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Abstract

In 1992, Osamu Kakimizu defined a complex that has become known as the
Kakimizu complex of a knot. Vertices correspond to isotopy classes of minimal
genus Seifert surfaces of the knot. Higher dimensional simplices correspond to
collections of such classes of Seifert surfaces that admit disjoint representatives.
We show that this complex is simply connected.

One of the fundamental objects considered in the topological study of knots is
the Seifert surface. Interestingly, a knot can have many, and in some cases infinitely
many, non-isotopic Seifert surfaces of minimal genus. For instance, a Seifert surface
of a connect sum of knots, K = K1#K2, can be spun around a swallow-follow torus
of K to yield infinitely many Seifert surfaces that are typically non-isotopic. This
phenomenon of non-uniqueness for Seifert surfaces was described early on in [2] and
[6]. The Kakimizu complex aims to capture structural information of the set of isotopy
classes of Seifert surfaces of a given knot. It is one of several complexes defined
by considering isotopy classes of certain submanifolds and disjointness properties of
representatives of such isotopy classes.

In 1992, Osamu Kakimizu defined a complex that has become known as the
Kakimizu complex of a knot. See [11]. The results in [2] and [6] establish that
the Kakimizu complex is nontrivial. A result of M. Scharlemann and A. Thompson,
see [19], establishes that the Kakimizu complex is connected. It is conjectured that
the Kakimizu complex is contractible.

Distance in the Kakimizu complex can be defined in terms of the number of edges
in an edge path between the two vertices, but Kakimizu showed that this is equivalent
to a more sophisticated formulation in terms of the universal abelian cover of the knot.
Whereas the first definition is the standard definition for distance in a complex, the
second provides a more effective means of computing the distance in the Kakimizu
complex.

Recent years have seen progress in understanding key facts about the Kakimizu
complex: W. Jaco and E. Sedgwick showed that the Kakimizu complex of the knot
K is finite if K is atoroidal and has genus at least 2. See [14]. Moreover, R. Wilson
showed that, in fact, it suffices to assume that K is atoroidal. See [23]. Results
pertaining to specific classes of knots can be found in [9], [15], [17], [18] and [22]. In
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[18], M. Sakuma and K. Shackleton establish concrete diameter bounds and provide
an overview of the current understanding of the Kakimizu complex. In particular,
they prove that the Kakimizu complex is simply connected for knots of genus 1. A
more general understanding of the shape of the Kakimizu complex is highly desirable.
Many questions remain unanswered. Though we establish simple connectivity here,
see Theorem 6, the conjectured contractibility has yet to be proved.

In Section 1 we provide the formal definition of the Kakimizu complex of a knot
and the notion of distance in the Kakimizu complex. Section 2 introduces the concept
of a relative least area surface and states two required results. (These results are
proved in the appendix.) The heart of the paper lies in Section 3, where we prove two
key lemmas that yield information about weighted paths in the Kakimizu complex.
Section 4 contains the observation that the Kakimizu complex is a flag complex. In
Section 5 we prove the main theorem, Theorem 6, stating that the Kakimizu complex
is simply connected. In Section 6 we prove that the Kakimizu complex is contractible
in the special case when it is 2-dimensional. We finish with a few remarks in Section
7. The Appendix, by Misha Kapovich, contains the proofs of the theorems about
relative least area surfaces required in this context and is of independent interest.

I wish to thank Jesse Johnson, Makoto Sakuma and Ken Shackleton for pointing
out a mistake in an earlier argument pertaining to Theorem 6. I also wish to thank
Misha Kapovich for helpful conversations and for providing the appendix to this
paper. This work was supported, in part, by a grant from the NSF. It was begun
at the Max Planck Institute for Mathematics in the Sciences located in Leipzig,
Germany and completed at the Max Planck Institute for Mathematics located in
Bonn, Germany. I wish to thank the institutes for their hospitality.

1 Preliminaries

For basic definitions concerning knots, see [1], [12] and [16]. For basic definitions
concerning complexes, see [4]. For a knot K in S3 we will denote an open regular
neighborhood of K by η(K) and the exterior of K, S3− η(K), by E(K). Recall that
a Seifert surface for K is a connected surface with connected boundary representing
a generator of H2(E(K), ∂E(K)).

