For i =1,...,k, let d; be an arc connecting xg to
ODj. Letc = c* U ... U c™andletd = d, U ... U d. Further, let
a, by, ..., ag, by be a collection of arcs based at x, which cuts S into a
disk with punctures corresponding to C', ..., C™, 8D, ..., 0Dy . We
may assume that all arcs chosen are disjoint except at x,. See Figure 1.1.

Let {iy,...,i,} Cc {1,..., k} be a collection of distinct indices (for the
exceptional fibers) and denote by {/,, ..., /,_,} the elements of {t,..., k} -
{it, ..., in}. Let {ji,..., i} € {2,..., m} be another collection of distinct
indices (for the boundary components) and denote by {k(, ..., k,_,_;} the
elements of {2, ..., m} - {j,,..., Ji} - Assume that either n #0 or [ # 0.
Let

Qs oo dns Jis ooy Ji)

be the graph obtained from

aruUbiu...UagUb, UdUOD, U...UID,_ U c UChU.. UCkni-
by modifying
d,lu...ud,k_nuaD,lu...uaD,H

Ue, U...Uc, ,_, UChU.. uCknt-n
so that they lie in interior(S). And set
Wiliv,s oo sins Jis oo s Ji)

=NQUy, ooy dns J1y s 1)

U VLU UV, U(C x SHyu .. u(C x Shy).

Set
W, = closure(M — W)).
And set
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Fli, oo dns iy ooy Jp)
=Wiliv, .oy s Jis s JOOWAUL, ooy dns Jis s 1)
=0, W (iv, ..o yins J1s s Ji)
=0, Wiy, ..., ins j1svns Ji)
Clearly Wi(iy, ..., in; j1,...,J;) is a compression body. To see that
Waliv, ..., ins J1,---, J;) is a compression body, for instance in the case when

n # 0, isotope xp to lie on ¢;, , then the arcs a;, b;, di , cli
(d(bicollar(d; ) UadDy)) — (bicollar(d; N D, )),

and
(8 (bicollar(c’') U C’)) — (bicollar(c’/) N C’)

define 2-handles in W5 (e.g., (@i x S') — ((xp x SY)Y U a;)). We can
construct W, by attaching these 2-handles to F(iy, ..., iy, ji, -..h Ji)
and capping off the resulting 2-sphere boundary component with a 3-ball. Tt
follows that

(W[(il,...,in;j|,...,j[), %(il,...,in;jl,...,j[))

is a Heegaard splitting with splitting surface

E(in, oo dns s ooy o)

Any Heegaard splitting for M obtained in this way is called a vertical Heegaard
splitting.

When n and / are both 0, Wi(2, @) is still a compression body (a handle-
body, in fact) in the construction above, but W3(@, @) is not. We may correct
this mishap by adjoining xo x S! to Q(@, @), but it will be shown in 2.3 that
the resulting Heegaard splitting is reducible for the manifolds under considera-
tion.- We denote the splitting surface obtained in this modified construction by
Flo, o).

To see that F(iy, ..., 0n; J1,..., ;) is well-defined, apply [12, Theorem
3.01t0 F(iy, ..., in; Ji, ..., Jjr) regarded as a Heegaard splitting of M — n(E).
In the case where E = @, these Heegaard splittings are also called standard
Heegaard splittings of P x S' rel {C/', ..., Ch}.

Note that by forbidding j, ..., j, to be I, we have fixed W, as the com-
pression body containing C!. Also note that the genus of a vertical Heegaard
splitting is 2g + k + m — 1. The genus of F(@, @) is 2¢g + kK + m. When
E = @, the standard Heegaard splitting of P x S' =85 x S' rel @ is in fact
irreducible.

The proof of the main theorem relies on an induction argument on the num-
ber of exceptional fibers of M . Theorem 1.1 provides the first step in this
induction argument.

Theorem 1.1. For manifolds which are homeomorphic to (compact orientable
surface) x S' all Heegaard splittings are stabilizations of standard Heegaard
splittings.

Proof. This is [12, Theorem 5.7). 0O
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Theorem 1.1 has interesting consequences in the setting of Seifert fibered
spaces.

Proposition 1.2. A Heegaard splitting (W, W,) of a compact fiberwise orientable
Seifert manifold M is vertical if and only if, after isotopy, (Wi — n(E), W, —
n(E)) is a standard Heegaard splitting of M — n(E).

Proof. This follows from the construction. More specifically, denote by C™*'t |
..., C™*in the components of (M — n(E)) arising from e; , ..., e, , that
is, set C™0 = (M —nle,)) — (M), ..., C™tn = (M —n(e,))
d(M). The splitting surface F(iy, ..., in; j1, ..., j;) of the vertical Heegaard
splitting (Wi (iy, ..., 0n; J1s s Ji), Walin, oo s ins J1s oo s Ji)) of M is, af-
ter isotopy, the splitting surface of the standard Heegaard splitting of M —
n(E) rel {C/v, ..., Ch, Cm+i _  C™n} and vice versa. O

Propesition 1.3. If M is a Seifert fibered space with a Heegaard splitting formed
by the amalgamation (in the sense used in {12]) of vertical Heegaard splittings
of Seifert fibered submanifolds along saturated tori, then this Heegaard splitting
is vertical.

