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Abstract

We provide an annotated and illustrated translation of key passages of Fried-

helm Waldhausen’s paper that establishes the uniqueness of Heegaard splittings

of the 3-sphere.

1 Introduction

In 1968 Friedhelm Waldhausen published a paper entitled “Heegaard-Zerlegungen der
3-Sphäre”, i.e., “Heegaard splittings of the 3-sphere”. This famous paper establishes
the uniqueness of Heegaard splittings of a given genus for the 3-sphere. In other
words, there is only one Heegaard splitting of the 3-sphere of any given genus g and
it is the g-fold stabilization of the genus 0 splitting.

Other proofs of this theorem have been given since then, most notably by Scharle-
mann and Thompson in [4]. Yet Waldhausen’s original proof remains of foremost
interest. His strategy may generalize to prove similar results in situations where
Scharlemann and Thompson’s strategy fails to apply. Waldhausen’s strategy entails
applying the Reidemeister-Singer Theorem to compare a given Heegaard splitting of
S3 to the genus 0 Heegaard splitting. Two collections of stabilizing pairs of disks are
then compared and played off against each other.

Recent years have seen a resurgence of interest in issues pertaining to stabiliza-
tion. So an English version of Waldhausen’s paper is overdue. Some of Waldhausen’s
terminology is outdated. We will provide the definitions needed according to cur-
rent custom and usage. The aim here is not a literal translation of Waldhausen’s
entire paper. The section on definitions follows the spirit of Waldhausen’s section
on definitions, but it has been updated to conform to current usage. Our sections
on equivalence and stable equivalence, Heegaard splittings of the 3-sphere and on
remarks provide a literal translation of the bulk of the corresponding sections of
Waldhausen’s paper. Passages from Waldhausen’s paper appear in quotations. In
accordance with current custom, we have added figures to illustrate examples of the
constructions described. Waldhausen’s paper, in accordance with the custom of the
time, contained no figures at all. We have ignored some passages, especially those
observing facts now considered standard, e.g., those on general position and the like,
entirely. Waldhausen’s paper has stood the test of time. It is as relevant today as it
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was when it was published. We hope that this updated and illustrated translation will
remind the reader of the insights of Waldhausen’s paper and prove to be a valuable
reference.

2 Definitions

A handlebody is a 3-manifold that is homeomorphic to a regular neighborhood of a
connected graph in the 3-sphere. A Heegaard splitting of a 3-manifold M is a pair
M = V ∪F W , such that 1) V,W are handlebodies, 2) M = V ∪W , 3) V ∩W = ∂V =
∂W is a surface that we denote by F . Here F is called the splitting surface. Two
Heegaard splittings are considered equivalent if their splitting surfaces are isotopic.
We will occasionally be interested in oriented equivalence. Two Heegaard splittings
M = V ∪F W and M = V ′ ∪F ′ W ′ are considered orientedly equivalent if the isotopy
takes V to V ′ and W to W ′.

A Heegaard splitting M = V ∪F W is stabilized if there is a pair of disks (D,E)
with D ⊂ V and E ⊂ W such that #∂D ∩ ∂E = 1. We call the pair of disks (D,E)
a stabilizing pair of disks. A Heegaard splitting that is not stabilized is unstabilized.

Remark 1. Waldhausen uses the antiquated expression “minimal Heegaard splitting”

for a Heegaard splitting that is not stabilized. He is quick to point out that according

to his terminology, two “minimal Heegaard splittings” need not have the same genus.

It is precisely this fact, that a “minimal Heegaard splitting” need not have minimal

genus, that forced this usage into oblivion. Current usage defines a minimal Hee-

gaard splitting to be a Heegaard splitting of minimal genus. The relevant terms here,

according to current usage, are “stabilized” and “unstabilized”.

Let S3 = X∪T Y be the Heegaard splitting of S3 such that X (and hence also Y ) is
an unknotted solid torus. Note that this is the only Heegaard splitting of S3 of genus
1. There is a stabilizing pair of disks for this Heegaard splitting. The complement
of this stabilizing pair of disks is a 3-ball that meets T in a disk. Now given a
Heegaard splitting M = V ∪F W , the pairwise connect sum (M,F )#(S3, T ) defines
a Heegaard splitting. The stabilizing pair of disks survives in the new Heegaard
splitting. Conversely, if a Heegaard splitting M = V ′ ∪F ′ W ′ is such that (M,F ′) ∼
(M,F )#(S3, T ) for some Heegaard splitting M = V ∪F W , then M = V ′ ∪F ′ W ′

is stabilized. Waldhausen emphasizes the fact that if (M,F ′) ∼ (M,F )#(S3, T ) for
some Heegaard splitting M = V ∪F W , it does not follow that M = V ∪F W unique.