Definition 1. The minimal genus Seifert surfaces of a knot K representing a fixed
generator of H2(E(K), ∂E(K)) form a simplicial complex as follows: 1) Vertices cor-
respond to isotopy classes of minimal genus Seifert surfaces; 2) Edges correspond to
pairs of vertices admitting disjoint representatives and, more generally, n-dimensional
simplices correspond to (n+ 1)-tuples (v1, . . . , vn+1) of vertices admitting representa-
tives (S1, . . . , Sn+1) such that Si ∩ Sj = ∅ for all i < j.

This complex is called the Kakimizu complex of K.

In our discussion here, paths and loops in a simplicial complex will traverse only
vertices and edges (not higher dimensional faces).
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Definition 2. The distance between two vertices v, v∗ in the Kakimizu complex of a
knot K, denoted by dK(v, v∗), is the minimal number of edges in a path connecting
the two vertices. The length of a loop is the number of edges in the loop.

One of the fundamental results concerning the Kakimizu complex is due to M.
Scharlemann and A. Thompson. See [19]. It refers to the intersection number of
surfaces. Recall that the intersection number of a pair of surfaces (S, S∗), i(S, S∗),
is defined to be the least number of components of intersection of pairs of surfaces
isotopic to (S, S∗) that have transverse intersection. In the language here, the theorem
can be formulated as follows:

Theorem 1. (Scharlemann-Thompson) The Kakimizu complex of a knot K in S3 is
connected. Moreover, given two Seifert surfaces S, S∗, the distance of the correspon-
ding vertices in the Kakimizu complex is bounded above by i(S, S∗) + 1.

2 A few facts about least area surfaces

Our arguments will rely extensively on the use of (analytic) least area surfaces. In
addition, we will be interested in the behavior of our surfaces near the boundary of
our knot complements.

Definition 3. Let M be a compact irreducible smooth manifold with boundary. A
relative Riemannian metric on M is a Riemannian metric such that ∂M is strictly
convex. Suppose that ∂M consists of tori and let J be a smooth foliation of ∂M
by closed curves. A properly embedded surface F in M is relative least area if the
following hold: 1) ∂F ⊂ J ; 2) The surface F minimizes area over all surfaces in its
proper isotopy class subject to the constraint ∂F ⊂ J .

Let M be a compact irreducible smooth manifold with ∂M consisting of tori and
with a relative Riemannian metric. In what follows we will always assume that a
foliation of ∂M is fixed. In the case of a knot complement, we will assume that J
consists of preferred longitudes. When we consider relative least area surfaces, they
will be considered with respect to this fixed foliation. Let F be a properly embedded
surface in M . We denote the proper isotopy class of F by [F ]. Furthermore, we
denote the area of F by A(F ) and the area of a relative least area representative of
[F ] by A([F ]).

In what follows we will specify a path by the vertices it traverses, e.g., v1, . . . , vn.

Definition 4. The complexity of a path v1, . . . , vn in the Kakimizu complex is the
ordered pair (n, a) where

a = A([S1]) + · · ·+ A([Sn])

and S1, . . . , Sn are representatives of v1, . . . , vn respectively. We give the set of com-
plexities the lexicographic order.

In the special case where n = 1, we denote the complexity of the vertex v1 by c(v1).
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The following theorems are proved in the appendix.

Theorem 2. Let E be a compact irreducible 3-manifold endowed with a relative Rie-
mannian metric and let F be a properly embedded compact incompressible surface in
E. Then there exists a relative least area representative in the proper isotopy class of
F .

This is Corollary 11 from the appendix.

Theorem 3. If there is a homotopically nontrivial loop of length n > 0 in the
Kakimizu complex of a knot K, then there is a homotopically nontrivial loop of small-
est complexity of length n.

This is Corollary 13 in the appendix.

Theorem 4. Let E be a compact irreducible 3-manifold endowed with a relative Rie-
mannian metric and let F1, F2 be properly embedded relative least area incompressible
surfaces in E with disjoint representatives in their proper isotopy classes. Then either
F1, F2 are disjoint or they coincide.

This is Theorem 12 in the appendix. (It is a variant of [7, Theorem 6.2].)

Two of the standard tools used in conjunction with least area surfaces are “exchange-
roundoff” and the Meeks-Yau trick. The term “exchange-roundoff” refers to the fact
that cut-and-paste along a pair of transverse least area surfaces yields a pair of lower
area least area surfaces. (The area remains the same after cut-and-paste, but de-
creases after roundoff.) See Figure 1.

