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Abstract

We construct a sequence of pairs of 3-manifolds (M n
1 ,Mn

2 ) each with incom-
pressible torus boundary and with the following two properties:
1) For Mn the result of a carefully chosen gluing of M n

1 and Mn
2 along their

boundary tori, the genera (gn
1 , gn

2 ) of (Mn
1 ,Mn

2 ) and the genus gn of Mn satisfy
the inequality

gn

gn
1

+ gn
2

<
1

2

2) The result of amalgamating certain unstabilized Heegaard splittings of M n
1

and Mn
2 to form a Heegaard splitting of M produces a stabilized Heegaard

splitting that can be destabilized successively n times.

1 Introduction

About 10 years ago, Cameron McA Gordon asked the following question: Can the
pairwise connect sum of two 3-manifolds each with an unstabilized Heegaard splitting
yield a 3-manifold with a stabilized Heegaard splitting? This question stumped the
experts for many years and perhaps still does. Recently a negative answer to this
question has been announced by D. Bachman [1] and R. Qiu [11].

More generally, one can ask how Heegaard splittings behave under other types of
“sums”, that is, when the 3-manifolds containing them are glued along positive genus
boundary components. How Heegaard genus behaves under these circumstances is
one of the many questions investigated by Klaus Johannson in [6] and by the first
author in [14]. In both cases, inequalities relating the Heegaard genus of the glued
3-manifold to the Heegaard genera of the original 3-manifolds are obtained. Most
strikingly, the inequalities give lower bounds on the Heegaard genus of the glued
3-manifold in terms of the Heegaard genera of the original 3-manifolds. But these
lower bounds are fractions of the sum of the genera of the original 3-manifolds. A
better bound under more restrictive circumstances has recently been announced by
D. Bachman, E. Sedgwick and S. Schleimer [2].

One upshot is that, in general, the phenomenon of “degeneration of Heegaard
genus” under gluing of 3-manifolds can’t be ruled out. It is true that under certain,
possibly generic circumstances, this phenomenon can be ruled out. For instance,
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in [8], Marc Lackenby shows that for a pair of hyperbolic 3-manifolds each with one
boundary component and under certain restrictions on the gluing, Heegaard splittings
of the glued 3-manifold are always obtained from Heegaard splittings of the original
3-manifolds by amalgamation.

It is presently unknown how large “degeneration of Heegaard genus” under gluing
can be. Interestingly, the issue of stabilization implicitly arises in the investigation
of this phenomenon in [15] and in [14]. The examples given in this note make this
issue explicit. In particular, we provide examples that illustrate how “degeneration
of Heegaard genus” under gluing corresponds to the existence of stabilizations in the
amalgamation of Heegaard splittings of the original 3-manifolds. In doing so, we
provide counterexamples to a conjecture in [7].

2 Definitions

For standard definitions and results concerning knots, see [3], [9] or [12]. For standard
definitions and results pertaining to 3-manifolds, see [4] or [5].

Definition 1. A height function on S
3 is a Morse function with exactly two critical

points.

This last assumption guarantees that h induces a foliation of S3 by spheres, along
with one maximum that we denote by ∞ and one minimum that we denote by −∞.

Definition 2. Let K be a knot in S3. If all minima of h|K occur below all maxima
of h|K, then we say that K is in bridge position with respect to h. The bridge number
of K, b(K), is the minimal number of maxima required for h|K.

Definition 3. If K is in bridge position, then a regular level surface below all maxima
and above all minima is called a bridge surface.

Definition 4. An upper disk (lower disk) is a disk whose boundary is partitioned into
two subarcs, one contained in a bridge surface and one a subarc of the knot that lies
above (below) the bridge surface. A strict upper disk (strict lower disk) is an upper
(lower) disk whose interior lies above (below) the bridge surface.

A complete set of strict upper (lower) disks is a set of upper (lower) disks such
that each subarc of the knot lying above (below) the bridge surface meets exactly one
disk in the set.

Definition 5. A compression body is a 3-manifold W obtained from a closed ori-
entable surface S by attaching 2-handles to S × {0} ⊂ S × I and capping off any
resulting 2-sphere boundary components with 3-handles. We denote S × {1} by ∂+W
and ∂W − ∂+W by ∂−W . Dually, a compression body is an orientable 3-manifold
obtained from a closed orientable surface ∂−W × I or a 3− ball or a union of the two
by attaching 1-handles.

