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1. Introduction

This paper gives the classification of Heegaard splittings for (compact orientable
surface) X S'. In particular, I prove that the irreducible Heegaard splittings for
(closed orientable surface) x S' are unique. Michel Boileau and Jean-Pierre Otal
have proven this for the case (torus) X §' = T°. Martin Scharlemann and Abigail
Thompson have classified the Heegaard splittings for (closed surface) X [; this
includes the case (torus) X /= (annulus) X S'. I generalize methods in these
papers and use the results.

Section 2 describes the irreducible Heegaard splittings of (compact orientable
surface) X §'. Section 3 shows that any Heegaard splitting of (compact orientable
surface) X §' is obtained by amalgamating Heegaard splittings of (annulus) X §!,
(thrice punctured sphere) X §' and (closed orientable surface) X [ along incom-
pressible surfaces. Section 4 classifies the Heegaard splittings for (thrice punc-
tured sphere) x S'. Finally, § 5 shows that the amalgamation process yields the
Heegaard splittings described in § 2. J. Pitts and H. Rubinstein have announced a
proof of a similar theorem using different methods. I would like to thank Martin
Scharlemann for his helpful comments.

2. The standard Heegaard splittings of (compact orientable surface) x §'

A compression body is a 3-manifold W for which there is a closed connected
orientable surface F with W =(F x I) U (2-handles) U (3-handles), where the
2-handles are attached along F x {0} and the 3-handles are attached so as to cap
off any resulting 2-sphere boundary components. Define 9, W =F x {1} and
O_-W=0W —3,W. A compression body with 3_W = is called a handlebody .
A spine of a compression body W is a properly embedded 1-complex X such that
W collapses to X U3_W. A Heegaard splitting of a 3-manifold M is a pair
(W,, W,) of compression bodies such that WUW,=M and W,.NW,=56, W, =
d,W,. The surface F=3,W,=3,W, is called the splitting surface. Two
Heegaard splittings are equivalent if their splitting surfaces are isotopic in M.
The genus of a Heegaard splitting is the genus of its splitting surface.

An elementary stabilization of F is the splitting surface obtained by taking the
connected sum of pairs (M, F) # (S, T), where T is the standard unknotted torus
in $°. If the splitting surface of (V1, V2) is the result of a finite sequence of
elementary stabilizations of the splitting surface of (W, W,) then (V, V;) is a
stabilization of (W,, W,); in this case (V;, V,) is called a stabilized Heegaard
splitting. Observe that a Heegaard splitting is stabilized if and only if there
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are properly embedded disks D,, D, such that (D, dD;)c (W, 3. W,) and
{8D; N 3D,} = 1. For details on the definitions above, see [9].

Let Q be a compact orientable surface with boundary components B,, ..., B,.
Let X be a properly embedded 1-complex in Q and X, =X U (B, U...UB,).
For k>0, X is a spine of Q rel {B,, ..., B} if Q— X, is an open regular
neighbourhood of B, U ... UB,. For k=0, X is a spine of Q rel Jif 0 — X, is
an open disk.

Spines of Q rel {B,, ..., B} give rise to Heegaard splittings of 0 x S'. Let
Q X {point} be a copy of Q in Q x S'. For the case where k = n, suppose X is a
spine of Q rel {B, ..., By} and p is a point in X. Then

(X x {point}) U ({p} x S")

is the spine of a handlebody W,. Now W, = (Q x §') — interior(W,) is a compres-
sion body with 3_W, = 3Q x §'. (Remark 2.2 below explains why W, is a compres-
sion body.) Hence (W, W,) is a Heegaard splitting. For k < n, suppose X is a spine
of Q rel {B,,..., B.}; then (X x {point})U((X, — X)x S"') is the spine of
a compression body W, in Q xS'. In addition, W,=(Q x S') — interior(W,)
is a compression body with 9_W, = {B, x S', ..., B, X S§'}. Hence (W,, W,) is a
Heegaard splitting. In both cases, the Heegaard splittings obtained in this way
are called Heegaard splittings induced by X.

Figure 1 depicts a thrice punctured torus with boundary components
B,, B,, B;; X is a spine rel {B;}.

FiG. 1
Lemma 2.1. For a given collection {B,, ..., B} of components of 3Q, all
Heegaard splittings induced by spines of Q rel {B,, ..., B,} are equivalent.

The Heegaard splitting of Q X S' induced by a spine of Q rel {B,, ..., B;} and
its stabilizations are called the standard Heegaard splittings of Q xS' rel
{B,, ..., B}. A Heegaard splitting of Q X S' is standard if it is a standard
Heegaard splitting of Q X S' rel {B,, ..., B;} for some 0 <k <n.

Proof of Lemma 2.1. Let X be a spine of Q rel {B,, ..., B,}, and let
n(X,) be a closed regular neighbourhood of X, in Q. Then for k>0,
Q —interior(n(X ,)) is a closed regular neighbourhood of B, U... U B,. Hence it
follows from the isotopy uniqueness of regular neighbourhoods that, for X and
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X' two spines of Q rel {By, ..., B,}, n(X,) and n(X}) are isotopic in Q. For
k=0, Q —interior(n(X,)) and Q —interior(n(X')) are closed regular neigh-
bourhoods of points g and ¢’ in Q. Since Q is path connected, q can be isotoped
to coincide with g'. It then follows from the isotopy uniqueness of regular
neighbourhoods of ¢’ that (X ,) and n(X",) are isotopic in Q.

A product of n(X,) and an &-neighbourhood of {point} in S' is a regular
neighbourhood of X, in Q X S'. For k<n the lemma then follows from the
isotopy uniqueness of regular neighbourhoods of XU({(X:—X)xSY. For
k=n, let X and X' be spines rel 30, and let peX, p'e X' be such that
(X X {point}) U({p} xS') and (X x {point})U({p'} xS§') are spines of
Wi, Wi. Since n(X,) and 7(X’) are isotopic and path connected, p can be
isotoped to coincide with p’. The lemma then follows from the isotopy
uniqueness of regular neighbourhoods of X U ({p'} x §").

