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Abstract

We prove that for 2-bridge knots and 3-bridge knots in thin posi-
tion the double branched cover inherits a manifold decomposition in
thin position. We also argue that one should not expect this sort of
correspondance to hold in general.

1 Preliminaries
Thin position for knots was first defined by D. Gabai in [2]. He used this
notion to prove Property R for knots. A few years later M. Scharlemann
and A. Thomspon developed a notion of thin position for 3-manifolds. Both
of these notions have become vital tools in many geometric arguments. We
here investigate the similarities and differences between the two notions.

Definition 1.1. Suppose L is a submanifold of M . We will denote an open
regular neighborhood of L in M by η(L,M) or simply by η(L), if the ambient
manifold is clear from the context. Similarly, we will denote a closed regular
neighborhood of L in M by N(L,M) or simply by N(L).

We define thin position for knots as in [15]:

Definition 1.2. Let k be a knot in the 3-sphere. The complement
of k is S3 − η(k).
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Definition 1.3. A meridional planar surface in the complement
of k is a planar surface properly embedded in the knot complement
whose boundary components are meridians.

Definition 1.4. A boundary parallel annulus with meridional
boundary components is a trivial meridional planar surface.

Definition 1.5. Let h : {S3 − (two points)} → [0, 1] be a height
function on S3 that restricts to a Morse function on k. Choose
a regular value ti between each pair of adjacent critical values of
h|k. The width of k with respect to h is

∑
i #|k ∩ h−1(ti)|.

Define the width of k to be the minimum width of k with respect
to h over all h. A thin position of k is the presentation of k with
respect to a height function that realizes the width of k.

For any regular value t0 of h|k we can find a neighborhood η(k)
such that P = h−1(t0) − η(k) is a meridional planar surface in
the complement of k.

Definition 1.6. An upper disk for a meridional planar level sur-
face P is a disk D such that ∂D′ = α ∪ β, where α is an arc
properly embedded in P, β is an arc embedded on the boundary
of η(k), parallel to an arc of k, ∂α = ∂β, int(D) intersects P
in simple closed curves, and a small product neighborhood of α
in D lies on the side of P containing h−1(1), i.e., it lies above
P . A strict upper disk for P is is an upper disk D for P whose
interior is disjoint from P .
Lower disks for P and strict lower disks for P are defined simi-
larly.

If for some meridional planar level surface P there is a disjoint
pair of upper and lower disks for k, then these disks describe a
width reducing isotopy. In other words, if k is in thin position,
then there is no such level surface.

Definition 1.7. A thin level for k is a 2-sphere S such that the
following hold:
1) S = h−1(t0) for some regular value t0;

2



2) t0 lies between adjacent critical values x and y of h, where x
is a minimum of k lying above t0 and y is a maximum of k lying
below t0.
A thick level is a 2-sphere S such that the following hold:
1) S = h−1(t0) for some regular value t0;
2) t0 lies between adjacent critical values x and y of h, where x
is a maximum of k lying above t0 and y is a minimum of k lying
below t0.

More recently, the width of k has been defined via a lexicographically minimal
non-increasing sequence of numbers involving the numbers of intersection of
thick and thin levels with k. This is analogous to the notion of width of a
3-manifold, as defined below. Whether a thin position of a knot with respect
to one definition is also a thin position of the knot with respect to the other is
an open question. In most applications the precise definition does not make
a difference. What matters is that both definitions imply that if k is in thin
position, then there is no level surface at which there is a disjoint pair of
upper and lower disks for k. For the knots under consideration here, the two
notions of thin position resulting from the two notions of width coincide.