31 2

Figure 1: (1) Cross-section of surfaces before exchange. (2) Cross-section of surfaces
after exchange. (3) Cross-section of surfaces after roundoff.

A pair of least area surfaces need not be transverse. For instance, there can be
saddle intersections. For specific examples, see [7]. Additionally, a pair of relative
least area surfaces can share components of their boundary. The Meeks-Yau trick
allows us to skirt this issue. For an illustration, see the discussion in Case 2 of the
proof of Lemma 2 below.
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3 Key Lemmas

The following lemmas are crucial in the proof of the main theorem (Theorem 6).
They allow us to refine the construction of Scharlemann and Thompson [19]. We
denote the symmetric difference of two sets, X, Y , by X∆Y . Recall that X∆Y =
(X ∪ Y )\(X ∩ Y ).

Lemma 1. Let K be a knot in S3 and suppose that S, S+1, S−1 are minimal genus
Seifert surfaces for K such that the following hold:

1. S is disjoint from S+1 ∪ S−1;

2. S−1 ∩ S+1 6= ∅;

3. The intersection between S−1 and S+1 is transverse and ∂S−1 ∩ ∂S+1 = ∅;

4. There are no disk components in S−1∆S+1.

Then there are two minimal genus Seifert surfaces Sup, Sdown for K such that (a)

S ∩ Sup = ∅, S ∩ Sdown = ∅, (S+1 ∪ S−1) ∩ Sup = ∅,

(S+1 ∪ S−1) ∩ Sdown = ∅, Sup ∩ Sdown = ∅.

Moreover, (b) if there is a surface F disjoint from S+1 ∪ S−1, then it is also disjoint
from Sdown, Sup.

Suppose furthermore that E(K) is endowed with a relative Riemannian metric
and that S+1, S−1 are relative least area surfaces. Then (c)

A(S−1) + A(S+1) > A([Sdown]) + A([Sup]).

Proof: We will construct Sup, Sdown explicitly by using the universal abelian cover
M(K) of E(K). Let τ be a generator of the group of covering translations and let S0

be a lift of S to M(K). Set
S1 = τ(S0).

Denote the component of
M(K)\(S0 ∪ S1)

that lies between S0 and S1 by C and note that C is homeomorphic to E(K)\S via
the restriction of the covering map M(K)→ E(K). See Figure 2. In particular, there
are lifts S+1

0 , S−1
0 of S+1, S−1, respectively, in C.

Denote the two components of M(K)\S−1
0 by M−1

− and M−1
+ , with M−1

+ the
component above S−1

0 , i.e., the component containing S1. Similarly, denote the two
components of M(K)\S+1

0 by M+1
− and M+1

+ , with M+1
+ the component above S+1

0 ,
i.e., the component containing S1. Recall that the frontier of a subset H, denoted by
fr(H), is the closure of H (in the ambient space) minus the interior of H.

5



+1

S

S

0

1

S
0

S
0

+1

−1

S

S

S
−1

Figure 2: M(K) and E(K)
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Set
B̃down = fr(M−1

− ∩M+1
− )

and
B̃up = fr(M−1

+ ∩M+1
+ ).

Further, let T̃ down be a small pushoff of B̃down into M−1
− ∩ M+1

− and T̃ up a small
pushoff of B̃up into M−1

+ ∩M+1
+ . See Figure 3. Let Bup, Bdown, T up, T down denote the

(homeomorphic) projections of B̃up, B̃down, T̃ up, T̃ down to the manifold E(K). (Note
that these surfaces could be disconnected.)

Claim 1: T up, T down each contain one Seifert surface.

Let γ be an oriented simple closed curve on ∂E(K) that generates the homology
of E(K) and let γ̃ be its lift to M(K). The algebraic intersection number of γ with
∂S, ∂S+1, ∂S−1, respectively, is 1. Hence the algebraic intersection number of γ̃ with
∂S+1

0 , ∂S−1
0 , respectively, is also 1, because of the homeomorphism between C and

E(K)\S. Note that one component of ∂S−1
0 ∪ ∂S+1

0 lies in B̃up and the other lies
in B̃down. It follows that the algebraic intersection number of γ̃ with ∂T̃ up, ∂T̃ down,
respectively, is 1. This in turn means that the algebraic intersection number of γ
with T up, T down, respectively, is 1, because of the homeomorphism between C and
E(K)\S. It follows that T up, T down each contain one Seifert surface. This proves
Claim 1.

