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ADDITIVITY OF BRIDGE NUMBERS OF KNOTS

JENNIFER SCHULTENS

Abstract. We provide a new proof of the following results of H. Schubert: If

K is a satellite knot with companion J and pattern (V̂ , L) with index k, then
the bridge numbers satisfy the following: b(K) ≥ k · (b(J)). In addition, if K

is a composite knot with summands J and L, then b(K) = b(J) + b(L) − 1.

In “Über eine numerische Knoteninvariante” [1], Horst Schubert proved that
for a satellite knot K with companion J and pattern of index k, bridge numbers
satisfy the inequality b(K) ≥ k · (b(J)). He also proved that for a composite knot
K with summands J and L, the bridge numbers satisfy b(K) = b(J) + b(L) − 1.
His investigation was motivated by the question as to whether a knot can have only
finitely many companions. Together with the fact that the only bridge number one
knot is the unknot, his result showed that the answer to this question is yes.

Schubert’s main result may be recovered by a much shorter proof. This shorter
proof grew out of an endeavour to recast the problem within the framework of the
thin position of a knot. This framework turns out to be far more refined than
necessary. The proof here does not employ the notion of thin position. It does,
however, rely heavily on the idea of rearranging the order in which critical points
occur to suit one’s purpose, an idea fundamental to the notion of thin position of
knots and 3-manifolds. In this way it differs dramatically from Schubert’s proof. It
also differs from Schubert’s in that it relies on the consideration of Morse functions
on S3 whose level sets are spheres (except for the maximum and minimum) and
their induced foliations. This streamlines the terminology and the complexity of the
argument. Schubert’s proofs of the results reproven here involve 25 pages containing
15 lemmas which involve a consideration of up to three cases.

I wish to thank both Ray Lickorish and Marty Scharlemann for independently
suggesting that a more modern proof of this theorem would be a welcome addition
to the existing literature and for helpful conversations. I also wish to thank the
Department of Pure Mathematics and Mathematical Statistics at the University of
Cambridge for its hospitality.

In the following K will always be a knot in S3 and h : S3 → R a Morse function
with exactly two critical points. This last assumption guarantees that h induces a
foliation of S3 by spheres, along with one maximum that we denote by ∞ and one
minimum that we denote by −∞.

Definition 1. If the minima of hK occur below all maxima of hK , then we say
that K is in bridge position with respect to h. The bridge number of K, b(K), is the
minimal number of maxima required for hK . (Note that this number is independent
of whether or not we require K to be in bridge position. Indeed, if hK has n maxima,
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then the maxima of hK can be raised, and the minima of hK lowered, to obtain a
copy of K in bridge position with n maxima.)

Definition 2. Let J be a knot in S3 and denote a small closed regular neighborhood
of J by Ṽ . Let V̂ be an unknotted solid torus in S3 containing a knot L. A map of
V̂ into V maps L onto a knot K. We call K a satellite knot, J a companion of K,

V the companion torus of K with respect to J and (V̂ , L) the pattern (of K with
respect to J). The least number of times which a meridian disk of V intersects L

is called the index of the pattern. (It is also called the wrapping number.)
In the special case in which the index of the pattern is 1, this construction yields

the connected sum of J and L, and V is called a swallow-follow torus.

Definition 3. Suppose that K is homotopically nontrivially contained in a solid
torus V . Set T = ∂V . Then V is taut with respect to b(K), if the number of

critical points of hT is minimal subject to the condition that hK has b(K) maxima.

Definition 4. Consider the singular foliation, FT , of T induced by hT . Let σ

be a leaf corresponding to a saddle singularity. Then σ consists of two circles,
s1, s2, wedged at a point. If either s1 or s2 is inessential in T , then we call σ an
inessential saddle. Otherwise, σ is an essential saddle.