We borrow definitions of a thin manifold decomposition fairly directly
from from [10]:

One way to construct a 3-manifold is to take a 0-handle, add
some 1-handles, then some 2-handles, and finally capping off
with some 3-handles. An alternative is to start with 0-handles,
add some 1-handles, then some 2-handles, then alternately more
1-handles and more 2-handles before finally capping off with some
3-handles. The former gives a traditional Heegaard spliting of a
3-manifold, with one hadlebody comprised of the 0-handles and
the 1-handles, and the other handlebody made up of the remain-
ing handles (the 2 and 3-handles). The latter gives a generalized
Heegaard splitting.
If M is an orientable, closed, connected 3-manifold, with M =
b0 ∪ N1 ∪ T1 ∪ N2 ∪ T2 ∪ · · · ∪ Nk ∪ Tk ∪ b3, where b0 is made
up of of 0-handles, b3 is made up of 1-handles, and for each i,
each Ni consists of 1-handles, and each Ti consists of 2-handles.
M can now be built in stages, starting with b0 then adding N1,
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then T1, and so on. Let Si1 ≤ i ≤ k be the surface obtained from
∂[b0∪N1∪T1∪N2∪T2∪· · ·∪Ni] by deleting all spheres bounding
0- or 3- handles in the decomposition. Let Fi1 ≤ i ≤ k − 1 be
the surface obtained from ∂[b0 ∪N1 ∪ T1 ∪N2 ∪ T2 ∪ · · · ∪ Ti] by
similarly deleting all such spheres.
Let Wi = (collar of Fi−1) ∪ Ni ∪ Ti together with every 0- and
3-handle incident to Ni or Ti. Wi is divided by a copy of Si into
two compression bodies: Ni = (0−handles) ∪ (collar of Fi−1) ∪
Ni and Ti = (collar of Si) ∪ Ti∪3-handles. Thus Si describes a
Heegaard splitting of Wi into compression bodies Ni and Ti.

Definition 1.8. Let the complexity of a connected surface S be
c(S) = 1 − χ(S) = 2genus(S) − 1 for S of positive genus. De-
fine c(S2) = 0. For S not necessarily connected define c(S) =
Σ{c(S ′)|S ′aconnectedcomponentofS}

Definition 1.9. Let the width of the decomposition of M be the
set of integers {c(Si)|1 ≤ i ≤ k}

Order these integers in monotonically non-increasing order. Com-
pare the ordered multi-sets lexicographically.

Definition 1.10. Define the width w(M) of M to be the minimal
width over all decompositions using the above ordering of the sets
of integers.

Finally we arrive at

Definition 1.11. A given decomposition of M is thin if the width
of the decomposition is the width of M .

The investigation here is motivated by the question as to how the two
notions of thin position are related. The double branched cover construction
provides a natural link between the two notions. We prove that for 2-bridge
knots and 3-bridge knots in thin position the double branched cover inherits
a manifold decomposition in thin position.

Theorem 1.12. If k is either a 2-bridge knot or a 3-bridge knot, then the
manifold decomposition that the double branched cover of (S3, k) inherits
from a thin position of k is thin.
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However, one can’t expect this sort of correspondance to hold in general.
In [5] Tsuyoshi Kobayashi and Yoav Rieck point out the following example:
torus knots can have arbitrarily high bridge number. (For a proof of this fact,
see [8] or for a more modern and self-contained proof, see [12].) Furthermore,
their complements contain no meridional incompressible surfaces. (They are
Seifert fibered spaces. Incompressible surfaces in Seifert fibered spaces are
completely characterized.) Thus thin position is bridge position for torus
knots. (By the main theorem of [15].) For a torus knot of bridge number
b, the manifold decomposition that the double branched cover of (S3, k)
inherits from a thin position of k is then a genus b − 1 Heegaard splitting.
On the other hand, the double branched cover of (S3, k) is a small Seifert
fibered space and such a manifold possesses a genus 2 Heegaard splitting.
Thus for b > 3, the analog of Theorem 1.12 is false. In other words, Theorem
1.12 is sharp.

We wish to thank Marty Scharlemann and others for asking questions
providing the motivation for this paper. This work is supported in part by
the grant NSF-DMS 0203680.

2 Thin position versus bridge position
The notion of bridge number for a knot was invented by H. Schubert in “Über
eine numerische Knoteninvariante”. There he proved, among other things,
that bridge number is subadditive under connected sum of knots. (For a
short modern proof see [11].) The notion of bridge number has once again
proven useful in our investigation below.

Definition 2.1. A knot k is in bridge position if all its maxima occur above
its minima. A level sphere that lies above all minima and below all maxima
of k is called a bridge sphere of k. The bridge number of a knot k is half of
the smallest possible number of times a bridge sphere of k intersects k. We
denote it by b(k).