ReEMArRk 2.2, If (W,, W,) is the standard irreducible Heegaard splitting rel
{Bi, ..., By} of QxS then (W,, W) is the standard irreducible Heegaard
splitting rel {By.,, ..., B,} of Q x S'. This is obvious in the case where n =0,
since if (W,, W,) is the standard irreducible Heegaard splitting rel &, then
(W, W), which is equivalent to (W,, W,), is also the standard irreducible
Heegaard splitting rel &J. '

In the case where 0 <k <n, let X be a spine of Q rel {By, ..., B} and let Y be
a spine of Q rel {B,.,, ..., B,}. Let I,, L, be intervals in S' such that S! = LUL
and oI, = 3I,. Then

W, = (closure(n(X ,)) X 1,) U (closure(n(X, — X)) X L,)
=((Q@ —n(B,U...UBy)) x 1)U (M(Be. U...UB,) X L)
=((@—n(Y. =) XI)U(Q —n(Y)) X L)

and hence W, = (closure(n(Y, — Y)) X {,) U (closure(n(Y)) x L,). The other case
follows similarly. In this sense the standard irreducible Heegaard splitting rel
{By,..., By} is dual to the standard irreducible Heegaard splitting rel
{Bi.1, ---, B}

The main theorem in this paper, Theorem 5.7, is that all Heegaard splittings
of O xS' are standard. The following definitions lay the foundation for an
inductive proof of the main theorem by enabling cutting and pasting of manifolds
with Heegaard splittings.

An essential disk in (M, F) is a disk D in M such that D N F = 9D and 3D is
essential in F. A Heegaard splitting (W,, W,) is reducible if there exist essential
disks D;c W, and D, W, such that 9D, = 3D,. 1t is weakly reducible if there
exists a disjoint collection of disk A = A, U A;, such that both A, and A, are
non-empty, and each disk D;,c A, is an essential disk in W.. In particular,
|8A; M 3A,| = 0. The collection A is called a weakly reducing collection of disks
for (Wi, W,). (Note: in the terminology of [2] a weakly reducible Heegaard
splitting is not strongly irreducible; in the terminology of [1] it is fortement
réductible.) It is well-known that a stabilized Heegaard splitting whose genus is
greater than 1 is reducible, and further, that a reducible Heegaard splitting of an
irreducible 3-manifold is stabilized. Hence in the present context, a Heegaard
splitting is stabilized if and only if it is reducible.
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Let § be a surface in a 3-manifold M, and let A be a disjoint union of disks in
M such that ANS =J0A. Denote by o(S ; dA) the surface obtained from § by
performing ambient 2-surgeries along the components of A. Let F be the splitting
surface for a given Heegaard splitting and A a weakly reducing collection of
disks. Set F* = o(F ; 9A) — (2-sphere components of o(F ; 3A)). Let C be the
closure of a component of M — F*. Then 3C is the union of 3M N C and some
components of F*. Denote the latter by 3.C. Let C* be the union of C with a
collar 3:C X I of 3pC lying in M — interior(C).

ReMmark 2.3. If F*=(J, then the o(F ; 3A) are 2-spheres. In this case the
Heegaard splitting defined by F is reducible (see {2, 3.1] or, for more detail, [9,
5.1]). It follows that for an irreducible but weakly reducible Heegaard splitting, A
can be chosen so that F* is a non-empty collection of incompressible surfaces.

Figure 2a depicts a weakly reducing collection of disks D, U D, for a Heegaard
splitting of T°. Figure 2b depicts F*.
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Lemma 2.4. The Heegaard splitting (W,, W,) of M induces a Heegaard splitting
(WY, W3 of C*.

The splitting (W, W3) is called the induced Heegaard splitting of C*.
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Proof. By construction, Cc W, U n(A)), with i #j; say Cc W, Un(A,). Set
Wi =W, NC. Now C is obtained from W* by attaching 2-handles, so, dually, W7
is obtained from C by drilling out tunnels with ends on 3rC. Thus WT is
connected. Since WY is a single component of W, — n(A,), it is a compression
body.

Now W3 = C* — W{ is obtained from the collar Ir-C X I by attaching 1-handles
which are the interiors of the tunnels. Hence W3 is a union of compression
bodies. Since 3, W{ =3, W}, W} is connected and is a single compression body.
Hence (W{, W) is a Heegaard splitting.

ReMARrk 2.5. Induced Heegaard splittings have the property that 3.C X [ is
contained in one compression body.

The following defines a notion of complexity for the weakly reducing collection
of disks A. For a closed surface S, set &(S) =Y (1 —x(S,)), where the sum is
taken over all components of § which are not 2-spheres. Define the complexity ¢
of A by c(A) =é(F) — &(F*).

REMARK 2.6. Note that ¢(A) <é(F), so A can be chosen so as to maximize
c(A). If ¢(A) is maximal, then the Heegaard splittings induced on the com-
ponents of M — F* are not weakly reducible. Indeed, let C be the closure of a
component of (Q X S') — F*_ If the induced Heegaard splitting (U,, U,) on C* is
weakly reducible, let A’ be a weakly reducing collection of disks for (U,, U,).
Then c(AU A") > c(A).

A weakly reducing collection of disks enables the cutting of a manifold with a
Heegaard splitting into components with Heegaard splittings. The following
notion of amalgamation enables the pasting of manifolds with Heegaard
splittings so as to obtain a manifold with a Heegaard splitting.

Let N, L be 3-manifolds with R a closed subsurface of AN, and $
a closed subsurface of AL, such that R is homeomorphic to S via a homeo-
morphism h. Further, let (U,, U,), (V,, V,) be Heegaard splittings of N, L such
that n(R)c U, n(S)c=V,. Then, for some R'cON—-R and §'c oL - §,
Ui=n(RUR’)U(1-handles) and V,=n(SU §')U (1-handles). Thus n(R) is
homeomorphic to R x [ via a homeomorphism f and n(S) is homeomorphic to
§ X1 via a homeomorphism g. Let ~ be the equivalence relation on NU L
generated by

(1) x~yifx, yen(R)and pyof(x) =p,°f(y),

(@) x~yifx,yen(S)and p,og(x) =p,og(y),

(3) x~yifxeR, yeSand hx)=y,
where p, is projection onto the first coordinate. Perform isotopies so that for D
an attaching disk for a 1-handle in U,, D' an attaching disk for a 1-handle in V,,
[DIN[D']=D. Set M=(NUL)/~, W,= (UuVy)/~, and W,=(U,UV,)/~.
In particular, n(R) U n(S)/~=R, S. Then W, =V, U n(R') U (1-handles), where
the 1-handles are attached to 3, V, and connect dn(R') to 3, V,, and hence W, is
a compression body. Similarly, W, is a compression body. So (W, W,) is a

Heegaard splitting of M. The splitting (W,, W,) is called the amalgamation of
(U, Uy) and (V,, V,) along {R, S} via h.
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ReMArk 2.7. The amalgamation of a Heegaard splitting of genus n of a
manifold N and a genus / Heegaard splitting of a manifold L along boundary

components R = 3N and § = 3L of genus & has genus n +/ — k.