Lemma 1. (The Pop Over Lemma) Let h, K, V,FT be as above. If FT contains
inessential saddles, then, after an isotopy of T that does not change b(K) or the
number of critical points of hT , there is an inessential saddle σ in FT for which
the following conditions hold:

1) s1 bounds a disk D1 ⊂ T such that FT restricted to D1 contains only disjoint
circles and one maximum or minimum; and

2) for L the level surface of h containing σ, D1 cobounds a 3-ball B with a disk

D̃1 ⊂ L − T , such that B does not contain ∞ or −∞, and such that s2 does not
meet B (i.e., such that s2 lies outside of D̃1).

Proof. The first condition on σ may be satisfied by choosing σ to be an inessential

saddle in FT that is innermost in T . In this case L− ∂D1 consists of two disks, D̂1

and D̂2. Together with D1, both D̂1 and D̂2 cobound 3-balls B̂1, B̂2, respectively.
One of these 3-balls, say B̂2, contains either ∞ or −∞ and the other contains
neither.

If s2 ⊂ D̂2, we may take B = B̂1, so suppose s2 ⊂ D̂1. Without loss of generality,
we may assume that the critical point of D1 is a maximum. In this case, consider
a monotone arc α disjoint from K, beginning at the maximum of D1, passing only
through maxima of T and ending at ∞. Let a1, . . . , an be the points at which α

meets T , with an the highest such point.
Let β be the subarc of α between an and ∞ and let C′ be a collar neighborhood

of β. After a small isotopy, T ∩C′ consists of a small disk D = an × disk ⊂ T . Let
C′′ be a small 3-ball centered at ∞ that is disjoint from T . Set C = C′ ∪ C′′ and
consider T ′ = (T − D) ∪ (∂C − D). This describes an isotopy of T that replaces

B̂1 by B̂1 ∪ C and replaces B̂2 by B̂2 − C. After a small tilt which turns hT ′ into
a Morse function, the maximum an of hT has turned into a maximum of hT ′ at a
higher level. No critical points need have been introduced for hK and the number
of critical points of hT ′ is the same as that of hT .
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By induction, we may assume that α is disjoint from T except at its initial
point. Then if s2 ⊂ D̂1, this same construction using β = α describes an isotopy of
T augmenting B̂1 to contain ∞ and shrinking B̂2 to exclude ∞ without introducing
any critical points of hK or hT . We may then choose B to be the shrunk version
of B̂2.

fig. 1

Lemma 2. (The Pop Out Lemma) Let h, K, V,FT be as above. If V is taut with
respect to b(K), then there are no inessential saddles in FT .

Proof. Suppose there are inessential saddles. Alter T as in Lemma 1 so that there
is an inessential saddle σ satisfying the conclusions of Lemma 1. We may assume
that D1 contains a maximum and lies above L. (The other case is analogous.) Here
(K ∪ T )∩ int(B) can be shrunk horizontally and lowered via an isotopy to lie just

below D̃1 (and above any critical points of hK or hT below D̃1). This does not
change the nature or number of critical points of hK or hT .

Now D1 ⊂ T can be replaced by D̃1 to obtain T̃ . After a small tilt, T̃ bounds a
solid torus Ṽ containing a copy of K with b(K) maxima, and T̃ is isotopic to T , yet
hT̃ has two fewer critical points than hT . (A maximum and an inessential saddle
have been cancelled). This contradicts the assumption that V is taut with respect
to b(K).

fig. 2

Remark 1. Consider a bicollar of an essential saddle σ in FT . It has three bound-
ary components, c1, c2, c3, where ci is parallel to si for i = 1, 2. Since χ(T ) = 0,
it follows that c3 bounds a disk. If there are no inessential saddles, then the disk
bounded by c3 contains exactly one singular point, a maximum or minimum. We
consider this maximum or minimum, mσ, to be the maximum or minimum corre-
sponding to σ.

Conversely, if there are no inessential saddles in FT , then every maximum or
minimum corresponds to a saddle in this way, since χ(T ) = 0.