Remark 2. Waldhausen defines stabilization in terms of this connected sum.

“We say that M = V ∪F W is stabilized if there is a Heegaard splitting (M,F ′)
such that (M,F ) ∼ (M,F ′)#(S3, T ). Recursively, we define

(M,F )#n(S3, T ) ∼ ((M,F )#(n − 1)(S3, T ))#(S3, T )

We call two Heegaard splittings M = V ∪F W and M = V ′∪F ′ W ′ stably equivalent

if there are m,n such that

(M,F )#n(S3, T ) ∼ (M,F ′)#m(S3, T )).
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Recall the Reidemeister-Singer Theorem: If M = V ∪F W and M = V ′ ∪F ′ W ′

are Heegaard splittings of M , then M = V ∪F W and M = V ′ ∪F ′ W ′ are stably
equivalent. See [3], [5], cf page 56 of [7]. (Note that Singer employs homeomorphism,
rather than isotopy, for his equivalence classes. But the above mentioned theorem is
nevertheless proven in [5] on pages 107-111.)”

3 Equivalence and stable equivalence

“ ... the statement (M,F ′′) ∼ (M,F ′)#n(S3, T ) is equivalent to the statement that
there are n stabilizing pairs of disks in (M,F ′′). - But a “system of n stabilizing
pairs of disks” is a rather cumbersome term. Providing and characterizing a more
streamlined definition occupies the rest of this section.

(2.1) Let M = V ∪F W be a Heegaard splitting ... A system of n disjoint disks
v = v1 ∪ · · · ∪ vn in V is called a good system of n meridian disks in V if there is a
system of n disjoint disks w = w1 ∪ · · · ∪ wn in W such that (after renumbering the
components of v and w, if necessary):

∂vj ∩ ∂wj consists of exactly one point

∂vi ∩ ∂wj = ∅ when i > j;

here w is called a system corresponding to v.

If v is a system of n meridian disks in V and w is a system corresponding to
v, then w is necessarily a good system of n meridian disks in W and v is a system
corresponding to w.”

Remark 3. Note that ∂vi ∩ ∂wj = ∅ is only required for i > j. The fact that

this assumption implies the existence of a good system of n meridian disks such that

∂vi ∩ ∂wj = ∅ when i 6= j is the subject of the following lemma. The gist of the proof

a disk slide. It is described explicitly.

“(2.2) Lemma. Let v be a good system of n meridian disks in V and let w be a
system corresponding to v.

(1) There is a system w̃ corresponding to v such that ∂vj ∩ ∂w̃j is exactly one
point and such that ∂vi ∩ ∂w̃j = ∅ for i 6= j.

(2) For Ũ = U(F∪v∪w) a regular neighborhood of F∪v∪w in M and F̃ = ∂U∩V ,
Ũ is homeomorphic to F̃ × I. (Where I is the unit interval.)

Proof of (1): We will construct the system w̃ from the system w.

Let i be the smallest index such that there is a point of intersection q ⊂ ∂vi∩∂wj,
j > i. Let k be one of the two arcs in ∂vi that connects q with the point of intersection
of ∂vi with ∂wi. Suppose q and k have been chosen so that w misses the interior of k.
Let U(wi∪k∪wj) be a regular neighborhood of wi∪k∪wj in M . Then W∩U(wi∪k∪wj)
consists of three disks. Of these the first is isotopic to wi, the second is isotopic to
wj; denote the third by w′

j. For each h 6= i, ∂vh ∩ ∂w′

j consists of the same number
of points as ∂vh ∩ ∂wj; but ∂vi ∩ ∂w′

j contains exactly one point less than ∂vi ∩ ∂wj.
We replace wj by w′

j. We repeat this procedure as often as possible. The result is a
system w̃ with the stated properties.”

Remark 4. See Figures 1 and 2.
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Figure 1: The disks vi, wj and wi
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Figure 2: The disk w′
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“Proof of (2): a) We first check that the change in w described in (1) leaves the
homeomorphism type of U(F ∪ v ∪ w) unchanged.