For knots with low bridge number thin position can be characterized, see
below. To do so, we employ a calculation developed by M. Scharlemann and
the second author in [9]. This calculation derives the width of k from a thin
position of k.

Theorem 2.2. Let k be a knot in thin position. Denote the thick levels
of k by S1, . . . , Sn, where S1 is the lowest thick level, S2 the next lowest,
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and so forth and Sn the highest. Similarly, denote the thin levels of k by
L1, . . . , Ln−1. Denote the number of intersections of k with Si by si and the
number of intersections of k with Li by li. Then the following holds:

width(k) = 2(
n∑

i=1

(
si
2
)2 −

n−1∑
i=1

(
li
2
)2)

Lemma 2.3. If the thick sphere for a knot k in bridge position intersects k
2n times (as it would for an n−bridge knot) any presentation that is thinner
cannot have a level sphere intersecting k in 2n points or more.

Proof. Suppose that k is in thin position and suppose there is a level sphere
that intersects k in 2n points. Then this level sphere is parallel to a thick or
thin level. In particular, it intersects k in the same number of points as this
thick or thin level. Note that if a thin level intersects k in 2n points, then
both adjacent thick levels intersect k in strictly more than 2n points. I.e.,
si > li−1 and si > li. Thus we may assume that our level sphere is parallel
to a thick level, say Sl. Then,

width(k) = 2(
n∑

i=1

(
si
2
)2 −

n−1∑
i=1

(
li
2
)2)

2((
sl
2
)2 +

l−1∑
i=1

((
si
2
)2 − (

li
2

2

)) +
n∑
l

((
si+1

2
)2 − (

li
2
)2) ≥ 2(

sl
2
)2

Moreover, equality holds if and only if n = 1. I.e., if thin position is
bridge position.

Corollary 2.4. Thin position equals bridge position for two bridge knots.

Proof. The only knot that has a presentation with no level sphere intersecting
the knot in more than two points is the unknot.

Corollary 2.5. Thin position equals bridge position for a three bridge knot
k if and only if k is prime. If the knot is not prime every thin position has
a thick layer intersecting the knot in four points, followed by a thin layer
intersecting the knot in two points, followed by a thick layer intersecting the
knot in four points, reflecting the fact that k is the connect sum of two two
bridge knots.
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Proof. The theorem of H. Schubert mentioned above states that b(K1#K2) =
b(K1) + b(K2)− 1. Thus if a three bridge knot is not prime, it must be the
connected sum of two two bridge knots. By a theorem of A. Hatcher and
W. Thurston [3], 2-bridge knots are small. By a theorem of Y. Rieck and E.
Sedgwick (see [7]), thin position for the sum of two small knots is obtained
by stacking a thin position of one of the knots on top of a thin position of
the other, as in Figure 1.

K

K

1

2

Figure 1: Schematic diagram for the sum of two small knots in thin position

Now if k is a prime 3-bridge knot, then the following hold:

• k can’t have a thick level meeting k in 2 points, for it is not the unknot.

• k can’t have a thick level meeting k in 4 points. If it does, then the
adjacent thin levels meet k in 2 points and k is a connected sum. If
there are not adjacent thin levels, then k is a 2-bridge knot.

Thus k has a thick level meeting k in 6 points. By Lemma 2.3 thin
position must be bridge position for k.

3 Interconnections
The question motivating this paper is the following:

Question 3.1. How is thin position in knots related to thin position in
3-manifolds?
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The definitions exhibit much similarity, but are not totally analogous. A
natural way in which the two definitions can be related is via the construction
of double branched cover . Let k be a knot and denote the double branched
cover of (S3, k) by M .