Denote the Seifert surfaces in T down, T up by Sdown, Sup, respectively. Then

S ∩ Sdown = ∅

S ∩ Sup = ∅

(S+1 ∪ S−1) ∩ Sdown = ∅

(S+1 ∪ S−1) ∩ Sup = ∅

Sdown ∩ Sup = ∅

Claim 2: Sup, Sdown are minimal genus Seifert surfaces of K.

Note that
χ(T up) + χ(T down) = χ(T̃ up) + χ(T̃ down)

since T up ∪ T down is homeomorphic to T̃ up ∪ T̃ down. Also,

χ(T̃ up) + χ(T̃ down) = χ(S+1
0 ) + χ(S−1

0 ),

since T̃ up (resp. T̃ down) is isotopic to B̃up (resp. B̃down), and

B̃up ∪ B̃down = S+1
0 ∪ S−1

0 .

Finally,
χ(S+1

0 ) + χ(S−1
0 ) = χ(S−1) + χ(S+1)
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Figure 3: T̃ down and T̃ up
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since S−1
0 ∪ S+1

0 is homeomorphic to S−1 ∪ S+1. Therefore

χ(T up) + χ(T down) = χ(S−1) + χ(S+1).

There are no disks in S−1∆S+1, hence there are no disks in S−1
0 ∆S+1

0 . Thus there
are no disks or 2-spheres in T̃ up, T̃ down. Therefore there are no disks or 2-spheres in
T up, T down. So

χ(Sup) + χ(Sdown) ≥ χ(T up) + χ(T down)

since
Sup ∪ Sdown ⊂ T up ∪ T down.

Set g = genus(K) (the minimal genus of a Seifert surface of K). Then

χ(S−1) + χ(S+1) = 1− 2g + 1− 2g = 2− 4g,

since S+1 and S−1 are minimal genus Seifert surfaces. Note also that

χ(Sdown) ≤ 1− 2g, χ(Sup) ≤ 1− 2g.

By this observation and the above computation,

2− 4g ≥ χ(Sup) + χ(Sdown) ≥ 2− 4g.

It follows that
χ(Sup) = χ(Sdown) = 1− 2g.

This proves Claim 2.

This proves part (a) of the Lemma. Part (b) follows from the construction. We
now prove part (c) of the Lemma.

Suppose that E(K) is endowed with a relative Riemannian metric. Equip M(K)
with the pull-back of this metric. Since C is isometric to E(K)\S via the restriction
of the covering map M(K)→ E(K), we have

A(S−1) + A(S+1) = A(S−1
0 ) + A(S+1

0 )

and
A(B̃down) + A(B̃up) = A(Bdown) + A(Bup).

By the construction of B̃down, B̃up,

A(S−1
0 ) + A(S+1) = A(B̃down) + A(B̃up).

Note that the surfaces Bdown, Bup are not smooth, while the relative least area
surfaces in their respective isotopy classes are necessarily smooth. Therefore,

A(Bdown) > A([Sdown]), A(Bup) > A([Sup]).

It follows that

A(S−1) + A(S+1) = A(B̃down) + A(B̃up) > A([Sdown]) + A([Sup]).

Lemma 2 below reinterprets Lemma 1 above in the context of the Kakimizu com-
plex.
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Lemma 2. Let K be a knot in S3 and suppose that v, v+1, v−1 are vertices in the
Kakimizu complex of K such that

1.
dK(v, v+1) = 1, dK(v, v−1) = 1

2.
dK(v−1, v+1) = 2

3. The complexity of v is no smaller than the complexity of v+1, v−1, respectively.

Then there are vertices vdown, vup in the Kakimizu complex of K such that (a)

dK(v, vdown) ≤ 1, dK(v, vup) ≤ 1, dK(v+1, vup) ≤ 1, dK(v−1, vup) ≤ 1,

dK(v+1, vdown) ≤ 1, dK(v−1, vdown) ≤ 1, dK(vdown, vup) ≤ 1.

Moreover, (b) if there is a vertex w such that

dK(w, v+1) = 1, dK(w, v−1) = 1

then
dK(w, vdown) ≤ 1, dK(w, vup) ≤ 1.