Let U∗ be a small regular neighborhood of F ∪ v ∪ w1 ∪ · · · ∪ wi. ... Let W ∗ =
W − interior(U∗). Then U(F ∪ v ∪ w) is homeomorphic to the union of U∗ and a
regular neighborhood of

X∗ = (U∗ ∩ W ∗) ∪ (wi+1 ∩ W ∗) ∪ · · · ∪ (wn ∩ W ∗)

in W ∗. But X∗ is isotopic to

(U∗ ∩ W ∗) ∪ (wi+1 ∩ W ∗) ∪ · · · ∪ (w′

j ∩ W ∗) ∪ · · · ∪ (wn ∩ W ∗)

in W ∗.

b) It follows that we may replace w with w̃ in our proof of the above assertion. Let
Uj be a regular neighborhood of vj∩w̃j (in M). Then Uj is a 3-ball; ∂Uj∩V and ∂Uj∩W

are disks; Uj ∩ F is a once punctured torus. Since the Uj’s are pairwise disjoint, and
since U(F ∪ v ∪ w̃) is homeomorphic to a regular neighborhood of F ∪ (∪jUj), the
assertion follows.”

Remark 5. Here Waldhausen is using the connected sum definition of stabilization.

He is exhibiting (M,F ) as (M, F̃ )#n(S3, T ).

“(2.3) Let M = V ∪F W be a Heegaard splitting ... Let v be a good system of n

meridian disks in V and let w be a system corresponding to v; let U(v) and U(w) be
regular neighborhoods of v and w in M . Set

Ṽ = V − int(U(v)), W̃ = closure(M − Ṽ )
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W ∗ = W − int(U(w)), V ∗ = closure(M − W ∗)

Since v does not separate V , Ṽ is a handlebody [[8], Corollary 1]; the same is
true for W ∗. On the other hand, in accordance with (2.2), the submanifolds Ṽ and
V ∗ are isotopic in M . Thus if F̃ is the surface ∂Ṽ together with an orientation,
then M = Ṽ ∪F̃ W̃ is a Heegaard splitting. If M = Ṽ ∪F̃ W̃ is orientedly equivalent
to M = W̃ ∪F̃ Ṽ then the equivalence class of M = Ṽ ∪F̃ W̃ is determined by
M = V ∪F W and v or M = V ∪F W and w. If M = Ṽ ∪F̃ W̃ is not orientedly
equivalent to M = W̃ ∪F̃ Ṽ then we distinguish one of the orientations via the
following rule: If the orientations of M and F determine V as the first of the two
handlebodies V,W , then the orientations of M and F̃ determine Ṽ as the first of the
two handlebodies Ṽ , W̃ .

In either case, either M = V ∪F W and v or M = V ∪F W and w determine
a Heegaard splitting Ṽ ∪F̃ W̃ up to isotopy; we refer to this Heegaard splitting as
arising from M = V ∪F W by a reduction along v and write

(M, F̃ ) ∼ (M,F (v)) or (M, F̃ ) ∼ (M,F (w)), respectively.

(Caution: It is true that (M, (−F )(v)) ∼ (M,−(F (v))); but (M,F ) ∼ (M,−F )
does not necessarily imply that (M,F (v)) ∼ (M,−F (v)).)

The above discussion implies the following:

(2.4) Lemma. Let M = V ∪F W be a Heegaard splitting ... Let v and v′ be good
systems of meridian disks in V (where possibly v∩v′ 6= ∅). Suppose there is a system
w in W that corresponds to both v and v′. Then (M,F (v)) ∼ (M,F (v′)).

As a corollary of our definitions we obtain the first part of the following lemma:

(2.5) Lemma. Let (M,F1) and (M,F2) be stably equivalent Heegaard splittings.

Then there is a Heegaard splitting (M,F ) and good systems v and x of meridian
disks in V , a system w corresponding to v, a system y corresponding to x, (where
V ∪ W = M , V ∩ W = F ), such that

(1) (M,F (v)) ∼ (M,F1) and (M,F (x)) ∼ (M,F2),

(2) v ∩ x = ∅ and w ∩ y = ∅.

Proof of (2): Let (M,F ), v, w, x, y be as in (1). We show how to alter these so as
to satisfy (2). ...

a) Suppose there are closed curves in v ∩ x. Then there is a disk D in int(v)
such that D ∩ x = ∂D. Here ∂D bounds a disk D′ in x. We construct x′ from x by
replacing D′ by D and isotoping D off of v. By (2.4),

(M,F (x′)) ∼ (M,F (x)).′′

Remark 6. This is an example of what is called a “standard innermost disk argu-

ment”.