Proof. This follows from Proposition 1.2 together with [12, Proposition 2.10]. O

The proof of the Classification Theorem for Heegaard splittings of Seifert
manifolds with boundary falls into four parts. In section 2, we define a re-
ducibility property used in the proof of the Main Theorem and give a sufficient
criterion for its occurrence. Section 3 provides an elementary technical con-
dition which helps guarantee this criterion. In section 4, we prove the Main
Theorem, which says that all irreducible Heegaard splittings of the manifolds
under consideration are vertical. In section 5, we provide a classification of the
vertical Heegaard splittings via an algebraic invariant.

I wish to thank Martin Scharlemann for numerous helpful discussions.

2. REDUCIBILITY

In this section we introduce a reducibility property which enables the induc-
tive step in the proof of the main theorem.

Definition. Let ¢ ¢ E . If, after isotopy, F is a splitting surface for Heegaard
splittings both of M and of M — n(e), then we say that F is vertically reducible
at e.

Lemma 2.2 will give sufficient conditions for F to be vertically reducible at
e.

Lemma 2.1 (The vacuum lemma). Suppose F is the splitting surface of a Hee-
gaard splitting of the 3-manifold M, D is an essential disk in Wy and y isa
simple closed curve in F which intersects 8D once transversely. Then after y is
isotoped to lie entirely in interior(W,), F is also a splitting surface of M —n{y).
See Figure 2.1.

This lemma owes its illustrative name to the following visualization of its
proof: The l-handle dual to the disk D is dragged along y (y is vacuumed
onto the 1-handle through the attaching disk D of the 1-handle). After this
procedure y lies entirely on the 1-handle; furthermore, y lies parallel to the
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FIGURE 2.1. A curve y and adisk D in a compression body W .

core of the I-handle. Drilling out the core of a 1-handle in a compression body
produces another compression body.

The following proof of Lemma 2.1 was suggested by Geoffrey Mess during
the presentation of a more complicated argument.

Proof. Let N(y) be a collar neighborhood of 7 in W, and let N(D) be a
bicollar of D in W,. Then T = N(y)U N(D) is a solid torus summand of
Wi . We may split T from W, at the disk

D' = closure[dT — 9, W].

We may expand the collection {D, D'} of boundary reducing disks of W, to
a defining set of disks A of W, . Set A(T) = {DeA|DCT}. Now A— A(T)
is a defining set of disks for W; — T . Isotope y to lie in interior(y) and let
n(y) be a small regular neighborhood of 7 which lies in interior(N(y)). Then
the collection (A—AT) U {D'} isa defining set of disks for W, — n(y). 0

Lemma 2.2. Suppose F is a splitting surface of a Heegaard splitting for M .
Suppose further, that e ¢ E lies in W, and is parallel to a simple closed curve
Y in F which intersects an essential disk D in W\ once transversely. Then,
after e is isotoped to lie in interior(Wy), F is also a Heegaard splitting for
M —n(e), so F is vertically reducible at e .

Proof. Let A be the immersed annulus defined by the isotopy of y to e. Since
e and y are disjoint and simple, 84 is embedded. Thus we may assume that
A4 is embedded. Then the lemma follows by replacing N(y) by N(A) in the
proof of Lemma 2.1. O

The following lemma will establish the interesting fact that, for the manifolds
under consideration, F (&, @) is reducible and should hence not be counted
among their vertical Heegaard splittings.

Lemma 2.3. For E # @, F(o, @) is reducible.

Proof. Recall the notation used in defining vertical Heegaard splittings. The
arc 6 = (d(bicollar(d,)) U 8D;) — (bicollar(d;) N AD,) defines a disk
D in W, (take (0 x S — (6 U (xp x S1)). Let H be the genus
2 subhandlebody of W, (@, @) defined by (xoxSYY U 5. Let T = oW
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(=6 x S') Then H may be viewed as (punctured T) x I, with puncture
corresponding to D .