Definition 5. Let σ, c1, c2, c3 be as above. We may assume that c1 and c2 are in
the same level surface L of h. Then since L is a sphere, c1 and c2 cobound an
annulus in L. If a collar of c1 ∪ c2 in this annulus is contained in V , then σ is a
nested saddle.

Lemma 3. Let h, K, V,FT be as above. If V is taut with respect to b(K), then FT

has no nested saddles.

Proof. Suppose that there are nested saddles in FT .

Claim: There are also saddles in FT that are not nested.

Let σ be the highest saddle in FT . For c1, c2, L as above, let D̂1, D̂2 be the
(disjoint) disks bounded by c1, c2 in L. As σ is the highest saddle in FT , any

curve in T ∩ interior(D̂i) bounds a disk lying above L. This implies that D̂i is
isotopic to a disk whose interior is disjoint from T , i.e., lies either entirely in V or
entirely in S3 −V . Since ci is parallel to si, ci is essential in T . Furthermore, since
V is knotted, T is incompressible, whence ci is essential in the closure of S3 − V .
This implies that D̂i must be isotopic to a disk whose interior lies entirely in V (in

particular, D̂i is a meridian disk). Thus σ is not nested.
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If there are both saddles that are nested and saddles that are not nested, then
there must be an “adjacent” pair σ1, σ2 of essential saddles in T with σ1 nested, σ2

not nested, where “adjacent” means that one component, say C, of T − (σ1 ∪ σ2)
contains no critical points of hT . Consider the circles si

1, s
i
2 whose wedge is σi.

Without loss of generality, s1
1 and s2

1 meet C.
Again without loss of generality, we may assume that σ1 lies above σ2 and hence

that the component of T − σ1 lying above σ1 and meeting both s1
1 and s1

2 is a disk
D1

3. Construct a disk D by adding D1
3 to C and capping off s1

2 with a level disk
(a component of h−1(h(σ1)) − σ1). Note that by the discussion above, this latter
horizontal portion of D meets K and T .

We now proceed as in Lemma 1 and Lemma 2. Here ∂D = s2
1, so ∂D divides

h−1(h(σ2)) into two disks, D̂1 and D̂2, that cobound 3-balls B̂1 and B̂2 together

with D. By the proof of Lemma 1, we may assume that B̂2 contains ∞ and that
s2
2 ⊂ B̂2. We may thus shrink horizontally and lower (K ∪T )∩B as in the proof of

Lemma 2. The difference is that here K ∪ T meets D along its horizontal portion.
As (K ∪ T ) ∩ B is shrunk horizontally, the horizontal portion of D is lowered
while remaining horizontal. The portion of B lying above h−1(h(σ1)) is shrunk
horizontally as necessary. In the end, a product neighborhood below the original
horizontal portion of D ends up intersecting K ∪ T in vertical arcs and surfaces.

As in the proof of Lemma 2, the number of critical points of hT can be reduced
without altering the number of critical points of hK , contradicting the fact that V

is taut with respect to b(K).

fig. 3

Remark 2. If V is a knotted solid torus that is taut with respect to b(K) then all
saddles are essential and there are no nested saddles. It follows that if L = h−1(r)
for some regular value r, then V ∩ L consists of disks. More specifically, let σ1,

. . . , σn be the saddles in FT , and let Li = h−1(h(σi)). Recall that each saddle
σ corresponds to a maximum or minimum mσ of hT . Between the level surfaces
h−1(h(σ)) and h−1(h(mσ)) lies a portion Bσ of V that is a 3-ball. Here L1∪· · ·∪Ln

cuts V into Bσ1
, . . . , Bσn

and vertical cylinders.

Theorem 1. Suppose K is a satellite knot with companion J , companion torus Ṽ ,

pattern (V̂ , L) and index k. Then b(K) ≥ k ·b(J). In addition, if K is the connected
sum of two knots K1 and K2, then b(K) = b(K1) + b(K2) − 1.

Proof. We may assume that V is taut with respect to b(K). Then V is as described
in Remark 2. We obtain a Morse function on (S3, J) by making V very thin. So
b(J) is less than or equal to the number of maxima of hT=∂V .