“b) Suppose there is an arc k in v ∩ x. Suppose the components v1, . . . , vn of v

and w1, . . . , wn of w are numbered so that ∂vh ∩ ∂wi consists of exactly one point of
intersection when h = i and is empty when h > i. Suppose that k lies in vj. Let U(k)
be a regular neighborhood of k in M . Let w̄ be a disk in U(k) ∩ int(V ) such that
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w̄ ∩ ∂U(k) = ∂w̄ in ∂U(k) ∩ int(V ) is not simply connected and meets vj in exactly
two points.”

Remark 7. See Figure 3.

vj

k

w
_

Figure 3: The disk vj (containing the arc k) and the disk w̄

“Clearly W ′ = W ∪ U(k) is a handlebody; the same holds for V ′ = V − U(k),
since the arc k lay in the disk vj. We set F ′ = V ′ ∩W ′ and orient F ′ via the induced
orientation on F ′ ∩ F . We further set

v′

i = vi and w′

i = wi, for i < j

v′

i+1 = vi and w′

i+1 = wi, for i > j.

Here vj ∩ V ′ consists of two disks. We denote the one containing the point of
intersection with wj by v′

j and the other by v′

j+1. Finally, we set

w′

j = wj and w′

j+1 = w̄.

Now v′ is a good system of (n + 1) disks in V ′ and w′ is a system corresponding
to v′; clearly

(M,F ′(v′)) ∼ (M,F (v)).

Analogous to constructing v′ and w′ from v and w we construct x′ and y′ from x

and y; (in the construction of y′ a disk analogous to w̄ is chosen, but we choose this
disk to be disjoint from the actual w̄).

In each step in (a) and (b) the number of components of (v∩x)∪(w∩y) is lowered
by at least one; hence after a finite number of steps v ∩ x = ∅. In the same manner
we obtain w ∩ y = ∅.”

4 Heegaard splittings of the 3-sphere

“(3.1) Theorem. Let M = X ∪G Y be an unstabilized Heegaard splitting of the
3-sphere. Then G has genus 0.
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It seems that noone has ever doubted that this theorem holds. For some time
it was assumed to be obvious (see [[3], footnote on page 193]). It was Reidemeister
who first indicated that there is in fact something to prove, [[3], page 192]. Lately,
references have become more cautious, [[2], (16.4)], [[6], Conjecture A].

In [[3], page 192] a proof is outlined. But it is questionable whether the indicated
method (studying certain level sets) can be turned into a proof. Arguing in this
fashion does not exploit the fact that the underlying manifold is S3. One merely
compares an unknown Heegaard splitting to a Heegaard splitting of genus ≤ 1; hence
there is a danger that one is arguing against the existence of the example mentioned
in (4.4.1) below.

Proof of (3.1): Let M = X ′ ∪G′ Y ′ be the Heegaard splitting of genus 0. By
the Reidemeister-Singer Theorem M = X ∪G Y and M = X ′ ∪G′ Y ′ are stably
equivalent. Hence by (2.5) there is a Heegaard splitting M = V ∪F W with the
following properties:

For ... n the genus of F , there is a good system v = v1 ∪ · · · ∪ vn in V and a
system w = w1 ∪ · · · ∪wn corresponding to v and a good system x = x1 ∪ · · · ∪ xn in
V and a system y = y1 ∪ · · · ∪ yn corresponding to x such that (M,G) ∼ (M,F (x))
and such that v ∩ x = ∅ and w ∩ y = ∅.

We will assume that among all Heegaard splittings with the above properties,
M = V ∪F W has been chosen to minimize n. We further assume that n > 0. We
will show that these assumptions lead to a contradiction.

... Suppose the components of v, w, x, y are numbered so that ∂vi ∩ ∂wj, respec-
tively ∂xi ∩ ∂yj, consists of exactly one point of intersection in the case that i = j

and is empty for i > j.

(3.2) Through a modification of y alone we ensure that y ∩ vn consists of at most
one point, (while maintaining y∩w = ∅). Proof by induction on the number of points
in y ∩ vn:

Case 1: The component yj of y meets vn in at least two points. Since vn ∩ w is a
single point there is an arc k in ∂vn that is disjoint from w such that k ∩ yj = ∂k.”