In the case where ∂−W = ∅, we also call W a handlebody.

Definition 6. Let A = {a1, . . . , ak} be a collection of annuli in a compression body
W . Then A is a primitive collection if there is a collection D = {D1, . . . , Dk} of
pairwise disjoint properly embedded disks in W such that ai meets Di in a single
spanning arc and ai ∩ Dj = ∅ for j 6= i.
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Definition 7. A set of defining disks for a compression body W is a set of disks
{D1, . . . , Dn} properly embedded in W with ∂Di ⊂ ∂+W for i = 1, . . . , n such that
the result of cutting W along D1 ∪ · · · ∪ Dn is homeomorphic to ∂−W × I or a 3-ball
in the case that W is a handlebody.

Definition 8. A Heegaard splitting of a 3-manifold M is a pair (V, W ) in which V , W
are compression bodies and such that M = V ∪ W and V ∩ W = ∂+V = ∂+W = S.
We call S the splitting surface or Heegaard surface. Two Heegaard splittings are
considered equivalent if their splitting surfaces are isotopic.

The genus of M , denoted by g(M), is the smallest possible genus of the splitting
surface of a Heegaard splitting for M .

Definition 9. Let (V, W ) be a Heegaard splitting. A Heegaard splitting is stabilized
if there is a pair of disks (D, E) with D ⊂ V and E ⊂ W such that #∂D ∩ ∂E = 1.
We call the pair of disks (D, E) a stabilizing pair of disks. A Heegaard splitting is
unstabilized if it is not stabilized.

Definition 10. Destabilizing a Heegaard splitting (V, W ) is the act of creating a
Heegaard splitting from (V, W ) by performing ambient 2-surgery on S along the cocore
of a 1-handle in either V or W .

Note that the result of performing ambient 2-surgery on S along the cocore of a
1-handle in either V or W is not necessarily a Heegaard splitting. In order for this
operation to be a destabilization, the result is required to be a Heegaard splitting.
This may be guaranteed, for instance, if (D, E) is a stabilizing pair of disks, then D
is the cocore of a 1-handle of V and the existence of E guarantees that the result of
cutting along D is a Heegaard splitting.

Definition 11. Let M be a compact orientable Seifert fibered space with quotient
space an orientable orbifold Q. Denote the genus of the surface underlying Q by
g and the number of cone points by n. Assume further that M (and hence Q) has
exactly one boundary component. (This simplifying assumption is met in all examples
considered here.)

Let a1, . . . , a2g, b1, . . . , bn−1 be a disjoint collection of arcs in Q that cut Q into
disks each containing at most one cone point. In the case of the once punctured
torus, such a collection of arcs are shown in Figure 1. In the case of an orbifold
with underlying surface a disk and with four cone points, such a collection of arcs are
shown in Figure 2. If the underlying surface of Q is a disk, we further assume that
each arc bi cuts off a subdisk from Q containing exactly one cone point.

Abusing notation slightly, denote a collection of arcs in M that projects to a1, . . . ,
a2g, b1, . . . , bn−1 also by a1, . . . , a2g, b1, . . . , bn−1. Now take V to be a regular neigh-
borhood of a1, . . . , a2g, b1, . . . , bn−1 together with a regular neighborhood of ∂Q × S

1.
Take W to be the closure of the complement of V in ∂M . It is an easy exercise to
show that (V, W ) is a Heegaard splitting of M . Such a Heegaard splitting is called a
vertical Heegaard splitting of M . If Q has no cone points, i.e. if M = Q × S1, then
this splitting is also called the standard Heegaard splitting of M .

Definition 12. A tunnel system for a knot K in S
3 is a collection of arcs t1, . . . , tn

such that the complement of K ∪ t1 ∪ · · · ∪ tn is a handlebody. The tunnel number of
a knot K is the least number of arcs required for a tunnel system of K.
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Figure 1: Arcs a1, a2 for a punctured torus
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Figure 2: Arcs b1, b2, b3 for an orbifold with four cone points

Definition 13. Suppose K is in bridge position and that there are n maxima. We
may assume temporarily that all maxima occur in the same level surface L. The
maxima may be connected by a system of n - 1 disjoint arcs in L. It is an easy
exercise to show that this set of arcs is a tunnel system. It is called an upper tunnel
system.