If k is in thin position, then M inherits a manifold decomposition as
follows: Denote the thick levels of k by S1, . . . , Sn and the thin levels by
L1, . . . , Ln−1. Each Si and each Li is a sphere that meets the knot some
(even) number of times. More specifically, each Si meets k at least 4 times
and each Li meets k at least 2 times. Denote the surface in M corresponding
to Si by S̃i and the surface in M corresponding to Li by L̃i. Each S̃i is a
closed orientable surface of genus at least 1 and each L̃i is a closed orientable
surface. More specifically, if Si meets k exactly 2l times, then S̃i is a closed
orientable surface of genus l− 1. And if Li meets k exactly 2l times, then L̃i

is a closed orientable surface of genus l − 1.
Now consider the 3-ball bounded by S1. It contains l subarcs of k each

with exactly one minimum. Moreover, it contains l disjoint strict lower disks .
Each strict lower disk corresponds to a disk in M whose boundary is an es-
sential curve on S̃1. Moreover, these l compressing disks for S̃1 cut the
3-manifold bounded by S̃1 into two 3-balls. In particular, S̃1 bounds a han-
dlebody in M . An analogous argument shows that S̃n bounds a handlebody
in M .

For 2 ≤ i ≤ n, consider the (disk)×I cobounded by Li−1 and Si. It meets
k in some number, say m, of vertical arcs, and some number, say l, of arcs
each with exactly one minimum. Then it also contains l disjoint strict lower
disks . These strict lower disks again correspond to compressing disks. This
time for the compact submanifold of M cobounded by L̃i−1 and S̃i. They
have their boundaries on S̃i and cut the 3-manifold cobounded by S̃i and
L̃i−1 into L̃i−1 × I. In particular, L̃i−1 and S̃i cobound a compression body
in M . An analogous argument shows that L̃i and S̃i cobound a compression
body. Note that in both cases it is S̃i that compresses, in one case towards
L̃i−1 and in the other case towards L̃i.

Now a natural question to ask is the following:

Question 3.2. If a knot k is in thin position, then is the manifold decom-
position that the double branched cover inherits also thin?

As mentioned in the introduction, the answer to this question is no. Torus
knots provide counterexamples. On a more philosophical level, there may be
other reasons for this negative answer. For in a thin manifold decomposition
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the thin levels are incompressible. This was proven by M. Scharlemann and
A. Thompson [10, Rule 5]. On the other hand, given a knot in thin position,
it is likely that there are compressing disks for a thin level in the complement
of the knot. See the schematic knot diagram in Figure 2 due to T. Kobayashi
[4]. Though we can’t prove that a knot of this form really must be in thin
position, there are reasons to believe that sufficiently complicated braids
would force it to be so.

12−strand braid

10−strand braid

8−strand braid

Figure 2: A schematic knot diagram, probably representing knots in thin
position

But for knots with bridge number 2 or 3, the answer to the question is
in fact yes.

The following three propositions establish Theorem 1.12.

Proposition 3.3. If k is a 2-bridge knot, then the manifold decomposition
that the double branched cover of (S3, k) inherits from a thin position of k
is thin.

Proof. Suppose that k is a 2-bridge knot. In this case the double branched
cover is a lens space that is not S3 or S2×S1. In particular, M is irreducible.
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By Corollary 2.4, thin position is bridge position for k. Thus the manifold
decomposition that M , the double branched cover of (S3, k), inherits from a
thin position of k is defined by a genus 1 surface bounding solid tori on either
side. The width of this manifold decomposition is {1}. Thinner manifold
decompositions must include 0’s. A 3-manifold with a width that includes
0’s is reducible. Since M is irreducible, its width is exactly {1}.

Proposition 3.4. If k is a 3-bridge knot for which thin position is not bridge
position, then the manifold decomposition that the double branched cover of
(S3, k) inherits from a thin position of k is thin.

Proof. Suppose that k is a 3-bridge knot for which thin position is not bridge
position. In this case the double branched cover M of (S3, k) is not S3 and
is not itself a lens space, though as we shall see, it contains lens spaces.

By Corollary 2.5, thin position of k is achieved by stacking a thin position
of one of the 2-bridge summands on top of a thin position for the other
2-bridge summand, as in Figure 1.

Thus the manifold decomposition that M inherits corresponds to a con-
nected sum decomposition of M into two lens spaces (not equal to S3 or
S2 × S1). The width of this decomposition is {1, 1, 0}, the smallest possible
width for a 3-manifold that is not prime. Thus the manifold decomposition
is thin.

Proposition 3.5. If k is a 3-bridge knot for which thin position is bridge
position, then the manifold decomposition that the double branched cover of
(S3, k) inherits from a thin position of k is thin.