Remark 8. See Figure 4.

yjδ

vδ n

wδ n

k

Figure 4: The arc k

“Let U(w) be a regular neighborhood of w in M ; then yj ∪ k is contained in
W −U(w). Here W − interior(U(w)) is a 3-ball that yj cuts into two 3-balls, (this is
where we use the fact that M is the 3-sphere). Hence there is a disk D in W −U(w),
such that D ∩ ∂W = k and D ∩ yj = ∂D ∩ yj = closure(∂D − k).”

7



j

wn
+ wn

−

D
y

Figure 5: The arc D

Remark 9. See Figure 5.

“After a deformation of D that fixes ∂D (and after removing any closed curves
of intersection that may arise in the standard manner) D ∩ y is a system of disjoint
simple arcs none of which ends on D ∩ yj; hence we may assume (possibly after
replacing yj with some other component of y) that D ∩ yj = D ∩ y.

Let U(D ∪ yj) be a regular neighborhood of D ∪ yj in M . Then W ∩ ∂U(D ∪ yj)
consists of three disks. One of these intersects vn in the same number of points as
yj and is isotopic to yj in W . Let y1

j and y0
j be the other two. Then y1

j ∪ y0
j and vn

intersect in two fewer points than yj and vn. For each i, (y1
j ∪ y0

j )∩ xi consists of the
same number of points as yj ∩ xi. In particular, (y1

j ∪ y0
j )∩ xj consists of exactly one

point; we may assume this point lies in y1
j . We replace yj with y1

j .

Case 2:Every component of y meets vn in at most one point; but y ∩ vn consists

of at least two points. Then there is an arc k in ∂vn disjoint from w such that

∂k = k ∩ y = (k ∩ yi) ∪ (k ∩ yj);

where we may assume that i < j.”

Remark 10. See Figure 6.

δ δ

k

yy ji

δvn

δ jy’

Figure 6: The arc k along with the boundaries of vn, yi, yj, y
′

j

“Suppose that U(yi ∪ k ∪ yj) is a regular neighborhood of yi ∪ k ∪ yj in M . Then
W ∩ ∂U(yi ∩ k ∪ yj) consists of 3 disks. The first of these is isotopic to yi, the second
to yj; denote the third by y′

j. Then y′

j ∩ vn = ∅. The points of intersection of y′

j with
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xh correspond to those of yi ∪ yj with xh. Hence y remains a system corresponding
to x when we replace yj with y′

j.

(3.3) Case 1: y ∩ vn 6= ∅, hence by (3.2) it is exactly one point; we assume that
this point lies in yj.

a) We replace x and y by x′ and y′ as follows:

x′

m = vn and y′

m = yj,

x′

i = xi and y′

i = yi, if i < j,

x′

i−1 = xi and y′

i−1 = yi, if j < i ≤ m.

x′ is a good system of meridian disks and y′ is a system corresponding to x′; by
(2.4)

(M,F (x′)) ∼ (M,F (x)) ∼ (M,G).

b) We retain x′ and replace y′ by y′′ by setting

y′′

m = wn

and y′′

i = y′

i for i < m; y′′ is also a system corresponding to x′.

c) Let U(vn ∪ wn) be a regular neighborhood of vn ∪ wn = x′

m ∪ y′′

m in M . Let
Ṽ = V − int(U(vn ∪ wn)) and W̃ = W ∪ U(vn ∪ wn); let F̃ = Ṽ ∩ W̃ , with the
orientation induced by F̃ ∩ F .

Since vn ∩ w = vn ∩ wn and vn ∩ y′′ = vn ∩ y′

m, we have

wi ∩ ∂W̃ = ∂wi for i < n and

y′′

i ∩ ∂W̃ = ∂y′′

i for i < m.

Thus ṽ = ṽ1, . . . , ṽn−1 = v′

1 ∩ Ṽ , . . . , vj−1 ∩ Ṽ is a good system of n − 1 meridian
disks in Ṽ and w̃ = w1, . . . , wn−1 is a system corresponding to ṽ.

The same holds for

x̃ = x̃1, . . . , x̃m−1 = x′

1 ∩ Ṽ , . . . , x′

m−1 ∩ Ṽ and ỹ = y′′

1 , . . . , y
′′

m−1.

Here (M, F̃ (x̃)) ∼ (M,F (x)); furthermore, ṽ ∩ x̃ = ∅ and w̃ ∩ ỹ = ∅. Since F̃ has
smaller genus than F , this is a contradiction to our choice of M = V ∪F W .