Furthermore, (c) the complexity of either vup or of vdown is strictly less than that of
v.

Proof: Endow E(K) with a relative Riemannian metric and let J be a smooth fo-
liation of ∂E(K) by preferred longitudes. Let S, S+1, S−1 be relative least area rep-
resentatives of v, v+1, v−1 which exist by Theorem 2. We will say that S+1, S−1 are
in general position if they intersect transversely and their boundaries in ∂E(K) are
disjoint.

Case 1: S−1, S+1 are in general position.

Since
dK(v, v+1) = 1, dK(v, v−1) = 1,

dK(v−1, v+1) = 2,

we have
S−1 ∩ S+1 6= ∅

and Theorem 4 gives us
S ∩ S+1 = ∅, S ∩ S−1 = ∅.

By [7, Lemma 1.2] there are no disks in S−1∆S+1. (Such a disk would yield a
“product region” in the sense of [7].) Thus all hypotheses of Lemma 1 are satisfied.
Let vup, vdown be the vertices in the Kakimizu of K corresponding to Sup, Sdown. Then
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parts (a) and (b), respectively, follow from parts (a) and (b), respectively, of Lemma
1.

Furthermore, the statement about complexities follows because say,

A([Sdown]) ≥ A([Sup]),

and thus

A(S) ≥ max{A(S−1), A(S+1)} ≥ 1

2
(A(S−1) + A(S+1)) >

1

2
(A([Sup]) + A([Sdown])) ≥ A([Sup]).

Hence
A(S) > A([Sup]).

This proves part (c).

Case 2: S−1, S+1 are not in general position.

In this case we apply the Meeks-Yau trick as described in [7, Proof of Lemma
1.3]: Let x ∈ S−1 ∩ S+1 be an interior point of E(K) where the surfaces intersect
transversely. Let D−1 ⊂ S−1, D+1 ⊂ S+1 be small disks about x, both contained
in the interior of E(K), so that the intersection α = D1 ∩ D−1 is a (smooth) arc of
transverse intersection between these disks. Then there are portions of the surfaces
Bup, Bdown near x that are obtained by cutting D+1 and D−1 along α and pasting them
together. The results are two piecewise-smooth disks Dup ⊂ Bup and Ddown ⊂ Bdown.
Neither disk is smooth along α. Therefore, by “rounding off” these disks along α and
keeping their boundaries fixed, we obtain two disks whose total area is less than

Area(D1) + Area(D2)− ε, ε > 0.

Next, take a surface S−1(t) which is sufficiently close to S−1 in the C1-topology, so
that:

1. ∂S−1(t) ⊂ ∂E(K) lies in J and is disjoint from ∂S+1.

2. S−1(t) intersects S+1 transversely.

3. D−1 ⊂ S−1(t).

4. Area(S−1(t)) < Area(S−1) + ε.

Now apply the argument from Case 1 to the surfaces S−1(t) and S+1. As ex-
plained in [7, Proof of Lemma 1.3], there are no “product regions” between the new
surfaces. In particular, since S+1 and S−1 are incompressible and E(K) is irreducible,
it follows that the symmetric difference S−1(t)∆S+1 contains no disks. Construct sur-
faces Bup(t) and Bdown(t) and Sup(t), Sdown(t) in the same way as before. Since by
“rounding-off” Bup(t) and Bdown(t) we loose more total area than we have gained by
replacing S−1 with S−1(t), we conclude that

A([Sup(t)]) + A([Sdown(t)]) < A(S−1) + A(S+1).

The remainder of the argument follows as before.
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4 The Kakimizu complex is flag

We will use the following Theorem to prove the main theorem (Theorem 6), but it
is interesting in its own right. Recall that a simplicial complex is flag if it contains
no empty simplices, i.e., if it contains an n-simplex whenever it contains the (n− 1)-
skeleton of the simplex.

Theorem 5. The Kakimizu complex of a knot is flag.

Proof: Let K be a knot. Endow E(K) with a relative Riemannian metric. If the
Kakimizu complex of K contains the 1-skeleton of the simplex σ, then, by definition,
there are disjoint minimal genus Seifert surfaces representing any pair of vertices in
σ. Hence, if we choose least area representatives for the vertices, it follows from
Theorem 4 that these representatives are simultaneously disjoint. Thus σ belongs to
the Kakimizu complex.