Figure 3a partially depicts two Heegaard splittings of 3-manifolds with
boundary. Figure 3b partially depicts an amalgamation.
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In the following proposition, F = (| 3C*)— oM, where the union is taken
over the components of M — F*. Note that F is homeomorphic to two paraliel
copies of F*. There is a natural map between the two homeomorphic copies of
F* in F defined by the collar structure of the C* and the identity map on F*. This
natural map will be denoted v.

Proposition 2.8. Let (W,, W,) be a Heegaard splitting of M with a weakly
reducing collection of disks A. Let C,, ..., C, be the closures of the connected
components of M — F* and let (W}, W3), ..., (W7, W3) be the induced Heegaard
splittings  on i, Ci. Then (W;,W,) is the amalgamation of
(W1, WY, ..., (W, W3) along F via v.

Proof. The proof proceeds by induction on n.

Step 1. If M — F* consists of two components C,, C,, let (W}, W}), (W3 wd)
be the induced Heegaard splittings on C}, CZ. Then by definition (W;, W,) is the
amalgamation of (W}, W}) and (W3, W32) along F.

Step 2. Suppose it is true that whenever #|M — F*| <n, then (W, W,) is the
amalgamation along F of the induced Heegaard splittings on the components of
M—F* Let AA=ANC, and A"=A-A’ and define (F')*, (F"y*, F', F"
analogously to F*, F. Then M — (F’)* has two components, the closures of which
are C, and C, where C=C,U... UC,. Moreover, the closures of the com-
ponents of C — (F")* are C,, ..., C,.

The induced Heegaard splitting (U, U,) on C* induces Heegaard splittings on
C3, ..., C equivalent to (W}, W3), ..., (W, W3). By the inductive assumption,
(Ui, Uy) is the amalgamation of (W3, W3), ..., (W7, W5) along F". By Step 1,
(W, W;) is the amalgamation of (W{, W}) and (U,, U,) along F'. But F=F'UF”,
and hence (W;, W,) is the amalgamation along F of (W}, W), ..., (W7, W%).

Let Q,, @, be compact orientable surfaces with boundary components
{Ai, ..., A}, {By,....,B,},and let 1,=A,U...UA, and 1, = B,U...UB,, for
some 0 <k <n, m. Let Q be the surface obtained from Q, U (@, by identifying 1,
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and 7,. Let X be a spine of Q| rel A, where 1, © A = 3Q,, and let Y be a spine of
0, rel 3Q, — B, where 1, B < 3Q,. Then O~ n(X) is a collar of A and hence
contains a collar of 7,, and n(Y) contains a collar of 38 and hence contains a
collar of 7,. Isotope Y so that it intersects the collar of 7, in fibres. Together, the
collars of 7, and t, form a bicollar of 7, = 7, in Q. Let ~ be the equivalence
relation on Q which identifies all points in each interval fibre of the bicollar. Let
q: Q— @/~ be the quotient map. Since ¢ merely collapses an imbedded annulus
to its core circle, Q = Q/~.

LemMMA 2.9. The image of n(X,) U n(Y.) under the quotient map q: Q— Q/~
is a regular neighbourhood of a spine of Q rel ((A-7)U(8Q,— B)).

Proof. Each endpoint y of Y in 7, liecs on one end of an interval fibre of the
bicollar; the other end is a point y’ on 35(X). The track of y' under a retraction
n(X)— X is, generically, an interval with one end at y' and the other end on X.
Let Z be the proper graph in Q obtained from X UY by attaching to each end of
Y incident to 7, the fibre connecting y to y' and the interval with one end at y'
and the other end on X. Then the only effect of g on Z is to collapse subintervals
of some of its edges. So g(n(X,) U n(Y,)) can be regarded as just 7(Z) in Q. In
particular, it is the neighbourhood of some graph in Q. To see that Z is a spine
rel ((A — 7,) U(8Q, — B)), observe that Q — n(2Z) is

Q = (n(X.) Un(Y,) Ubicollar) = n(A - 7,) U n(3Q, — B).

Prorosiion 2.10. The amalgamation of standard Heegaard splittings  of
(compact orientable surface) x §', via a homeomorphism respecting the product
structure induced on the toral boundary components along which the amalgama-
tion occurs, is a standard Heegaard splitting of (compact orientable surface) x S'.

Proof. 1t suffices to prove the lemma for standard irreducible Heegaard
splittings. Let (U,, Us,), (V,, V;) be standard irreducible Heegaard splittings of Q,
rel A, Q, rel B with 7, A, 1, B for 1, x8', 1,xS' the toral boundary
components along which the amalgamation occurs. Let X be a spine of Q, rel A,
and Y a spine of Q, rel 30, — B. In particular, for I, I, as in Remark 2.2,

U, = (closure(n(X ,)) x I,) U (closure(n(X, — X)) x L),
V, = (closure(n(Y.)) x 1,) U (closure(n(Y, — Y)) X L,).
So
Wi=U,uV,/~
= ((closure(n(X ) U n(Y.)) X 1,) U (closure(n(X , ~ X) U (Y, = ¥)) x L))/~
= (closure(n(Z.)) x I;) U (closure(n(Z, — 2)) x L),

for Z a spine of Q rel (4 —1,) U(3Q, - B), by Lemma 2.9. Note that here it is
essential that the homeomorphism via which the amalgamation occurs respects
the product structure of 7, X S' and 7, x §'. Hence (W,, W,) is standard.

3. Weak reducibility and incompressible surfaces

In this section it is shown that for compact orientable surfaces of positive genus
or with sufficiently small Euler characteristic all Heegaard splittings of (compact
orientable surface) X ' are weakly reducible.
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Heegaard splittings correspond to Morse functions. Let (W;, W,) be a Heegaard
splitting of the 3-manifold M. Then W; = ((3_W, x I) U (0-handles)) U (1-handles)
and W, = (0, W, x I) U (2-handles) U (3-handles), so

WU W, = ((8_W, x I) U (0-handles)) U (1-handles) U (2-handles) U (3-handles)

gives a handlebody description of M. Excess 0-handles can be cancelled with
1-handles and (dually) excess 3-handles with 2-handles, after which there is at
most one 0-handle (precisely when W, is a handiebody), and at most one 3-handle
(precisely when W, is a handlebody). This handlebody description can be used to
define a Morse function & on M (apply [6, Theorem 3.12] repeatedly). Call & a
Morse function induced by (W,, W,). Then h can be taken to have singular values
0<a,<...<a, <by<..<b,<1, with the critical point at level q, (i =1, ..., m)
the centre of a 1-handle, and the critical point at level b, (j =1, ..., n) the centre
of a 2-handle. For the converse, constructing a Heegaard splitting from a Morse
function, see [7, 1.3].