Consider a maximum of T . It corresponds to a saddle σ, where σ is the wedge
of the circles s1, s2, bounding level meridian disks D̃1, D̃2 of V . Here D̃1 ∪ D̃2 cuts
off a 3-ball Bσ as in Remark 2. For distinct saddles σi and σj , Bσi

and Bσj
are

disjoint. Since at least k strands pass through both D̃1 and D̃2, there are at least
k maxima of K in Bσ. Whence b(K) ≥ k · b(J).

In the special case where K is the connected sum of K1 and K2, the sattelite
construction may be used with K1 the companion and (V̂ , K2) the pattern (of index
1). By renumbering, if necessary, we may assume that b(K1) ≥ b(K2). Then we still
obtain a Morse function on (S3, K1) as above. Furthermore, if, for each maximum

of T and σ, Bσ, D̃1, D̃2 as above, D̃i ∩ K ≥ 2 for i = 1, 2, then Bσ contains at
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least two maxima of K. Hence b(K) ≥ 2 · b(K1) ≥ b(K1)+ b(K2)−1. Thus we may
assume that there is a meridian disk contained in a level surface of h that intersects
K once.

Recall from Remark 2 that V is comprised of Bσ1
, . . . , Bσn

and vertical cylinders.
In a vertical cylinder, a meridian disk contained in a level surface that intersects
K once may be used to move all critical points upwards or downwards and out of
the cylinder. Thus the intersection of K with the cylinder becomes a monotone arc
and the number of critical points of hK is unchanged.

In Bσ1
, assume that D̃1 ∩ K = 1. We may assume that σ1 corresponds to a

maximum of hT . Let α be the subarc of Bσ1
∩ K that connects D̃1 ∩ K to the

closest maximum of K in Bσ1
. We may assume that this maximum is the highest

maximum of K in Bσ1
. Then consider a disk E in Bσ1

for which ∂E consists of four
subarcs: α, a1, a2, a3, where a1 and a3 are horizontal arcs connecting the endpoints
of α to ∂Bσ1

⊂ T , and a2 is an arc in ∂Bσ1
connecting the other endpoints of a1

and a3, that runs over the maximum of ∂Bσ1
, and has no other critical points. We

further require that E ∩ T = a2.
Claim: After an isotopy that does not change the number of critical points of

hK , E ∩ K = α.
Let p1, . . . , pk be the points in E ∩ K − α with pn the highest such point. A

small monotone subarc β of K containing pn may be replaced by a monotone arc
β′ that begins at one endpoint of K−β, travels parallel to E until it almost reaches
∂Bσ1

, then circles around to the other side of E along ∂Bσ1
and travels parallel to

E on the other side of E until it meets the other endpoint of K − β. See fig. 4.
The result is isotopic to K and has the same number of critical points as K, yet
one fewer intersection with E. The Claim follows by induction.

fig. 4

Now Bσ1
∩ K may be isotoped horizontally and downward, so that after the

isotopy this intersection consists of one arc with exactly one critical point. In the
vertical solid cylinder meeting Bσ1

at D̃2, D̃2∩K = 1 and D̃2 may be used to isotope
K so that all critical points are moved to Bσ2

(after relabelling) and K intersects
the solid cylinder in a single monotone arc. Here σ2 corresponds to a minimum, but
an identical argument shows how proceed. After a finite number of iterations of this
procedure, Bσi

∩K consists of a single arc with one critical point for i = 1, . . . , n−1
and K intersects all cylindrical portions of V in monotone arcs. Then, (since σn

corresponds to a minimum) ∂Bσ2
cuts K into K1−(subarc containing a minimum)

and K2−(subarc containing a maximum). This proves that b(K1#K2) ≥ b(K1)+
b(K2) − 1.

The other inequality follows by considering a copy of K2 in bridge position
realizing b(K2) lying below a copy of K1 in bridge position realizing b(K1) and
taking the connected sum.
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