The same exercise shows that there is a set of defining disks D for the complement
of K ∪ t1 ∪ · · · ∪ tn of the following type: Each component of D has interior below
L, furthermore, below L, its boundary runs once along exactly one component of
K − K ∩ L. This set of disks is called a complete set of lower disks for the upper
tunnel system.

Definition 14. Suppose t1, . . . , tn is a tunnel system for a knot K in S
3. Denote the

complement of K by M . Take V to be a regular neighborhood of ∂M ∪ t1∪· · ·∪ tn and
take W to the closure of the complement of V . Then (V, W ) is a Heegaard splitting
called the Heegaard splitting corresponding to the tunnel system t1, . . . , tn.

The definition of amalgamation is a lengthy one. In the last 15 years, this term
has been used in the following context: A pair of 3-manifolds M1, M2 each with a
Heegaard splitting are identified along components of their boundary. This results
in a 3-manifold M . The Heegaard splittings of M1, M2 can be used to construct
a canonical Heegaard splitting of M called the amalgamation of the two Heegaard
splittings. One assumes that in each of M1, M2 the boundary components along which
the gluing occurs are contained in a single compression body. Roughly speaking, then,
the collars of the boundary components lying in this compression body are discarded
and the remnants of the two compression bodies in M1 − collars identified to the
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remnants of the two compression bodies in M2 − collars. This is done in such a way
that the 1-handles that are attached to the collar on such a boundary component in
M1 become attached to the compression body in M2 that does not meet any of the
boundary components along which the gluing takes place and vice versa. For a formal
definition see below.

Definition 15. Let M1, M2 be 3-manifolds with R a closed subsurface of ∂M1, and S a
closed subsurface of ∂M2. Suppose that R is homeomorphic to S via a homeomorphism
h. Further, let (X1, Y1), (X2, Y2) be Heegaard splittings of M1, M2. Suppose further
that N(R) ⊂ X1, N(S) ⊂ X2 and such that for some R′ ⊂ ∂M1\R and S ′ ⊂ ∂M2\S,
X1 = N(R ∪R′)∪ (1− handles) and X2 = N(S ∪ S ′)∪ (1− handles). Here N(R) is
homeomorphic to R× I via a homeomorphism f and N(S) is homeomorphic to S× I
via a homeomorphism g. Let ∼ be the equivalence relation on M1 ∪ M2 generated by

(1) x ∼ y if x, y ε η(R) and p1 · f(x) = p1 · f(y),

(2) x ∼ y if x, y ε η(S) and p1 · g(x) = p1 · g(y),

(3) x ∼ y if x ε R, y ε S and h(x) = y,

where p1 is projection onto the first coordinate. Perform isotopies so that for
D an attaching disk for a 1-handle in X1, D

′ an attaching disk for a 1-handle in
X2, [D] ∩ [D′] = ∅. Set M = (M1 ∪ M2)/ ∼, X = (X1 ∪ Y2)/ ∼, and Y = (Y1 ∪
X2)/ ∼. In particular, (N(R) ∪ N(S)/ ∼) ∼= R, S. Then X = Y2 ∪ N(R′) ∪ (1 −
handles), where the 1-handles are attached to ∂+Y2 and connect ∂N(R′) to ∂+Y2.
Hence X is a compression body. Analogously, Y is a compression body. So (X, Y ) is
a Heegaard splitting of M . The splitting (X, Y ) is called the amalgamation of (X1, Y2)
and (X2, Y2) along R, S via h.

Beware the ambiguity in the definition of this term in [7].

3 One destabilization

We first consider a concrete example that illustrates the issues under discussion. Let
Ti be a punctured torus for i = 1, 2. As 3-manifolds M1, M2 we take Ti × S

1 for
i = 1, 2. Note that ∂Mi is a torus, for i = 1, 2. We take M to be the result of gluing
M1 to M2 in such a way that (∂T1)×{1} and (∂T2)×{p} have intersections number
one on the resulting torus.