Case 2: y ∩ vn = ∅. We define

x∗

m+1 = vn and y∗

m+1 = wm

x∗

i = xi and y∗

i = yi for i ≤ m.

Here x∗ is a good system of m + 1 meridian disks in V and y∗ is a system corres-
ponding to x∗.

If follows that (M,G) ∼ (M,F (x)) ∼ (M,F (x∗))#(S3, T ), contradicting the as-
sumption that (M,G) is minimal.”
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5 Remarks

“(4.1) Haken [[1], Section 7] has shown the following: Let M = V ∪F W be a Heegaard
splitting; suppose there is a 2-sphere in M that does not bound a 3-ball. Then there
is such a 2-sphere that meets F in a single curve. - From this and (3.1) is follows that
the manifolds S1 × S2# . . . #S1 × S2 possess only the known Heegaard splittings.

(4.2) Let N be a handlebody and let D be a system of disks in N such that
D∩∂N = ∂D. A manifold that is homeomorphic to a regular neighborhood of D∪∂N

in N is called a compression body and the boundary component corresponding to ∂N

is called its distinguished boundary.

Let M be an oriented manifold and let F be an oriented closed surface in M

that cuts M into two components, V and W , such that each of V and W is either
a handlebody or a compression body with F as its distinguished boundary; suppose
that the orientations specify V as the “first” part. Then we call M = V ∪F W a
Heegaard splitting relative to the partition (V ∩ ∂M,W ∩ ∂M) of ∂M . We define the
notions of “equivalence”, “#(S3, T )” and “stable equivalence” as for closed manifolds.

The Reidemeister-Singer Theorem holds in the form: Let M = V ∪F W and
M = V ′∪F ′ W ′ be Heegaard splittings of M relative to the partition (G1, G2) of ∂M ,
then M = V ∪F W and M = V ′ ∪F ′ W ′ are stably equivalent. Section 2 applies
almost verbatim (though all disks must of course be required to lie in the interior of
the manifold).

(4.3) The result of Haken mentioned in (4.1) also holds for Heegaard splittings
of manifolds with boundary (though in the statement “only” must be replaced with
“at most”); the proof is similar. In the same fashion one establishes the following:
Let M = V ∪F W be a Heegaard splitting; suppose there is a disk D such that
D ∩ ∂M = ∂D does not bound a disk on ∂M . Then there is such a disk that meets
F in only one curve. - From this and (3.1) we obtain the following: If M = V ∪F W

is an unstabilized Heegaard splitting of a handlebody then F is parallel to ∂M .

(4.4) We define a different notion of equivalence than the one used so far, namely
orientation preserving homeomorphism of pairs; for manifolds with boundary the
partition of the boundary must also be preserved. (How or to what degree the two
notions of equivalence coincide is entirely unknown.) The connect sum then turns
equivalence classes of Heegaard splittings into elements of a (commutative and asso-
ciative) monoid.

(1) The cancellation law is invalid in this monoid. For example, let M = V ∪F W

be a Heegaard splitting of genus 1 of a lens space not equal to S3. Then M = V ∪F W is
(in accordance with our new notion of equivalence) characterized by a pair of relatively
prime numbers (α, β), 0 < β < α. Since M = W ∪F V is characterized by (α, β′)
where ββ′ ≡ 1 mod α, M = V ∪F W and M = W ∪F V are generically not equivalent.
On the other hand, (M,F )#(S3, T ) ∼ (M,−F )#(S3, T ). For suppose D is a disk
in F and let U(F − int(D)) be a regular neighborhood of F − int(D) in M , and set
G = ∂U(F − int(D)). With an appropriate choice of orientation of G, (M,G) is a
representative of both (M,F )#(S3, T ) and (M,−F )#(S3, T ).

(2) Let M = V ∪F W and M ′ = V ′ ∪F ′ W ′ be Heegaard splittings of genus 1
of the lens spaces (5, 2) and (7, 2). By taking connect sums we obtain four Hee-
gaard splittings of the oriented manifold M#M ′ by considering (M,F )#(M ′, F ′),

10



(M,F )#(M ′,−F ′), etc. There are two possible cases: 1. These four Heegaard
splittings fall into more than two equivalence classes. 2. They form at most two
equivalence classes. - The first case appears more plausible than the second.”
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