Let A, be the compressing disk for W, defined by a meridian of ¥} . Since
A is nonseparating in ¥, 8A, defines a nonseparating closed curve in T ¢
0Vi. Thereis a proper arc a in T which intersects this closed curveon T ex-
actly once. This « defines an essential disk A, in H whose boundary intersects
that of A, exactly once. The pair (A;, A;) shows that F is reducible. 0

3. MoRsE FUNCTIONS AND OUTERMOST ESSENTIAL SADDLES

Heegaard splittings correspond to Morse functions. Let (W, W) be a Hee-
gaard splitting of the 3-manifold M . Then Wy ={(o-W, xI) U (O-handles))
U (l-handles), W, = (0 Wy x Iy U (2-handles) U (3-handles), so W, U W,
= {(0-W; xI) U (O-handles)) U (1-handles) U (2-handles) U (3-handles)
gives a handlebody description of M . Excess O-handles can be canceled with
I-handles and (dually) excess 3-handles with 2-handles, after which there is at
most one O-handle (precisely when W, is a handlebody), and at most one 3-
handle (precisely when W, is a handlebody). This handlebody description can
be used to define a Morse function h on M (apply [9, Theorem 3.12] repeat-
edly;. Call £ a Morse function induced by (Wi, W3). Here h can be taken
to have singular values 0 < 4 <...<am< b <...<b, <1, with the crit-
ical point at level a;, i = 1 »---, m, the center of a l-handle and the critical
point at level bj, j=1,..., n, the center of a 2-handle. For the converse,
constructing a Heegaard splitting from a Morse function, see [10, 1.3].

Definitions. Let Q ¢ M be an immersed compact surface. Let 4 - Q—-10,1]
be a Morse function and let r be fixed. An outermost inessential arc o in
h='(r) N Q cuts off a disk D the arc o is called a high arc and D a lower
disk if for all x in D — @, h(x) <r=h(a); a is called a low arc and D an
upper disk if for all x in D —a, h(x)>r=h(a).

Let @y be the singular foliation of a compact surface Q by level sets of
h. Let ¢ be a leaf in @, containing a saddle singularity. By Morse general
position, ¢ contains one critical point x, the saddle point. If x lies in the
interior of Q there will be four subarcs of o, called separatrices, emanating
from x. The separatrices may end on dQ or may join so that either one pair
or two pairs form circles. If a circle formed by separatrices is inessential, then
o is called an inessential saddle. Otherwise o is an essential saddle. If x lies
on JQ, there are two subarcs emanating from x, again called separatrices. In
this case o is called a half-saddle. If the two separatrices join to form a circle
which is inessential, then ¢ is called an inessential half-saddle. Otherwise g is
called an essential half-saddle.

If a point y in Q is a maximum or minimum and lies on 8Q, then x is
called a half-center.

Consider #: Q —» R and C C Q. We say h is Morse on Q rel C.if
h is Morse on Q — C, and near C, h parametrizes a collar C x [ in Q of
C, such that 4 is constant on C x {t} . This definition works equally well for
manifolds of arbitrary dimension.

Let Q be a compact surface. The saddle o is an outermost essential saddle
above (below) Q if
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P

Neighborhood of e

FIGURE 3.1

(1) all separatrices of ¢ end on 9Q

(i) o cuts off two upper (lower) and one lower (upper) disk.

Note: In particular, (ii) implies that all separatrices of ¢ end on the same
component of §Q. '

Let e € E. Let a be a simple arc in P connecting x = p(e) to 9P. In the
remainder of this section 4 will denote the saturated annulus p~!(a) which
projects to o. Note that 4 is an immersed but not embedded annulus. We
will consider the annulus A which is the preimage of this immersion. Let 8,4
be the component of 84 which is mapped into M and let 9,4 =84 — 9, 4.
Let 3,4 be the image of 8,4 .

Let 4 be a Morse function corresponding to the Heegaard splitting defined
by the splitting surface F. We may assume that 4 is Morse on M rel 4 M .
The function A restricts to a function on A4, which is a Morse function rel 9;A
on A — e; this function pulls back to a function # on A, which is a Morse
function rel 8,4 on A4 — 8,4, but does not extend to all of A, since critical
points of h|, give rise to two or more critical points on 8,4 occurring at the
same level. But if we denote the set of preimages of critical points of 4|, by
S, then i"A‘—s is a Morse function rel 9,4 . We denote by ® ; the foliation of

A with respect to h.

Proposition 3.1. Afier isotopy of A rel 8,4, ®; contains an outermost essential
saddle.

Lemma 3.2. After isotopy of A rel 8,4, ®; does not contain any half-saddles.

Proof. Since h is a Morse function rel M , h takes on a maximal (minimal)
value on a connected component C of d M and a strictly smaller (greater) value
on any point in a collar of C in M . Thus a half-saddle in A cannot have its
critical point on C and hence must have its critical point on the exceptional
fiber e. Consider a small closed regular neighborhood N(e) of e. Let g be
a half-saddle based at p € ¢. Let S be a regular neighborhood of p in M
consisting of meridian disks of N(e). See Figure 3.1.