We describe two distinct Heegaard splittings for M :

Example 1. Let S
1 = I1 ∪ I2 be a decomposition of S

1 into two intervals that meet at
their endpoints. Let Vi = Ti × I1 and Wi = Ti × I2, for i = 1, 2. Then Vi and Wi are
genus 2 handlebodies. Denote the annulus in which Vi meets ∂Mi by Ai and that in
which Wi meets ∂Mi by Bi. Due to the choice of gluing of ∂M1 and ∂M2 that results
in M , A1 meets A2 in a (square) disk. As do B1 and B2. In other words, V = V1∪V2

is homeomorphic to the result of taking the disjoint union of V1 and V2 and joining
the two components by a 1-handle. In particular, it is a genus 4 handlebody. The
same is true for W = W1 ∪ W2. Thus (V, W ) is a genus 4 Heegaard splitting of M .

Example 2. Let (Xi, Yi) be the standard Heegaard splitting of Mi, for i = 1, 2. And
let (X, Y ) be the amalgamation of (X1, Y1) and (X2, Y2)

5



Theorem 1. The genus of Mi is three for i = 1, 2 and the genus of M is four.

Proof: Recall that the rank, i.e., the smallest number of generators, of the fundamen-
tal group of a 3-manifold provides a lower bound for the genus of a Heegaard splitting
of that 3-manifold. Here

π1(Mi) = F2 ⊕ Z

Abelianizing yields a free abelian group of rank 3. Thus rank π1(Mi) = 3 and hence
the Heegaard splitting constructed in Example 2 has minimal genus.

The Seifert-Van Kampen Theorem yields a presentation of π1(M) as

π1(M1) ∗Z2 π1(M2).

Quotienting out the normal closure of the amalgamated subgroup yields Z
2 ∗ Z

2. It
follows that

rank π1(M) ≥ rank Z
2 ∗ Z

2 = 4.

Hence the Heegaard splitting in Example 1 has minimal genus.

These Heegaard splittings provide examples of a phenomenon known as “degen-
eration of Heegaard genus” under gluing.

Theorem 2. The Heegaard splitting (X, Y ) of M is stabilized.

Proof: For i = 1, 2 choose arcs ai
1, a

2
1 in Ti ⊂ Mi as in Definition 11. Then Ti −

(N(ai
1) ∪ N(ai

2)) is a disk Di. It’s boundary meets ∂Mi as in Figure 3. After the
amalgamation, a copy of Di survives in Mi ⊂ M , for i = 1, 2. How ∂D1 and ∂D2

intersect is pictured in Figure 4. Thus (D1, D2) are a stabilizing pair of disks.

Figure 3: The boundary of Di as it appears on ∂Mi

Corollary 3. The Heegaard splitting (X, Y ) of M can be destabilized exactly once.

Exercise: Show that destabilizing the Heegaard splitting in Example 2 yields the
Heegaard splitting in Example 1.
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Figure 4: The boundaries of D1 and D2 as they intersect

4 n destabilizations

We now construct a sequence of pairs of 3-manifolds that exhibit a more general phe-
nomenon. More specifically, for each n, we construct a pair (Mn

1 , Mn
2 ) of 3-manifolds

as follows: Given n, take Mn
1 to be a Seifert fibered space with base orbifold a disk

with n + 1 cone points. We denote the natural quotient map on Mn
1 by pn. Take Kn

to be a knot that has bridge number n and tunnel number n - 1. The existence of such
knots is guaranteed by [10, Theorem 0.1]. Indeed, in [10], M. Lustig and Y. Moriah
define the class of generalized Montesinos knots. The referenced theorem provides
very technical but nevertheless achievable sufficient conditions under which such a
knot has bridge number n and tunnel number n - 1. Take Mn

2 to be the complement
of Kn in S

3.

Glue Mn
1 to Mn

2 in such a way that a fiber of Mn
1 is identified with a meridian

of Mn
2 . Denote the 3-manifold obtained in this way by Mn. Consider the following

Heegaard splittings of Mn:

Example 3. Let b1, . . . , bn be a collection of arcs that cut the base orbifold of Mn
1 into

disks each with exactly one cone point. Bicolor these disks red and blue. (I.e., color
these disks in such a way that disks abutting along an arc are given distinct colors.)
The preimage of these arcs in Mn

1 is a collection of annuli that cut Mn
1 into solid tori.