Proof. Suppose that k is a 3-bridge knot for which thin position is bridge
position. In this case the double branched cover M of (S3, k) is again not
S3 and not a lens space. Here the manifold decomposition that M inherits
corresponds to a genus 2 Heegaard splitting and thus has width {3}.

The only manifold decompositions thinner than that are those whose
width begins with a 1. A 3-manifold whose width contains a 1 is equal
to or contains a lens space. If M is a lens space, then it has a genus 1
Heegaard splitting that can be isotoped to be invariant under the involution.
The quotient of the splitting torus would be a 2-sphere defining a 2-bridge
presentation for k. But this is impossible.

If M contains a lens space summand, then Corollary 3 of [6] states that
for a manifold that is a connected sum, an involution factors into involutions
on the summands. This implies that if M is a connected sum, then it is the
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double branched cover of (S3, k) for a composite knot k. If this is the case,
then the reasoning in the proof of Proposition 3.4 shows that thin position
is not bridge position for k. Thus here M must be prime. In particular, it
can’t have a manifold decomposition beginning with 0. Thus the width of
M is {3}.

4 3-bridge knots revisited
In this section we present a combinatorial proof of Proposition 3.4. In en-
deavoring to extend Theorem 1.12 to knots with higher bridge number, the
short proof above would fail, as there would certainly be prime knots for
which bridge position does not minimize width. For this reason we include
the more direct combinatorial argument below.

4.1 Cut vertices and a theorem of R. Stong
Cut vertices play a role in graph theory and geometric group theory. Below,
we define a graph related to a Heegaard splitting. In this context cut vertices
help identify certain properties.

Definition 4.1. Given a connected graph Γ, a vertex vi of Γ is said to be a
cut vertex if Γ− vi is not connected.

Definition 4.2. Given a handlebody H and a curve α ⊂ ∂H, α is said to be
disk busting if it intersects the boundary of every essential disk in H.

Let H be a genus n handlebody. Let {D1, . . . Dn} be a set of defining
disks for H. Let N(Di) = Di × [0, 1] be a closed regular neighborhood of Di

in H. Denote Di×1 by Vi and Di×0 by V ′
i . When we remove Di×(0, 1) from

H we obtain a ball with 2n (fat) vertices, V1, V
′
1 , . . . , Vn, V

′
n, on its boundary.

If there is a curve on the boundary of H, then the subarcs of this curve form
the edges of graph with 2n (fat) vertices.

The following theorem is due to Richard Stong. See [14]. For complete-
ness, we include a proof.

Theorem 4.3. Let α be a simple closed curve on the boundary of the genus
n handlebody H. The above construction yields a graph Γ. If the Di can be
chosen so that Γ is connected and has no cut vertices, then α is disk busting
in H.
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Proof. Let {D1, . . . Dn} be a set of defining disks for H. Suppose that this
set is chosen so that Γ is connected and has no cut vertices. Let D be a disk
in H that does not meet α. Closed components of intersection of D with the
D′

is can be removed via an innermost disk argument.
Now consider an outermost arc β of D ∩ ∪iDi in D. Then β cuts a disk

D′ off of D whose interior is disjoint from ∪iDi. The boundary of D′ is
partitioned into two subarcs: β and an arc γ. Here γ is an arc on the ball
that meets Γ only in its endpoints. Both of these lie on a single (fat) vertex.
Since Γ contains no cut vertices, γ together with a subarc of the boundary
of this (fat) vertex must bound a disk whose interior does not meet Γ. But
this means that we may isotope D′ through ∪iDi to reduce the number of
components of D ∩ ∪iDi.

It follows that we may isotope D to be disjoint from ∪iDi. Thus D lies
in the ball whose boundary contains Γ. Since ∂D separates the boundary
of this ball into two disks and since Γ is connected, one of these disks is
disjoint from Γ. Therefore D is parallel into the boundary of this ball and
thus parallel into ∂H. I.e., D is inessential in H. We conclude that every
essential disk in H meets α.

This theorem is related to work of J. Berge, J.R. Stallings (see [13]) and
probably the thoughts of J.H.C. Whitehead.