Then e has a maximum (minimum) at p, but some components of 4 NS
lie above (below) p near p. Here 4 NS consists of squares A4, ..., A; (k
is the index of e) with three sides on 45, and one on ¢. Around p we may
use the meridian disks comprising S to isotope A;, ..., A, to lie entirely
below (above) p. The isotopy thus described replaces the half-saddle with a
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£

a half-saddle interior saddle point
and half-center
FIGURE 3.2a FIGURE 3.2b
P H(P)
FIGURE 3.3a FIGURE 3.3b

half-center and an interior saddle
small neighborhood of p. See Fig

point. It may be performed in an arbitrarily
ures 3.2a and 3.2b. O

The content of Lemmas 3.3 and 3.4 is similar. Lemma 3.4 will be needed
when P is an annulus.

Lemma 3.3. Suppose Q isa compact surface and h: Q — R is a Morse function
rel 3Q . Set €(Q) max{2 —[0Q|, 0} and let ® be the singular foliation by
level sets of h on Q. Then at least €(Q) ~ x(Q) leaves of ® are essential
saddles.

Proof. [12,4.4). 0O

Lemma 34. Let P be a planar surface with at least two boundary components.

Suppose that ®p is the foliation
such that h(8P) is a constant.
Figures 3.3a and 3.3b.

Proof. We may assume that #
h(0P) = 0. This implies that

Let P’ be a copy of P and consider the mirror

of P with respect to a Morse function rel 8P
Then ®p contains an essential saddle. See

: P — [0,1]. Without loss of generality,
—h is also a Morse function rel 9P on P.

double #(P) = (PU P')/ ~
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(@]
FIGURE 3.4a

of P, where ~ identifies corresponding points in 0P and 4P’ . Now .#(P)
is endowed with a Morse function f obtained from 4 on P and -4 on P'.
This f is a Morse function on the orientable surface .# (P) of positive genus;
and since the Euler characteristic of this surface is less than or equal to 0,
® 4(p) contains at least two essential saddles, by Lemma 3.3. Since a bicol-
lar of [ 9 P] is foliated by circles, these essential saddles cannot intersect [ d P],
hence lie either entirely in ®p or ®p . By symmetry, there must be at least
one essential saddle in ®p. 0O

Lemma 3.5. If ®; contains no half-saddles, then ® ; contains a saddle all of
whose separatrices end on 9,A .

Proof. Let S be the set of critical points of A|.. Note that |S| > 2. Denote
by S the set of critical points in A corresponding to .S. Then ]S’| > 4. Each
point in S is a half-center. Let N(S) be a closed regular neighborhood of
S in A, such that & is constant on each component of dN(S). Set B =
closure( A — N(3)).

Let B’ be acopyof B and ( iz[B:)’ a copy of fz|3 . Consider the double Z'(B)
= BUB'/ ~ of B, where ~ identifies the points in ;B = & ANIB with
the corresponding points in dB’. The function f : Z(B) — [0, 1], defined
by (hls)’ on B' and hip on B is a Morse function rel 0Z(B) and will be
called the Morse function induced on Z(B). Here 2 (B) is a planar surface
with |$| +2 > 6 boundary components. By Lemma 3.3, ®g ), the foliation
of the Z(B) with respect to [, contains an essential saddle o .

Since @ contains no half-saddles, |0 N[82B]] is even and the saddle point
x lies either in B orin B’. We may assume that x lies in B. We may further
assume that ¢ is an outermost essential saddle (which does not a priori mean
that o is an outermost saddle above or below £~ 1(g)).

Case 1: |6 N[6,B]| =0 (Figure 3.4a).

Then ¢ N 8,4 = @ and the separatrices combine in pairs to form circles
parallel to 8,4 . Let ¢ be the circle closest to d, B . We may consider the surface
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FIGURE 3.4b

B obtained by cutting B along ¢ and taking the component which contains
02B . By the argument above, B contains an essential saddle, contradicting the
assumptions.

Case 2: [oN[0,B] =2 (Figure 3.4b).

Since ®; contains no half-saddles, the intersections occur in the interior
of two of the separatrices. The other pair of separatrices combines to form a
circle parallel to 9,4, since A is constant on 9, 4. The leaf ¢ cuts B into
one annulus and two disks D, D,. Here 9D, (respectively dD,) consists of
subarcs of o and of dN(S) together with a collection B, (respectively B,) of
subarcs of 9,8 ; here 6,B = By U B,.

Claim: Either B, or B, contains at least four connected components.

We may consider the essential saddle ¢ in A. It cuts A into one annulus
and two disks D; and D, corresponding to D, and D,. Consequently 3D,
(0D,) consists of subarcs of g and an arc b, (b,)in 9,4 ; where b, U b, =
924. The number of connected components of B, (B;) exceeds the number
of critical points on 5, (b2) by exactly one. Since ¢ has index at least two,
h attains its maximum (minimum) at least twice on A . Note that b, and
by, must each contain an odd number of critical points. So either by or by
contains at least three critical points. This proves the claim.

Without loss of generality B, contains at least four components. Let / be
the level set of h|; which contains ¢. Cut Dy along / and consider the
component D, whose boundary contains ¢ N 4D .