Let y be a properly embedded arc or circle in Q X S'. Assume that k|, is a
Morse function on y, and that the critical values of k|, are distinct from the
critical values of h on Q X S'. Let /), ..., I, be the critical values of y, where
0=l,<l,<...<l,=1. Let x,, ..., x,, be regular values of A such that [,_, <x, <
l,. Then each h™'(x;) is a level surface S, Define the width of y to be
[SoNy|+...+1S,Ny|. Alternatively, width(y)=1Y,|(h|,) '(x)]. An isotopic
copy of y is in thin position if it minimizes the width of y. An isotopic copy of y is
in thin position rel 3y if it minimizes the width of y among the isotopy class of y
rel dy.

Proposimion 3.1. If genus(Q) >0 or x(Q)<—1, then any Heegaard splitiing
(W,, W,) of Q x S" is weakly reducible.

That is, as long as the compact orientable surface Q is not a sphere, a disk, an
annulus, or a thrice punctured sphere, then any Heegaard splitting of Q X S' is
weakly reducible.

The cases where 3Q = and 3Q # (J are proved separately. In both cases the
idea is to find a level surface of h which can be compressed so as to yield
incompressible surfaces, which, in the case where 3Q #J, are not boundary
parallel. Combined with Lemma 3.2, this shows that (W,, W,) is weakly
reducible.

LemMa 3.2. Let F be the splitting surface of a Heegaard splitting (W, W,) of M.
Suppose T < F is a compact subsurface so that every component of 3T is essential
in F. Suppose further that each component of 3T bounds a disk in M disjoint
from interior(T). Either 3T bounds a collection of disks in a single compression
body W,, or F is weakly reducible.

Proof. See [9,2.6].

Suppose Q is a closed surface of genus g >0. Then Q can be obtained by
identifying opposite sides of a 4g-gon Y. In Q the boundary of Y can be viewed
as a bouquet of 2g circles with base point p. Then JY x S' is a collection
Ty, ..., T,, of essential tori in Q X S' intersecting in the curve y={p}xS"
Alternatively, let G be the solid torus Y x S'. The boundary of G is the union of
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4g annuli A,, ..., Ay, one for each side of Y. Call these annuli the sides of G.
Then Q x S' is obtained from G by identifying opposite sides A, and A of G,
An arc in a side of G is essential if it spans the side; otherwise it is inessential. A
circle ¢ in 3G is strictly essential if it intersects each side only in essential arcs.

A properly embedded surface S in Q X S' is vertical at qes if pi: (S)—
©(Q) is singular at q. The surface S is vertical if it is vertical for all ¢ in S. It
follows that a vertical surface is a union of tori and annuli, each projecting to a
circle or a proper arc in Q. Say that S is horizontal if it is nowhere vertical. In
particular, p{ is everywhere non-singular, so Pils: S—Qisa covering map. In
addition, S is strictly horizontal if p3: ©(S)— ©(S") is always trivial. That is, §
is strictly horizontal if S = Q x {ti, ..., t,} for some {¢,,...,1,} = S".

Suppose there is an inessential arc a of h='(ryN A,, for some i. Then a,
together with a piece y' of y, bounds a disk D in A Ifint(D)NA~'(r) is empty
or consists of simple closed curves, then y' is above h™'(r) if it lies on the side of
h~(r) containing &~ '(1); otherwise it is below. If y' is above h~'(r), ais called a
low arc; if v’ is below h='(r), a is called a high arc. Note that r could be a
critical value.

LEMMA 3.3, Let h: Q x 8'— |0, 1] be a Morse function such that h|y.s1, hl,,
fori=1,...,2g, and h|, are Morse Junctions with distinct critical values. If yisin
thin position with respect to h, then there is a regular value r of hloxsi, |z, for
i=1,...,2g, or h|, such that either

(1) there is an essential vertical torus in QO X S which contains a level curve
L= h™\(r) parallel to vy, or

(2) h™'(r) N (sides of G)# Q& and all components of h™'(r) N (sides of G) are
strictly essential.

Proof. Since y is compact, h|, takes on a maximum and a minimum value. Let
m be the largest minimum value of 4|, and M a maximum value of h|, such that
h|, has no singular values in (m, M). Set

R™ ={re[m, M]| h~\(r) contains a high arc in some A},
R™ ={re[m, M]| h~'(r) contains a low arc in some A}

Since m is not a critical value of th,, for i=1, ..., 2¢, R™ contains a
neighbourhood of m in [m, M] and is hence non-empty. Similarly, R~ # &, since
it contains a neighbourhood of M in [m, M]. Note that R~, R* are closed, by
[4,§4].

Case 1: R"UR™ #[m, M]. Here [m, M]—(R"UR™) contains an open
interval; hence there is a value r e [m, M] - (R UR™) such that r is a regular
value for hlo.si, hlr (i=1, .., 2g), h|,. By definition, all components of
h™'(r) N (sides of G) are strictly essential.

Case 2: R* UR™ =[m, M]. We claim that there is a regular valuere R*NR™.

Suppose there is a singular value r' e R* N R™. Let @, be a high arc and a, a
low arc in A7'(r") with @y cA;, ayc A, If both &, and w, are singular leaves,
their singularities must coincide, since no. two singularities occur at the same
level. Hence «a,, &, are both on A;, for some i. Furthermore, a, and a, must
intersect in an arc, due to gradient considerations. But all possible such cases
contradict the thin position of y. Thus only &, or a,, say «, is a singular leaf.
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Then there is an £’ such that for all r € (r' — &', r'), r is a regular value of h|oxs,
hlr (i=1,...,28), h|,, and k™' (r) N A, is a high arc; and there is an £” such that
forall re(r' — €', r' + ¢"), ris a regular value of iy, b7, (i=1, ..., 2g), hl,,
and h~'(r)N A, is a low arc. Set € =min{e’, £"}. Then there is a regular value r
of hlgxs, h|7. (i=1,...,28), h|,in (+' — & r') = R* N R™. This proves the claim.

Now R* N R~ is non-empty, and hence by the claim it contains a regular value
rof hloxs, hl7 (i =1, ..., 2g), h|,. By thin position, the high arc a, € A~ '(r) and
the low arc @, € h™'(r) have the same endpoints in y, although they may lie on
different annuli A, and A, If i=j, o, Ua, is a level curve parallel to y on the
essential vertical torus 7. If i #j, { = o, U «, is a level curve [ parallel to y on the
essential vertical torus (7;) +,(T) (for the definition of the double curve sum +,
see [8, p. 560]).