These tori inherit colors from the bicoloring of the disks to which they project. Take
V n

1 to be the union of the red tori and W n
1 to be the union of the blue tori.

Let P be a bridge sphere for Kn. Then P divides Mn
2 into two components that

we label V n
2 and W n

2 . We can clearly assume that the 2n meridional boundary curves
of P ∩ Mn

2 match up with the boundary curves of the annuli b1, . . . , bn Now set V n =
V n

1 ∪ V n
2 and W n = W n

1 ∪ W n
2 .

Lemma 1. The decomposition (V n, W n) is a Heegaard splitting of Mn.

We first prove an auxiliary lemma. It is well known, but we include it here for
completeness.

Lemma 2. Suppose X and Y are handlebodies. Let A be a collection of k essential
annuli in ∂X and let B be a primitive collection of k annuli in ∂Y . Glue X to Y by
identifying A and B. Denote the result by E. Then E is a handlebody.
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Proof: Since B is a primitive collection of k annuli in ∂Y , there is a collection Y of k
disjoint essential disks such that each annulus meets one of the disks in exactly one
arc and is disjoint from the other disks. Cutting Y along Y yields a handlebody Y ′

and cuts each component of B into a disk. The remnants of Y ∪B on ∂Y ′ are disks.
Thus a set of defining disks for Y ′ can be isotoped to be disjoint from the remnants
of Y ∪ B on ∂Y ′. And hence can be used to augment Y to a set of defining disks Y ′

of Y .

Choose a set of defining disks X for X. We may assume that each component of
X meets each component of A in spanning arcs. (Note that each component of A is
met by a non zero number of such arcs, because it is essential.) In E we can place a
copy of the appropriate element of Y along each such spanning arc. Thus in E, the
components of X can be extended into Y ⊂ E by parallel copies of elements of Y to
an embedded disk. Denote the resulting set of disks by E .

Cut E along E . Denote the resulting 3-manifold by E ′.

Claim: E ′ is a handlebody.

When E is cut along E , the submanifold X of E is cut along X . Thus the remnants
of X in E ′ are a collection of 3-balls. At the same time, the submanifold Y is cut
along copies of elements of Y. Thus the remnants of Y in E ′ are a collection of
handlebodies. (A copy of Y ′ together with 3-balls.)

We may reconstruct E ′ by gluing the 3-balls to the handlebodies by identifying
remnants of A to appropriate remnants of B . Since the remnants of B are disks this
identification occurs along disks. Hence E ′ is a handlebody.

It follows that E is a handlebody.

We now prove Lemma 1. Fortunately, the hard work has already been accom-
plished.

Proof: (Lemma 1) To see that (V n, W n) is a Heegaard splitting, consider the following:
Each component of V n

1 and W n
1 is a solid torus. In particular, it is a handlebody.

Furthermore, both V n
2 and W n

2 are genus n handlebodies each meeting ∂Mn
2 in a

primitive collection of n annuli. More specifically, we can take a complete set of strict
upper disks or a complete set of strict lower disks, respectively, to be the required
collection of disks. See Figure 5.

Figure 5: The submanifold V 1
2 or W 1

2 of M1
2 with a collection of disks meeting primitive

annuli as required
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It thus follows from Lemma 2 that V n and W n are handlebodies. Thus (V n, W n)
is a Heegaard splitting.

Example 4. Take (Xn
1 , Y n

1 ) to be a vertical Heegaard splitting of Mn
1 . Take t1, . . . , tn−1

to be an upper tunnel system of Mn
2 and take (Xn

2 , Y n
2 ) to be the Heegaard splitting

corresponding to t1, . . . , tn−1. Now take (Xn, Y n) to be the Heegaard splitting of Mn

resulting from the amalgamation of (Xn
1 , Y n

1 ) and (Y n
1 , Y n

2 ).