Let Z(Dy) be the double of D, along 9D, N & B. Then (D) is a
planar surface with at least two boundary components and the induced function
on Z(Dy) is a Morse function rel dZ(Dy). An argument similar to the one
above then shows that <D,~), , the foliation of D, with respect to the induced
Morse function rel 9D, , contains an essential saddle, again contradicting the
assumptions.

Case 3: o N[d,B] =4 (Figure 3.4¢). 0
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@

¢

FIGURE 3.4C

Proof. (Proposition 3.1) By Lemma 3.2 and 3.5, ® ; contains, possibly after
isotopy of A rel 94, a saddle o all of whose separatrices end on 9, 4. We
need only show that either o cuts off two lower and one upper disk or ¢ cuts
off two upper and one lower disk.

Suppose o is a saddle in @, all of whose separatrices end on 8,A . If one
of the disks D cut off by ¢ is not an upper or lower disk, then there is a leaf 1
in @, which occurs at the same level as ¢ . Since 7 occurs at the same level
as o, 7 must be a regular leaf.

Case 1: 7 is a simple closed curve.

Consider the component A4 of D cut along 7 which contains subarcs of .
Lemma 3.4 applied to the double Z(4) of 4 along 4 — (¢ U 1) shows that
®; must contain an essential saddle o' .

Case 2: 7 is an arc with endpoints on 9,4 .

Let D be the component of D cut along t which contains subarcs of o .
Lemma 3.4 applied to the double 2/ (D) of D along D — (¢ U 1) shows that
®; must contain an essential saddle g!.

An essential saddle in a disk has all separatrices ending on the boundary of
that disk. In cases | and 2 above, this implies that the essential saddle ¢! has
separatrices ending on 9,4. We see that if we choose ¢ to be an outermost
saddle with all separatrices ending on 8,4, then neither case 1 nor case 2 can
occur and hence ¢ must cut off either two upper disks and one lower disk or
one upper disk and two lower disks. O

4. THE MAIN ARGUMENT

Definitions. Let o be a collection of closed curves in the manifold M on which
there is defined a Morse function 4 : M — [0, 1]. After an isotopy of o we

may assume that /|, is a Morse function. Let rg, ..., r, be the critical values
of h|,. Choose /;, ..., [, sothat ry < [, < r, < ... < I, < r,. Let
Ly, ..., L, belevel surfaces of 4 corresponding to /i, ..., /,. The number

ILiNna|+...+|L,Na| is called the width of o with respect to h. We say



HEEGAARD SPLITTINGS 2545

FIGURE 4.1. Labelling of the outermost essential saddle ¢

that « is in thin position with respect to h if the width of o with respect to 4
is minimal,

For details see [4, §4] or [5, §1].

Lemma 4.1. Let ¢ be an exceptional fiber in M. Then F is vertically reducible
at e.

Proof. Let e be an exceptional fiber of M . We may assume that, after a
small isotopy, e is disjoint from the the cores of the compression bodies in the
Heegaard splitting of M . Thus after this small isotopy, ¢ intersects only level
surfaces of 4 which are isotopic to F. We may also assume that, after isotopy,
e is in thin position with respect to A .

Let B be an arc in P connecting 3P to x = n(e). Let A be the saturated
annulus which projects to #. Let ¢ be an outermost essential saddle above or
below 4 in ® 4 and let L be the level surface of 4 whose intersection with
A induces ¢ . Without loss of generality, ¢ is an outermost essential saddle
below A4, hence cuts off two lower disks, D and D , » and one upper disk,
D+,

Let s be the critical point of ¢. Let ay be the subarc of 0D; shared by
0D*, a; the subarc of 9D connecting s to 94 which is not in 0D | ay
the subarc of dD; shared by 9D* and a4 the subarc of 0D, connecting s
to 04 which is not in dD* . Denote by p; the endpoint of a; on e. Further,
let e; be the subarc of ¢ in dD[, e, the subarc of ¢ in 9D+ and e; the
subarc of e in dD; . See Figure 4.1.

Set 1 = a; U a3, 72 = a2 U a4 and parametrize y,, y, as paths. In
A, the oriented intersection number (y1,72) = +1. Also in L, the oriented
intersection number J (1, 72) = £1l. (The signs may differ when we look at
the oriented intersection number in A versus L .) See Figure 4.2.

Claim 1: The curves Y1, ¥2 are closed curves based at points Pi, P> on e
(e, pi = p3 and p, = ps). In particular, e; = e; as subarcs of e .

Since L is both high and low with respect to A, it follows from the proof
of [5, Lemma 2.1] or [4, §4] that p; = p; and p, = P4 . Since e, e; contain
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FiIGurRe 4.2. L, D; and D, in M

FIGURE 4.3. The arcs f,, f3, ki and k;

the minimum of ¢ and e, contains the maximum of e, the claim follows.