DeriniTion. Let At () — R be a Morse function on a surface Q and let ® be the
singular foliation by level sets of # on (. Suppose a singular leaf y is contained in
the interior of Q. By Morse general position, y contains a single critical point, so
y is a wedge of two circles. If both circles are essential in Q, then y is an essential
saddle of ®. If all three components of dn(y) are essential in Q then y is
completely essential.

Lemma 3.4. Suppose Q is a compact surface and h: Q — R is a Morse function
which is constant on each component of 3Q. Let £(Q)=max{2—|3Q]|, 0}. Let
D be the singular foliation by level sets of h on Q.

(a) At least €(Q) — x(Q) leaves of ® are essential saddles.
(b) At least —x(Q) are completely essential.

In particular, if genus(Q) >0 or x(Q) <0, ® contains an essential saddle. If, in
addition, 3Q # O, then ® contains a completely essential saddle.

In Fig. 4 all saddles are essential, but only ¢, and o, are completely essential.

FiG. 4

Proof. The gradient of A defines a vector field v on Q. The vector field v has
zeros at critical points of A. If the critical point is a maximum or minimum, the
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index is +1; at a saddle it is —1. By the Poincaré—Hopf index theorem, the sum
of the indices is y(Q).

The proof of the lemma is by induction on the number # of interior maxima
and minima. Since Q is compact, h has at least one minimum and one maximum
on (), and hence at least £(Q) interior extrema, so n = €(Q). There are n — x(Q)
saddles. If all are essential, as must be the case when n =0, then (a) follows.
Otherwise, at least one of the imbedded circles contained in a singular leaf
bounds a disk D in Q. It is easy to redefine 4 near D (by first making it constant
across D, then tilting slightly) so it has no singularities at all near D. This
removes the inessential saddle and reduces n by at least one (an extremum in
interior(D) is removed). This completes the inductive step.

For (b) consider the surface O obtained from Q by removing each singular leaf
y which is an essential saddle, but not a completely essential saddle, together with
the disk bounded by a component of an(y). If there are k such leaves, then
x(Q) = x(Q) and |3Q| = |3Q| + 2k. If k =0, then (b) follows from (a). If k >0,
then &(Q)=0. The argument used in (a) still applies to the vector field ¥ on 0
obtained from restricting v to (. So the number of saddles in O is at least
Q) - x(Q) = —x(Q). But, by construction, all essential saddles in O are
completely essential saddles in Q.

LemMA 3.5. Let h be a Morse function on a torus T and ® be the singular
foliation of T given by the level sets of h. Suppose « is a regular essential leaf of ®
and B is a curve in T which intersects « in a single point. After an isotopy which
fixes a neighbourhood of aN B, one can assume that B passes through every
essential saddle in @ and that h|; is monotonic between two essential saddles. In
particular, each regular leaf of & which intersects B in a regular point of h|, is
isotopic to a. Furthermore, this isotopy can be chosen so that it does not increase
the width of B.

Proof. See [1, Lemma 2.2].

RemARrk 3.6. The proof of [1, Lemma 2.2] also shows that Lemma 3.4 is true in
a slightly different setting. Replace T by an annulus A, and 8 by a spanning arc
on A with 38 c 34, and suppose that 4 is constant on each component of 9A.
Then after an isotopy which fixes a neighbourhood of & N B and of 38, one can
assume that f passes through every essential saddle in ® and that h|ﬁ is
monotonic between two essential saddles. In particular, each regular leaf of ®
which intersects 8 in a regular point of hlg is isotopic to a. Furthermore, this
isotopy can be chosen so that it does not increase the width of B rel 3B. This fact
is used in § 4.

In Fig. 5, B satisfies the above conditions.

Lemma 3.7. Let Q be a closed surface with genus(Q) >0. Then any Heegaard
spliting (W, W,) of Q x 8" is weakly reducible.

In the proof of Lemma 3.7 two cases need to be considered. In one case, the
proof relies heavily on the following result.
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SuBLemMmA 3.8. Let Q be a surface containing an essential simple closed curve B.
Suppose h: Q- R and h],; are Morse functions and B is in thin position with
respect to h. Let ®' be the singular foliation of Q given by the level sets of h. Then
there is an essential regular leaf which intersects § transversely.

Proof. Consider § < Q X {point}, where S is the smallest union of leaves
satisfying:

(a) if yN B+ for some leaf y € ®', then y = §;

(b) if D = Q x {point} is a disk such that 3D = S, then D = §.
It suffices to prove the following claim.

Claim. The surface S has the following propertiés:

(1) BcsS;

(2) S is a subsurface of Q x {point}, possibly with boundary;
(3) S contains an essential regular leaf y’ intersecting S.

Proof of Claim. (1) This is obvious from the definitions.

(2) Let p € S. Either p lies on a leaf y of ®" for which y N B+, or p lies in
the interior of a disk D such that 3D < S. If p lies on a regular leaf y € &' which
intersects B transversely, then for some bicollar I of y consisting of leaves in @',
all leaves in T also intersect 8, so T ®’. If p lies on the regular leaf y e @’
which is tangent to §, then on one side of y a collar y X I of regular leaves also
intersects B, all but y transversely. If p lies on a singular leaf y € ®', consider a
bicollar neighbourhood P = n(y) consisting of leaves in ®'. Note that P is a
thrice punctured sphere. Since the singular leaf y intersects B transversely by
Morse general position, y must intersect P in at least one arc with endpoints on
different boundary components for P small. Set 8’ = BN P. Now y cuts P into
three annuli A,, A,, A5, and B’ intersects at least two of the annuli, say A,, A,.
So A, A, §. Possibly A; < S. In all the above cases, and certainly in the case
where p eint(D) = S, p lies in a region in S homeomorphic to the plane or the
upper half plane.
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(3) Since B <= is essential in Q X {point}, S is not simply connected. Hence
x(8)=<0. If S is an annulus, then a regular leaf in the interior of S near 35 is an
essential regular leaf of ®' which intersects transversely. Since this leaf is
essential in S, it is also, by construction of S, essential in Q X {point}.

It § is not an annulus, then £(S) — (S) > 0. By Lemma 3.4, ®'|; contains an
essential (possibly singular) leaf. If this essential leaf is regular, the result
follows. If this essential leaf is singular, then for P, A, A,, A, as above, either 4,
or A, contains an essential regular leaf intersecting f.