4.2 Explicit combinatorial argument proving Proposi-
tion 3.4

We here provide a combinatorial argument to prove that in this case the
manifold decomposition the double branched cover of (S3, k) inherits from
thin position of k corresponds to a strongly irreducible genus 2 Heegaard
splitting. A 3-manifold that has a strongly irreducible genus 2 Heegaard
splitting is irreducible. Furthermore, it can be neither a 3-sphere, by a theo-
rem of F. Waldhausen (see [16]), nor a lens space, by a theorem of F. Bonahon
and J.P. Otal (see [1]). It follows that its width is realized by this manifold
decomposition and equals {3}.

Let k be an n bridge knot for which thin position equals bridge position.
Let S be a bridge sphere of k (intersecting k in 2n points). Since thin position
equals bridge position, there will be at least n strict upper disks for k based
at S and n strict lower disks for k based at S. We denote the arcs in which
the strict upper disks meet S by {a+1 , . . . a+n } and the arcs in which the strict
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lower disks meet S by {a−1 , . . . a−n }. Note that if a+i can be chosen disjoint
from a−1

j for any i, j then these disks yield an isotopy showing that k was
not in thin position.

We denote the double branched cover of (S3, k) by M . The double
branched cover of S is a separating genus n− 1 surface Ŝ in M . The double
branched cover of a strict upper (lower) disk is a disk whose boundary lies
in Ŝ and that lies to one side of Ŝ. It follows that the double branched cover
of the upper (lower) hemisphere is a genus n−1 handlebody H+ (H−). Thus
we obtain a Heegaard splitting M = H+ ∪Ŝ H−. We denote the compress-
ing disks for H+ coming from the strict upper disks by {D+

1 , . . . D
+
n } and the

compressing disks for H− coming from the strict lower disks by {D−
1 , . . . D

−
n }.

We further denote the boundary of the disk D∗
i by c∗i .

Lemma 4.4. For each i, c+i is disk busting in H− and c−i is disk busting in
H+.

The proof of this lemma relies heavily on the methods in [14].

Proof. In this setting the bridge sphere S meets k six times, Ŝ is a genus 2 sur-
face, {D+

1 , D
+
2 , D

+
3 } are compressing disks for H+ with boundaries c+1 , c+2 , c+3 ,

respectively, and {D−
1 , D

−
2 , D

−
3 } are compressing disks for H− with bound-

aries c−1 , c
−
2 , c

−
3 , respectively.

By symmetry, it suffices to show that c+1 is disk busting in H−. To do
so, we work with {D+

1 , D
+
2 , D

+
3 }, but choose the strict lower disks leading to

{D−
1 , D

−
2 , D

−
3 } subject to the following condition:

• c−1 ∪ c−2 ∪ c−3 have the smallest total number of intersections with c+1 .
Call this Minimality Property 1.
Subject to Minimality Property 1 we choose the strict lower disk leading

to D−
3 subject to the following condition:

• c−3 intersects c+1 the most times (of all of the minimal ways to choose
the strict lower disks leading to {D−

1 , D
−
2 , D

−
3 }).

Call this Maximality property 2.
Split H− along D−

1 and D−
2 as in [14]. Let Γ+

1 be the graph that results
from c+1 . Let V +

i and V −
i be the (fat) vertices of Γ+

1 that result from splitting
along D−

i (i ∈ 1, 2). Recall that k is in thin position. Hence each strict
upper disk meets each strict lower disk in points on S. Therefore each c+i
intersects each c−j (at least twice). Futher note that there are no isotopies
removing intersections. Thus for any given vertex of Γ+

1 there must be an
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edge of Γ+
1 meeting that vertex. And there must also be edges of Γ+

1 meeting
the waistband, c+3 . (See Figure 3.)

Figure 3: Edges everywhere

Sublemma 4.5. Γ+
1 must have a Hamiltonian cycle.

Proof. Let d+1 be the valence of V +
1 , d+2 of V +

2 , d−1 of V −
1 and d−2 of V −

2 . Note
that d+i = d−i as a result of the way the graph is formed. Let d3 be the
number of times Γ+

1 intersects c+3 . Note that d+1 + d+2 + d3 was minimized in
the selection leading to the Di’s.