Claim | implies that ¢, U e; = e. Hence D U D" defines an isotopy
of y, and e. This fact will be used later.

Now s =y, Ny,. Set 4 = A —nle), Dl’ = Dy N A, Dz‘ = D
A, & = ar N A, .., ag = as N A. Label the endpoint of &; on 94
by ¢;, and the subarc of 94 connecting ¢; to ¢,,; by B;.

Since L is an orientable surface, a copy 7 of y, can be isotoped, in L, off
of y; to one side (called the outside, the other side being called the inside; note
that since y; may be nonseparating in L, this terminology only makes sense
locally). This isotopy can be performed in the complement of 7, , except near
s, where 7, will intersect y, exactly once. So I(7,, y2) = 4! persists.

Since e intersects L in exactly two points p;, py, LN N(e) consists of
exactly two disks P, and P>, for N(e) small enough. Now j3; and f; are
parallel arcs on d N(e), with one endpoint on 9 P; and the other on 9P, . They
both lie below L. On the other hand, f, is anarcin 9 N(e), with one endpoint
on 9P, and the other on dP,, which lies above L. Note that #, and f; are
parallel in N{e) to e,, and f, is parallel in N(¢) to e,. In particular, in the
annulus of 9 N(e) below L, B; and B; cut off two rectangles with corners ¢ ,
92, 93, q4. Let R be the rectangle with sides f,, B3, «; and «,, where x,
is chosen to lie on the inside of y, and is hence disjoint from 7, . The choice
of x; determines x,. See Figure 4.3.

Claim 2: D( may be altered slightly, so as to be disjoint from D . Fur-
thermore, this alteration can be made away from ¥ .

Let N(s) be a small 3-ball neighborhood of 5 in M missing 7, . We replace

3
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the portion of Dl‘ which lies in int(N(s)) by a disk in dN(s). More specifi-
cally, 9N(s) N D; contains an arc 7, which together with an arc 7, in L n
ON(s) boundsadisk D' in N(s). Replace D; by D, = (D —int(N(s)))u D’ .

Set D~ = D[ U D; UR. Then since the above alteration was made away
from §,, D" NH = (» U ) N J1 = y2 N #. Thus IOD, 7)) =
+1. In particular, this implies that 9D~ is essential and thus that D~ is an
essential disk. Now D~ is a lower disk for L such that 9D~ intersects 7,
once transversely. Since L is isotopic to F and e is isotopic to 7, , the result
now follows from Lemma 2.2. 0

Theorem 4.2. Every irreducible Heegaard splitting of a fiberwise orientable Seifert
fibered space with nonempty boundary is vertical.

Proof. Let M be a Seifert fibered space with nonempty boundary. The proof
follows by induction on the number or exceptional fibers in M . Theorem 1.1
establishes the result in the case that M has no exceptional fibers. Now suppose
that the result holds for all Seifert fibered spaces with nonempty boundary and
at most n exceptional fibers and that M has n + 1 exceptional fibers. Consider
the splitting surface F of an irreducible Heegaard splitting for M . Let ¢ be
an exceptional fiber of M . By Lemma 4.1 F is vertically reducible at ¢. This
means that, perhaps after isotopy, F is also the splitting surface of a Heegaard
splitting for M — n(e). Since M — #y(e) has only n exceptional fibers F
is a vertical Heegaard splitting for M — p(e) (irreducibility of a Heegaard
splitting in M guarantees irreducibility of the corresponding Heegaard splitting
in M — n(e)). It now follows from the construction that the Heegaard splitting
of M with splitting surface F is vertical. O

5. THE CLASSIFICATION OF VERTICAL HEEGAARD SPLITTINGS OF SEIFERT
FIBERED SPACES AFTER LUSTIG AND MORIAH

Given the verticality of irreducible Heegaard splittings of fiberwise orientable
Seifert manifolds with boundary, it is natural to ask when two vertical Heegaard
splittings are equivalent. This question was answered, in most cases, for closed
Seifert fibered spaces in [7]. The content of this section is to tailor Theorem
2.8 in [7] to the class of manifolds under consideration. Lustig and Moriah
define an invariant for Heegaard splittings of a closed 3-manifold M , by con-
sidering the handlebodies in a Heegaard splitting, and the Nielsen equivalence
classes for generating systems of the fundamental group of M which they de-
fine. This invariant serves to distinguish vertical Heegaard splittings of Seifert
fibered spaces in most cases.