Proof of Lemma 3.7. Let h: Q x S'—[0, 1] be a Morse function induced by
(W), W), which satisfies the hypotheses of Lemma 3.3. Then only two cases need
to be considered.

Case 1. There is a regular value r of h|g .51, k|7 (i=1, ..., 2g), h|, such that
there is an essential vertical torus T in O x §' which contains a level curve
@ € h™(r) parallel to y.

Let B =(Q x {point}) N T and let ® be the singular foliation of T by level sets
of h. By Lemma 3.5, one can assume that P passes through every essential saddle
of @ and that /|4 is monotonic between two essential saddles.

By Sublemma 3.8 there is an essential regular leaf y, in Q X {point} which
intersects f transversely. Perhaps by choosing a nearby leaf one may assume that
r=h(y,) is a regular value of 4|y .5 h|;. By Lemma 3.5, a leaf Y2in A~ (r)N Tis
a regular leaf isotopic to « on T, whence parallel to y. Thus in 7, (Q x $') =
m(Q) X ,(SY), [villy:'llyi ' W[v2) = L. Let n(y, Uy,) be a closed regular neigh-
bourhood of y, Uy, in A7'(r). Then dn(y, U y,) bounds a disk D in QxS
Since £7'(r) is contained in a compression body and hence cannot be an essential
torus, 37(y, U y,) must be essential in h~'(r). Without loss of generality, assume
that D is disjoint from the interior of n(y1Uy,). (For y, is parallel to y and
hence can be isotoped to lie in the essential torus i X S'. Then n(y,U Y2) is
isotopic to a closed regular neighbourhood #(y, U y,) of y, U Y, in y; xS and D
can be chosen to be the inverse image of (y,xS"')—n(y,Uy,) under this
isotopy.)

The surface F is constructed from h~!(r) by performing ambient 1-surgeries
along arcs lying in 27'([r, 1]). These arcs can be chosen so that their endpoints
are disjoint from a closed regular neighbourhood n(y,1Uy,) of y,Uv,in F. Then
3D =3n(y,Uy,) is essential in F. Let T = n(yiUy,). Then o(T ;3D) is an
essential vertical and hence incompressible torus. The handlebodies W, W,
cannot contain incompressible tori. So D is not contained in a single handlebody.
Hence (W;, W,) is weakly reducible by Lemma 3.2.

Case 2. There is a regular value r of hIst:, h|T‘_ (i=1,..,29, h|y such that
h~'(r) N (sides of G) # and all components of A~'(r) N (sides of G) are strictly
essential.

Claim. Each component / of h~'(r) N 3G is a meridian u of 3G.

Let py, ..., p« be the points in /N y chosen in order around y.Fori=1,.. .,k
choose a point ¢; so that p,, q,, ..., P« 4k are also chosen in order around y. This
can be done even if k=1. Set E, = Q x {q:} and let u, = E, N 3G, a meridian.
Subarcs of y; are identified pairwise in Q x S' along with the annuli they are
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contained in. Endow y; with the orientation induced by that of Q x S§!. Set
= u

On A;, define the slope of an arc @ in [N A, to be the algebraic intersection
number of a with p*. Since all arcs in A~ '(r) N A, are spanning arcs, adjacent arcs
in I N A; have the same slope up to sign, which is determined by the orientation of
the arc. Further, since /N 3G is strictly essential, adjacent arcs have the same
orientation. Thus on a given component /, the slope m, is well-defined on A,
Opposite annuli A; and A,z are identified in Q X S', whence s, = —Si+2,- Now as
[ winds around 3G once, ! traverses opposite annuli, so ¥, s, =0. Hence / is a
closed curve which is a meridian p. Note that the product structure of QxS'is
crucial in this argument. This completes the proof of the claim.

Let /,, ..., [, be the components of (A~'(r)) N 3G, each a I-complex in £ 7'(r).
Let T be a closed regular neighbourhood of {,U... U/, in h~'(r). Consider
A=(QXSY—-3(n(l,U... UL)), where n(l, U... Ul) is an open regular neigh-
bourhood of /;U... U/, and TN A =3T. By the claim, each component of 3T
bounds a disk in A. Call these disks D,, ..., D, and set A = (D,U...UD,). In
G, TUA is a collection of disks. In Q x §' this collection of disks is identified
with an incompressible surface. Since neither W, nor W, contains an incompres-
sible surface, (W;, W,) is weakly reducible, by Lemma 3.2.

The proof of the analogous result in the case where 3Q # O uses the existence
of completely essential saddles in a singular foliation of Q by level sets of & when

x(@)=-1

LemMma 3.9. Suppose 3Q # & and either genus(Q) > 1 or x(Q) < ~1. Then any
Heegaard splitting (W,, W,) of QO x S" is weakly reducible.

Proof. Let h be a Morse function induced by (W,, W,). And let B\, B> be
non-parallel essential arcs in Q with 38,, 33, < B, for some component B of 30.
Set A; = B, x §'. Identify B, with A, N (Q x {p}) for some p € S'. Without loss of
generality, assume that &, h|g.(,,, h|a, h|s, are Morse functions with distinct
critical values and h(B)=0. By Remark 3.5, one can assume that B: passes
through every essential saddle in the singular foliation ®, of h|a, by level sets of A
and that B, is monotonic between two essential saddles of h]A,.

Figure 6 illustrates an essential arc (8,) and an inessential arc (B).

Claim. Let @ be the singular foliation of Q X {p} with respect to h. An arc
B< QX {p} with 38 < B which does not intersect a completely essential saddle
in P is inessential.

Observe that in an essential saddle which is not completely essential, the two
circles whose wedge is the saddle are parallel. Hence if one is boundary parallel,
then so is the other. An arc B, with 38 < B, which does not intersect a
completely essential saddle, lies in an annulus which is a regular neighbourhood
of B. Thus B is inessential. This proves the claim.

Let r* be a singular value of hIQx(p} for which (h|Qx(,,,)“(r*) contains a
completely essential saddle o and such that the subarcs of 8, and B, connecting B
to o do not intersect any other completely essential saddies. Then (Mox(p)7'(r*)
contains a figure eight; nearby regular values of hlox {pointy COMpose a thrice
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punctured sphere P which is a regular neighbourhood of this figure eight. The
boundary 9P has three components, B,, B,, B,, all essential in Q. By choice of
r*, one of them, say B,, is parallel to Bin Q — P. If max{h|,,,} <r*, B; must lie in
the annulus between B and B,. Since f; is essential, this is impossible. Thus
max{hlﬂ‘} >r* and B, must intersect either B, or B,.