Theorem 4. For Mn
1 , Mn

2 , Mn as above,

genus(Mn
1 ) + genus(Mn

2 ) − genus(Mn) ≥ n

and
genus(Mn)

genus(Mn
1 ) + genus(Mn

2 )
<

1

2

Proof: A fundamental group computation similar to the one above shows that the
genus of Mn

1 is n + 1. Furthermore, since the tunnel number of Kn is n-1, the genus
of Mn

2 is n. The Heegaard splitting constructed in Example 3 bears witness to the
fact that the Heegaard genus of Mn is at most n.

Again, the manifold pairs Mn
1 , Mn

2 exhibit the phenomenon of “degeneration of
Heegaard genus” under gluing.

Note that the genus of a Heegaard splitting of Mn resulting from an amalgamation
of minimal genus Heegaard splittings is 2n. In particular, the genus of (Xn, Y n) is
2n.

Theorem 5. There are n disjoint pairs of stabilizing disks for (Xn, Y n). In other
words, the Heegaard splitting (Xn, Y n) of Mn can be destabilized successively at least
n times. Specifically, the Heegaard splitting obtained from (Xn, Y n) is the result of
stabilizing (V n, W n) n times.

Proof: Recall that Mn
2 is the complement of Kn and that Y n

2 is the complement
of Kn together with an upper tunnel system. See Figure 6. Recall also that after
amalgamation, (a collar of) Y n

2 is a subset of Xn.

Figure 6: K3 with an upper tunnel system
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Denote the torus resulting from the identification of ∂Mn
1 and ∂Mn

2 by T . Recall
that after the amalgamation, the torus T minus the attaching disks for the 1-handles
with cores b1, . . . , bn to one side and the upper tunnel system to the other side lies in
the splitting surface F n of (Xn, Y n). We isotope n essential subannuli of T into Mn

1

and denote the resulting annuli by U1, . . . , Un. We isotope the other n subannuli of T
into Mn

2 and denote the result by A1, . . . , An. We subdivide T into these subannuli
in such a way that U1, . . . , Un are vertical in Mn

1 and A1, . . . , An are meridional in
Mn

2 . Furthermore, we subdivide T into these subannuli in such a way that Ui meets
the endpoints of exactly two distinct components of b1, . . . , bn. See Figures 7 and 8.

b

b

b
1

2

3

Figure 7: Vertical annuli in M 3
1

Figure 8: Meridional annuli in M 3
2

Consider the portion of F n lying in Mn
2 . See Figure 8. It is a punctured sphere.

Moreover, it is isotopic to a punctured sphere that consists of a level disk with 2n
punctures and an upper hemisphere. See Figure 9. Now note that the portion of S

3

above a bridge sphere that coincides with this level punctured disk and above the
upper hemisphere is a 3-ball. (Replacing the upper hemisphere of this sphere with
a level disk is equivalent to isotoping the upper hemisphere of this sphere through
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infinity. For details, see [13, Lemma 1].) Thus the portion of F n lying in Mn
2 is

isotopic to a bridge sphere. It is hence as required in Mn
2 .

Figure 9: The punctured sphere in M 3
2 that is isotopic to a bridge sphere

It now suffices to verify that the portion of F n lying in Mn
1 admits the required

pairs of disks. After a small isotopy, b1, . . . , bn lie in the interior of Mn
1 . We then see

that the portion of F n lying in Mn
1 may be reconstructed from n vertical annuli and

one torus by ambient 1-surgery along arcs dual to b1, . . . , bn. See Figure 10. (Compare
to Figure 7.)

Figure 10: A dual schematic for F n ∩ Mn
1

Comparing the decomposition here with (V n, W n), we see that the splitting sur-
face F n is entirely contained in a collar of one of the handlebodies V n, W n, say V n.
Furthermore, it induces a Heegaard splitting (Xn

v , Y n
v ) of V n as follows: Take Xn

v to
be Xn ∩ V n = Xn and take Y n

v to be the collar of ∂V n together with Y n ∩ V n. Then
Xn

v and Y n
v = (collar of V n) ∪ (solid torus) ∪ (1 − handles) are both handlebodies.

However, the genus of F n is 2n and the genus of ∂V n is n. It thus follows from [16,
Lemma 2.7] that (Xn

v , Y n
v ) and thus (Xn, Y n) is stabilized. By applying [16, Lemma
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2.7] to locate a stabilizing pair of disks and using one of the disks to destabilize n
times in succession, we locate the n pairs of stabilizing disks required.
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