Theorem S.1. Let f={i| B # £1 (moda,); i=1,..., k}. Then the two
vertical Heegaard splittings F(iy, ..., in: jy, ..., J;) and

E(C, o 8o dis oo Ji) are isotopic if and only if B0 {iy, ..., i} = B0
{Cl7~~-1CV}'

Remark 5.2. Consider the Heegaard splittings (W, , W) and (W, W)) of the
3-manifold M with splitting surfaces F and F’. Suppose F and F' are
isotopic under an isotopy taking W, to W/. Then 0_W, =9_W/.
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Definition. Let x = {x,..., Xn} be a generating system for a group G .
The generating system defines a canonical epimorphism p, of the free group
F=F(X,,...,X,) onto G by mapping X; to x;. Two generating systems
(X1, ..., xg) and (y, ..., Yn) of G are Nielsen equivalent if there exists an
isomorphism g, for which the following diagram commutes:

F(Xi, ..., Xp) —£&—

lg lid
F(Y,,...,Y,) -2 ¢

Remark 5.3. The generators of the fundamental group of a handlebody H in a
Heegaard splitting of a closed manifold M define a Nielsen equivalence class
A (mi(M); H) of generators for m,(M ). This assignment is unaffected by iso-
topies of H and hence well defined on an equivalence class of Heegaard split-
tings. In order to define .#'(n,(M); H), H need not be one of the handlebodies
in a Heegaard splitting. The only requirement is that its inclusion induce an
epimorphism of fundamental groups i, : i (H) - a(M).

For general facts, such as these, on Nielsen equivalence as pertaining to equiv-
alence classes of Heegaard splittings, see the remarks in {7, Definition 2.8].
(Note the relevance of [15, Theorem 5.8.3]).) The two handlebodies in a Hee-
gaard splitting (H;, H,) of M may define two different Nielsen equivalence
classes A (n (M) Hy), & (n((M); H,). For M a merely compact manifold,
the assignment of a Nielsen equivalence class of generating systems to a Hee-
gaard splitting of M is less straightforward, since the fundamental group of a
compression body is not free.

Remark 5.4. The vertical Heegaard splitting (Wi (iy, ..., in: Ji,..., i),
Waliv, ..., ins jiy .., ji)) of the fiberwise orientable Seifert fibered space M
yields a natural generating system for ni(M)/(h), where (h) is the subgroup
of 7 (M) generated by a regular fiber.

For recall the notation used in the introduction to define

(m(ilan'ain;jl"ﬂajl)a %(ily-":in;le"')jl))'

Parametrize a,, by, ..., ag, bg as paths based at x;. Let ¢/ (resp. ;)
be a parametrization of ¢/ U C/ (resp. d; UAD;) as a path based at Xo. And
let 9; denote the image of ¢;, suitably parametrized under L tm(V) —
(W1, xo). Then =;(W;) is generated by (the homotopy classes of) a,, b,
ces gy b, P, i, , 0, ..., 9,_ together with / more
generators (one per connected component of 9. W) each of which has (A) as
its image under i, : n;(W;) — (M) .
Now

(M) = (al,bl,..‘,ag,bg,cz,...,c’",al,...,ok,h|
lai, Al (i=1,...,8),[b:, h] (i = l,...,8),
[ohG=2,...,m), [0, hl(=1,... k),
hF (=1, ..., k)).
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So
m(M)/(h) =(ay, by, ..., ap, bg, %, ..., ",
O, s e (U= 1,00, k) [ o).

To find the natural generating system for m,(M)/(h) determined by
Wiliv, ..., in; ji, ..., Jj;) we thus need only compute the image of
%, ..., 0;, under the composition of maps

T (Wh) 5 (M) — 7 (M)] (h.

This computation is made in [7, Lemma 2.7]. The resulting generators for
ny(M)/{h) are D,._ly" e, D;y’" , where y;, is such that if (a;,, B;) are the
invariants associated with ¢;, , then for some oi,» By Yi —a;d; = 1 and
l < 7, < e;. The natural generating system for 7,;(M) determined by
Wiliv, ..o ins jus ooy Ji) ds thus {ay, by, ..., ap, by, &, ..., ", 0; ",
NS TRELI TR T

Note that this generating system has the same rank as 7;(M) J{h). Also
notice that since Bi; < a; the equality Bi,vi; — @i d;; = 1 implies vip > 1.

Remark 5.5. Two generating systems
u n
U= X X0, Xyl o s Xk
and
v n
V=X X, Xpads eee s Xk
in the free product G of a finite number of cyclic groups,

G:(xl,...,x,,,xn+1,...,xktx;",...,x,‘,’")

are Nielsen equivalent if and only if u; = +v;modq; forall i = 1 yeee, R
This is a consequence of [6, Theorem 1] and Grushko’s Theorem.

Lemma 5.6. If §;, = +1 (moda,), then

F(iv, ooosidns iy -oos Ji)
and

F(iv, ooy dnats Jis-oos Ji)
are isotopic.
Proof. See [7, Theorem 2.8]. O

Definitions. Let W be a compression body. Then W is obtained from §_ W x
I by attaching 1-handles to 9_W x {1}. Suppose x is a point in d_W x {1}
disjoint from the attaching disks of the 1-handles. Then the proper spanning
arc

{x}xICcoWxIcW

is called the vertical arc based at {x} x {0} in O_W .