Γ+
1 can have up to six possible types of edges

• Class 1 connects V +
1 toV −

1 .

• Class -1 connects V +
2 toV −

2 .

• Class 2 connects V +
1 toV +

2 .

• Class -2 connects V −
1 toV −

2 .

• Class 3 connects V +
1 toV −

2 .

• Class -3 connects V −
1 toV +

2 .

We will show that Γ+
1 has at least one edge each of class i,−i, j,−j where

i, j ∈ {1, 2, 3} and i 6= j. This yields the desired Hamiltonian cycle.
Since d+1 , d

+
2 , d

−
1 , d

−
2 are all positive there must be at least two types of

edges. We note the following:
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• Classes 1 and −1.
All the edges cannot be from classes 1 and −1 because c−1 is connected.

• Classes 2 and −2.
All the edges cannot be from just Classes 2 and −2. If there are no
other classes of arcs, then there is a properly embedded disk ∆ in the
complement of the V ′

i s separating the two sets of arcs. Indeed, edges
of this form can be thought of as rational tangles. Full twists, around
the essential disk that meets D−

3 and D−
3 itself in turn, reduce the

situtation to that in Figure 4 where the disk ∆ is as pictured.

Figure 4: The disk ∆ disjoint from edges of Class 2 and -2

To see ∆ in the original picture, reverse the twists. This procedure also
makes clear that ∆ is symmetric with respect to the involution. Hence
∆ maps to a strict lower disk in (S3, k) that misses the strict upper
disk that gave rise to c+1 = ∂D+

1 . This, however, contradicts the fact
that k was in thin position. Thus we cannot have only edges of Classes
2 and −2.

• Classes 3 and −3.
All edges cannot be from only Classes 3 and −3 for the same reasons
as they cannot be from only Classes 2 and −2. See Figure 5.

Claim: Γ+
1 contains the same number of edges of Class 2 as −2. Γ+

1 also
contains the same number of edges of Class 3 as −3.

Note that d+1 + d+2 = d−1 + d−2 . An edge of Class 2 contributes 2 to the
left side of the equation, but 0 to the right side. Edges of Class 1,−1, 3, and
−3 affect both sides equally, contributing 1 to each side, so the only way to
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Figure 5: The boundary of the disk ∆ disjoint from edges of Class 3 and -3

balance the equation is to add an edge of Class −2, which contributes 2 to
the right side of the equation and 0 to the left side. Thus for the equation to
hold each edge of Class 2 must be accompanied by exactly one edge of Class
-2 and vice versa by a symmetric argument.

Since d+1 = d−1 and d+2 = d−2 , we also have that d+1 + d−2 = d−1 + d+2 . In
the same manner as above, this allows us to argue that edges of Class 3 are
always accompanied by the same number of edges of Class −3. This proves
the claim.

Summarizing our observations so far, we see that since d+1 , d
+
2 , d

−
1 , d

−
2 are

all positive we must have at least 2 classes of edges. Then as all edges cannot
be of Class j and −j for a fixed j, we can assume without loss of generality
that we have one of the following cases:

• Case a: An edge of Class 2 and an edge of Class 3.

• Case b: An edge of Class 1 and an edge of Class 2.

• Case a: An edge of Class 1 and an edge of Class 3.

In Case a) the claim above dictates that we have edges of Class −2 and −3,
too. This yields the desired result: a Hamiltonian cycle.
In Case b), assume that we are not in Case a) and also not in Case c). Then
the claim above dictates that we have an edge of Class -2 also. If we have
an edge of Class −1 we have a Hamiltonian cycle and we are done. If not we
have edges of Class 1,2, −2 and no others.

As in the argument above, if D−
3 is not already disjoint from the edges of

Class 2 and −2, a disk ∆ can be chosen that is disjoint from them. This disk,
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as before, could replace D−
3 since again it can be assumed to be symmetric

with respect to the involution.
This is a contradiction, though, since it shows that D−

3 could have been
chosen differently to decrease d+1 +d+2 +d3 contradicting Minimality Property
1. Thus the edges of Class 2 and -2 are disjoint from D−

3 .
Thus we have a picture like Figure 4. Switching the roles of D−

1 and D−
3

contradicts Maximality Property 2 since c−1 intersects Γ+
1 in more points that

c+3 . This eliminates the possibility of being in Case b) without a Hamiltonian
cycle.