Suppose B, is parallel in Q to a component B’ of 3Q. If B, and B, are both
disjoint from Bj;, then they both lie in the thrice punctured sphere bounded by
B, B" and B;. This contradicts the fact that in a thrice punctured sphere, two
essential arcs with both endpoints in the same boundary component are parallel.
Hence one of the f; must intersect B,. Since Q is not itself a thrice punctured
sphere, B, and B; cannot both be boundary parallel in Q. Thus either B or B,,
say B, intersects an essential; non-boundary parallel circle ¥1 (B, or B;) which
lies in A™'(r) N Q, for some regular value r of h, k| (,y, h|4,. By Remark 3.6,
the component y, of A~ '(r) N A, which intersects ¥y 1s an essential vertical level
curve. By the argument used in Lemma 3.7, Case 1, (W,, W,) is weakly reducible.

Proposition 3.1 follows from Lemmas 3.6 and 3.9.

Remark 3.10. Since any Heegaard splitting (W,, W;) of Q x S! is weakly
reducible, except in the case where Q is a torus, a disk, an annulus, a sphere, or a
thrice punctured sphere, there is a weakly reducing collection of disks for
(Wi, W,). By the proof of Proposition 3.1, F*#(J, that is, F* contains at least
one incompressible surface which is not boundary parallel. Further, since F is
separating, F* is separating. These facts, together with the classification of
incompressible surfaces in Q X §' (Lemma 3.11), enable the inductive proof of
the main theorem.

Lemma 3.11. Let p;: Q X S'"— Q be the projection map. Let S be a closed
incompressible surface in Q X S'. Then S can be isotoped so that it is either vertical
or horizontal. That is, after isotopy, either S is a collection of wvertical tori, or
Pis: S—>Qisa covering map.

There is an immediate corollary.
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CoroLLArY 3.12. Let Q be a compact surface which is not a sphere, a disk, an
annulus, or a thrice punctured sphere. Any Heegaard splitting of Q X S' can be
constructed by a series of amalgamations, either out of Heegaard splittings of
(annulus) X S*' and (thrice punctured sphere) X S' or out of Heegaard splittings of
(closed orientable surface) x 1.

Proof of Corollary 3.12. It suffices to prove this for irreducible Heegaard
splittings (W;, W,) of O x §'. Let A be a weakly reducing collection of disks for
(W,, W;) of maximal complexity. Since F* is properly embedded, it is either a
disjoint collection of vertical incompressible surfaces or a disjoint collection of
horizontal incompressible surfaces. Furthermore, the induced Heegaard splittings
on the components of Q X S' — F* are not weakly reducible. In the case that F*
is vertical, this means that the closures of the components of QO X §' — F* must be
(annulus) X §' and (thrice punctured sphere) x S'. In the case that F* js
horizontal, the closures of the components of Q X S'— F* must be (closed
orientable surface) x 1.

Proof of Lemma 3.11. This is classical 3-manifold topology. If Q is closed,
consider SNA;, forY, 4,, ..., Ay, v, G as in the remarks preceding LLemma 3.3.
The collection consists of four types of components:

(1) inessential circles;
(2) inessential arcs;
(3) essential circles;
(4) essential arcs.

Standard innermost-disk-outermost-arc arguments allow removal of components
of Type (1) and of Type (2).

If §NA; contains only components of Type (3) and of Type (4), for
i=1,...,4g, then in fact it contains either only components of Type (3), or only
components of Type (4); because if § N A, contains a component of Type (3), for
some £, then $ N A; cannot contain a component of Type (4), whence |S N Y| =0,
and thus no A, contains a component of Type (4). In this case S N 3G consists of
longitudes of 3G. Since S is incompressible, they bound a collection of annuli in
G; hence SN (Q x 8" is a collection of vertical tori in Q x S'. If S N A, contains
only components of Type (4), for i =1, ..., 4g, then by the proof of Lemma 3.6,
$N 3G consists of #|5 M y| meridians of 3G. Since S is incompressible, they
bound disks in G; hence SN (Q X S') consists of #|S N y| disks, which, after
isotopy, project onto Y under p,. The sides of these disks are identified to yield
an incompressible surface for which p,|s: $— Q is a covering map.

The proof is similar in the general case. Note that if 3Q #J, then after
isotopy, § is vertical.

4. Heegaard splittings of (thrice punctured sphere) X S

In the following, P = (thrice punctured sphere), (W,, W,) is a Heegaard
splitting of P x S' and A is a Morse function on P x S induced by (W,, W,).

Theorem 4.5 gives the classification of Heegaard splittings for P x S'. The
proof breaks down into two cases. If an irreducible Heegaard splitting of P x S*
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is not weakly reducible, then there is an essential horizontal arc in the spine of
one of the compression bodies. This determines the structure of the Heegaard
splitting. If a Heegaard splitting of P x S' is weakly reducible, then an inductive
argument shows that it is the amalgamation of standard Heegaard splittings and
hence standard by Proposition 2.10.

Let Y be an octagon with sides, in order, y,, ..., ys- Set G=Y x[ and
E;=7v,x 1. Then P X I may be obtained from G by identifying E, with E; and E;
with E;, Let Fy=P x {0} and P, =P x {1} in Px I Call E,, E,, Es, E,, P,, P,
the sides of G. Call E,, E,, E,, E, the boundary sides of G. Note that P x S may
be obtained from P x I by identifying P, with P,. The boundary sides of G
become the boundary components B, B, and B, of P x S'.

It follows from Lemmas 4.1 and 4.2 that if a Heegaard splitting of P x S' is not
weakly reducible, then, after arc slides and isotopy, the spine of one of its
compression bodies contains an essential horizontal arc.

Figure 7 depicts the (octagon) x [ suggestively.

Y2
71 Ya ¥4

FiGg. 7

LemMA 4.1. Suppose that y,, v, as above, are in thin position with respect to h.
Suppose that each of h|,,, h v; has at most one critical point. Then, after arc slides
and isotopy, the spine of either W, or W, contains an essential horizontal arc
a X {point}.