Let C',..., C" be the components of §_W and let T = {y', ..., 7"} be
a collection of vertical arcs such that each 3’/ is a vertical arc based at a point
in C/. We call T avertical collection of spanning arcs for W . Since W —T'
is a handlebody, the inclusion i : (W —T') — W defines a Nielsen equivalence
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class of generating systems for (W) via L : (W —T) — n,(W). We call
this class the Nielsen class of n((W) determined by T .

Two properly isotopic classes I" and I" of vertical spanning arcs for W
determine the same Nielsen class of n (W) . Indeed, the isotopy of " and I”
determines an isotopy of the handlebodies H = W —T and H = W — I the
Nielsen class of 7;(W) determined by I' is A (m (W) ; H) and the Nielsen
class of m (W) determined by I" is A (m(M); H'), thus they are equivalent
by Remark 5.3. In particular, for any two vertical collections of spanning arcs I’
and I", the Nielsen class of 7,(W) determined by T coincides with the Nielsen
class of m;(W) determined by I", so long as both collections are vertical with
respect to the same product structure.

Proof (Theorem 5.1). We first prove the following:

Claim: Suppose W and W’ are compression bodies in M , with (W, 9_ w)
C(M,I0M) and (W', 0-W'yC (M, dM),and such that 1, : T (W) - n (M)
and i, : 7 (W’') - n;(M) are epimorphisms. Further suppose that G : M x
I — M is a proper isotopy which takes W to W’. Let " bea vertical collection
of spanning arcs for W and let I” be a vertical collection of spanning arcs for
W'. Then A (z(M); W — n()) = A (n,(M); W' — y(I'")) .

Denote by g,: M — M the function defined by g(x) = G(x,1). Loosely
speaking we have O_W x I Cc W c M and 6. W' x | C W' c M. But
the product structures may differ. To be precise, we have two homeomor-
phisms pr: (0_W x I) — (W - (l-handles)) and pr' : (O_W' x I)
— (W’ - (1-handles)) (where o_W = d_W', we will denote the components
of o_W = o_W’' by C',... CM). Without loss of generality, pris w (o}
and pr'|;_ Wx {0} are projections onto the first coordinate. We must show that
W —n(T) and W’ — n(I") are isotopic handlebodies. It suffices to show that
&1(I') and I" are properly isotopic in W' . We may consider the connected
components of I (resp. I") individually. It then suffices to show that for each
J» & (y’) is properly isotopic to (/)" by an isotopy which fixes the complement
in M of n(C/). :

Suppose 3/ is based at {x} x {0} in C/ x {0} = pr(C/ x {0}) and that
(»/)" is based at {x'} x {0} in (C/) x {0} = pr'(C’/ x {0}). Without loss of
generality, g;(pr(x x {1})) is disjoint from the attaching disks for the 1-handles
in W', Let o and # be two curves in C/ such that

(Han g=x,

(2) x’ lieson o,

(3) pr(a x 1), pr(B x 1) are disjoint from the attaching disks for W and
pri(ax 1), pr'(B x 1) are disjoint from the attaching disks for W' . (See Figure
5.1.)

Set 4 =prlaxI), B=pr(Bx1l), A = plax1I), 4 = g/(4) and
B = g(B). Now g/(y/) = AN B and thus lies in 4. On the other hand,
(yf)/ lies in A’. Since 81lcixqoy 1s isotopic to the identity, g((8) is isotopic
to f and hence has the same intersection number, namely 1, with «. Thus
the 1-manifold 4’ N B has an odd number of ends on C x {0} and hence
contains a spanning arc 7/ . Since gi(y’) and j/ are both spanning arcs in
B they are properly isotopic; since 7/ and (y/) are both spanning arcs in A4’
they are properly isotopic. This establishes the claim.
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A p ;
A AN b AN
! (> ,\—l\ \\A SN

FIGURE 5.1. Partial depiction of the annuli 4, 4, A, B and B

We will refer to the Nielsen equivalence class of generating systems for (M)
~ provided by W as in the claim by 4 (x,(M); W) (i.e, A (n(M); W) =
N (m(M); W -T), where T is a vertical collection of spanning arcs for W).
The claim also provides a Nielsen equivalence class of generating systems for
ni(M)/{h) determined by W , which we denote by # (n (M)/{h); W). The
generating system calculated in Remark 5.4 is in

N (MY Ch)ys Wiy, ooy dns Jus - Ji))-

Thus to show that two vertical Heegaard splittings are inequivalent, it suffices
to show that

‘/V(nl(M)/<h)’ W(il,..., in;jl>~~-’jl))
#FA (M) [Ch)s Wi, .o & iy oo i)

The theorem now follows from Proposition 1.2, Remarks 5.4 and 5.5 and
Lemma 5.6. O
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