In Case c) the argument is essentially the same as in Case b).

Thus in all possible cases there is a Hamiltonian cycle. (Sublemma 4.5)

To complete the proof of Lemma 4.4 note that if Γ+
1 has a Hamiltonian

cycle, then it has no cut vertices. This implies by Theorem 4.3 that c+1 is
disk busting in H−. The exact same argument can be made for c+2 and c+3 ,
so they are disk busting, too. Note that no special assumption was made
about D+

1 , D+
2 , or D+

3 (unlike D−
1 , D

−
2 , and D−

3 which had minimality as-
sumptions placed on them) so all possible choices of D+

1 , D+
2 , and D+

3 result
in disk busting curves c+1 , c+2 and c+3 .

A symmetric argument shows that all possible choices of strict lower disks
yielding D−

1 , D−
2 , D−

3 result in disk busting curves c−1 , c−2 , c−3 . This completes
the proof of Lemma 4.4.

Lemma 4.6. The boundary of every essential disk in H+ is disk busting in
H− and the boundary of every essential disk in H− is disk busting in H+.

Proof. Let D+
4 be a random essential disk properly embedded in H+. Let

c+4 be the boundary of D+
4 . We can assume without loss of generality that

D+
4 is chosen in such a way that the total number of intersections of c+4 with

{D−
1 , D

−
2 , D

−
3 } is minimal over all disks isotopic to D+

4 .
The proof that c+4 is disk busting largely mimics the proof of Theorem 4.4.

As before form a graph Γ+
4 for H−. As before set d+1 equal to the number of

times Γ+
4 intersects V +

1 and so on. Define the edge classes as before, too.
Since Lemma 4.4 shows that c−1 , c−2 and c−3 are all disk busting in H+,

c+4 must intersect V +
1 , V +

2 , V −
1 and V −

2 as well as c−3 so d+1 , d
+
2 , d

−
1 , d

−
2 , and d3

are all positive. Thus as in the proof of Lemma 4.4 we have at least two edge
types in Γ+

4 . As before, we note the following:
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• Classes 1 and −1.
As before, all the edges cannot be from classes 1 and −1 because c+4 is
connected.

• Classes 2 and −2.
As before, all the edges cannot be from just Classes 2 and −2 or there
is a properly embedded disk ∆ in the complement of the V ′

i s separating
the two sets of arcs. Indeed the edges can be thought of as a rational
tangle and there is always a properly embedded disk ∆ in the com-
plement of any rational tangle. As above, we see that ∆ is invariant
under the involution. Thus alternative choices could have given us ∆
instead of D−

3 . Recall that by Lemma 4.4 any choices of three disjoint
strict lower disks yielded three disks in H− whose boundaries were
disk busting in H+. I.e., ∂∆ must meet c+4 , a contradiction. Thus we
cannot have only edges of Class 2 and −2.

• Classes 3 and −3.
A similar argument works to show that we cannot have just edges of
Class 3 and −3.

The rest of the proof follows exactly as it did before, showing c+4 is
disk busting, but D+

4 was chosen at random and thus the boundary of
every disk in H+ is disk busting in H−. A symmetric argument works for
H− completing the proof of Lemma 4.6.

Our alternative proof of 3.4 is completed as follows:

Proof. As seen in the introduction to this section, the manifold decomposi-
tion that the double branched cover M of (S3, k) inherits has width {3} is
defined by a genus 2 Heegaard splitting. By Lemma 4.6, this genus 2 Hee-
gaard splitting is strongly irreducible. Since M has a strongly irreducible
genus 2 Heegaard splitting, M can’t be reducible. By a theorem of F. Wald-
hausen, every genus 2 Heegaard splitting of S3 is stabilized, thus M can’t
be S3. By a theorem of F. Bonahon and J.P. Otal, every genus 2 Heegaard
splitting of a lens space is stabilized, thus M can’t be a lens space. Thus
the manifold decomposition defined by the strongly irreducible Heegaard
splitting is thin.
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