Proof. Let W, be the compression body containing B,. By the proof of [9, 4.1]
there is a spine X for W, and there is a complete set of disks A for W, such that
XNy =, XNys= and ANy, =0, ANys=. Let X be a small closed
regular neighbourhood of X. Consider A N(sides of G). These intersections
consist of a collection of six different types of components, all disjoint from
Y1, ¥s, and hence contained in a single side K:

(1) simple closed curves;
(2) arcs with endpoints on distinct components of X N K
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Let geS'. Then F* induces a homomorphism f: H,(Q x {q})—> Z by setting
f(a)=[F*]- a. Thus f defines a class [f] in Hom(H,(Q x {q}), Z). The sequence

0—Hom(H(Q % {q}), 2)—> H'(Q x {q} ; )~ Ext(H(Q % {q}), Z)—0

is exact by the universal coefficient theorem. Here Ext(Hy(Q x {gq}), Z) =0, since
Hy(Q X {q}) is free. Hence [f] defines a 1-dimensional cohomology class [f]. Let
¢ be the Poincaré dual of [f]. Then ¢ =né for some primitive element é of
H,(Q % {q}). Represent ¢ by an embedded simple closed curve also called ¢ as in
[5]- Then for [a] € H(Q x {q}), f([@]) = n(¢ - ). ,

Let ¢ be a circle intersecting ¢ once. Set T =n(¢Uc’), Q'=0 —T. It now
suffices to show that each component of F* can be isotoped to be strictly
horizontal over Q. Hence in what follows, F* can be taken to be connected.

Let X be a spine of Q'. Let § be a simple closed curve in X and T; =B xS
Then F*NT;=v,U...Uy,, a collection of simple closed curves on T, any two
of which are either parallel or anti-parallel, since they are disjoint.

Claim. The curve v, is parallel to y, fori,j=1,..., n

A Riemannian metric on Q and the standard Riemannian metric on S! endow
Q x8' with a Riemannian metric via the natural isomorphism t(Q X §') =
7(Q) X ©(S"). This Riemannian metric has the property that a tangent plane to
Q x S'is vertical if and only if its normal vector is strictly horizontal. Let v be the
normal bundle to F* in Q X S'. Since P;: F*>Q is a covering map, (p,)* is
never singular, and hence (p,)*(v) is never zero. Now F* is connected, so
(p2)*(v) has the same orientation in 7(S') on all of F*, and, in particular, on
IgsNF*=vy,U...Uy,. Therefore all the y; (oriented via the cross-product of v
and a normal orientation of T;) are oriented so that their normals project to the
same orientation in 7(S') and are thus parallel. This proves the claim.

Now 0=[F*]- B =% y;- B. But since y,, ..., y, are isotopic, ¥, . B=vy;.B, for

i,j=1,...,n Thus y;.  =0. By the classification of simple closed curves on the
torus, yi, ..., v, are therefore all parallel or all anti-parallel to 8. In particular,
Y1 ---» Ya €an be isotoped to be strictly horizontal over § and to be disjoint from

B. Hence F* can be isotoped to be disjoint from X and to be strictly horizontal
over X. These properties can be extended to n(X)=Q’. This makes F* strictly
horizontal over Q.

When py|z: F*— Q is a finite covering map, F* can be viewed as a k-fold
covering space of Q.

REMARK 5.3. For Q, Q' as above, let q be a point in Q' and set y={q} xS\
Then |y NF*| =k, but y - [F*] =0, since [F*] = [F] =0. Hence k must be even. In
particular, k > 1. Furthermore, the closure of each component of O X S'— F* is of
the form (genus-g closed orientable surface) X [.

For 4 a closed orientable surface of genus g, O x {1} splits @ X [ into two
compression bodies, and hence defines a Heegaard splitting (W,, W,). The
splitting (W;, W,) and its stabilizations are called the standard Heegaard splittings
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of Q x Irel O x {0}. Let y be a vertical arc (that is, {point} X [) in Q X [ joining
O x {0} and Q = {1}. Set W, =closure(n(yUQ x {0} UQ x {1})), a compres-
sion body, and W,=Q x §'— interior(W,). Since W,= (Q — {point}) x I is a
handlebody, (W,, W,) is a Heegaard splitting. Here (W,, W;) and its stabilizations
are called the standard Heegaard splittings of Q x I rel 3(Q x I).

THEOREM 5.4. All Heegaard splittings of Q X I are stabilizations of a standard
Heegaard splitting.

Proof . See [9].

For O a torus, Lemmas 5.5 and 5.6 follow from [1, 1.6]. Hence in the
following, genus(Q) =2, so that genus(Q') =1, for Q' satisfying the conclusions
of Lemma 5.2.

LEmMMA 5.5. If F* is a k-fold covering space of Q with k >2, then (W,, W,) is
reducible.

Proof. By Remark 2.5, the induced Heegaard splittings on the closures of the
components C,=Q x [ and C,= 0 xJ of (Q x 8') - F* are standard rel aC,,
9C,. Thus €, C, can be chosen so that after isotopy the proper arcs defining the
induced Heegaard splittings are {p,} X1 and {p,} XJ for two distinct points
poLpin Q' and I=[t,_,, 1], J =]t t;,,], for some i € Z,. Since genus(Q') >0,
there are essential circles ¢,, ¢, in Q' running through p,, p, respectively, which
intersect in exactly one point in Q' —{p,, p,}. Set D= (c; — n(p,)) xI and
D,=(c;—n(py)) xJ. By construction, (D, 3D;)c (W, 3. W,) with 8D,
essential in F and #{6D, N 9D,] = 1. Hence (W,, W,) is reducible.

Lemma 5.6. If F* is a 2-fold covering space of Q, there is a weakly reducing
collection of disks A for (W, W,), such that F* = o(F ; 3A) = {vertical tori}.

Proof. Again, the induced Heegaard splittings on the closures C,, C, of the
components of (Q x S')— F* are standard rel 3C,, 3C,; and after isotopy the
proper arcs defining the induced Heegaard splittings are {p,} X I, {p,} xJ for
two distinct points py, p, in Q' and [ =[1, 1], J =[t,, t,] (here IUJ =S"). Let
¢y, ¢; be non-intersecting parallel essential curves in Q' through p,, p,. Set
Dy=(cy—n(p)) xI and D,=(c,—n(p,)) xI. By construction, (D, 3D)) =
(W,, 3. W,) with 3D, essential in F and #|6D, N 3D,| = 0. Hence DUD, is a
weakly reducing collection of disks for (W;, W,), such that o(F ; 3(D, U D,))
contains at least one vertical torus. Thus any weakly reducing collection of disks
A, with D, U D, c A has F* = {vertical tori}.

Tueorem 5.7. All Heegaard splittings of (compact orientable surface) X S' are
standard.

Proof. 1t suffices to show this for an irreducible Heegaard splitting (W,, W) of
Q X S'. Then Lemma 5.3 to 5.6 show that (A, A,) can be chosen so that F* is a
collection of vertical tori. So by Lemma 5.1, (W,, W,) is standard.
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