5 The Kakimizu complex is simply connected

We here prove that the Kakimizu complex is simply connected. Recall that paths
and loops in the Kakimizu complex traverse only vertices and edges (not higher
dimensional simplices). Recall that we specify paths by the vertices they traverse,
e.g., v1, . . . , vn. In the case of loops, we abuse notation slightly and write 0, 1, . . . , n+1
when we really mean 0 mod n, . . . , n+ 1 mod n.

Theorem 6. Let K be a knot in S3. The Kakimizu complex of K is simply connected.

Proof: Let v1, . . . , vn be the vertices in a loop in the Kakimizu complex of K.

Claim 1: If dK(vi−1, vi+1) = 1 for some i, then v1, . . . , vn is homotopic to a shorter
loop.

If dK(vi−1, vi+1) = 1 and n = 3, then the loop spans a 2-simplex in the Kakimizu
complex by Theorem 5 and is hence homotopic to a single vertex. If dK(vi−1, vi+1) = 1
and n > 3, then vi−1, vi, vi+1 still spans a 2-simplex. Hence the loop v1, . . . , vn is
homotopic to the loop obtained by replacing vi−1, vi, vi+1 with vi−1, vi+1. This proves
Claim 1.

We will henceforth assume that

dK(vi−1, vi+1) = 2 ∀i.

Claim 2: If c(vi) ≥ max{c(vi−1), c(vi+1)}, then the complexity of the loop v1, . . . , vn

is not minimal among loops homotopic to v1, . . . , vn.

Under the assumption c(vi) ≥ max{c(vi−1), c(vi+1)}, Lemma 2 furnishes two ver-
tices vup, vdown in the Kakimizu complex such that

dK(vi+1, vup) ≤ 1, dK(vi−1, vup), dK(vi+1, vdown) ≤ 1, dK(vi−1, vdown),
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dK(vi, vdown) ≤ 1, dK(vi, vup) ≤ 1

and such that the complexity of say, vup, is strictly less than that of vi.

In particular, the two loops
vi−1, vi, vup

vi, vi+1, vup

bound 2-simplices in the Kakimizu complex of K, so

v1, . . . , vn

is homotopic to
v1, . . . , vi−1, vup, vi+1, . . . , vn

See Figure 4.

up

v

v

v

v

i−1

i+1

i

Figure 4: A homotopy

Since c(vup) < c(vi), the complexity of this path is strictly smaller than that of
the path v1, . . . , vn. This proves Claim 2.

Now suppose that there is a homotopically nontrivial loop in the Kakimizu com-
plex of K. By Theorem 3, there is a homotopically nontrivial loop v1, . . . , vn of
smallest complexity. Then Claim 2 tells us that

c(vi) < max{c(vi−1), c(vi+1)} ∀i.

But this is impossible. Thus the Kakimizu complex of K is simply connected.
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6 A note on contractibility

We recall some of the standard terminology for simplicial complexes: The link of
a vertex v in a simplicial complex X, denoted by Xv, is the union of all simplices
disjoint from v that together with v span a simplex in X. The star of a vertex
v in a simplicial complex X is the union of all simplices in X that contain v. A
2-dimensional simplicial complex X is said to be locally k-large if for every vertex
v ∈ X, every homotopically nontrivial loop in Xv has length at least k.

The following theorem is classical. It follows from Propositions II.4.1 (Cartan-
Hadamard Theorem) and II.5.25 in [4]. See Section 7 for a more general version.

Theorem 7. The universal cover of a 2-dimensional connected locally 6-large sim-
plicial complex is contractible.

Lemma 3. A homotopically nontrivial loop in the link of a vertex in the Kakimizu
complex must have length at least 5.

Proof: Loops of length 3 in the Kakimizu complex bound 2-simplices, by Theorem 5.
Hence it suffices to show that there are no homotopically nontrivial loops of length
4 in the link of a vertex. Suppose that v1, v2, v3, v4 is a loop in the link, Xv, of the
vertex v. We argue as in the proof of Theorem 6. The same reasoning as in Claim 1
of the proof of Theorem 6 tells us that we need only consider the case in which

dK(vi−1, vi+1) = 2 ∀i.

The reasoning in Claim 2 of the proof of Theorem 6, tells us that there is a loop
homotopic to v1, . . . , v4 of lesser complexity. By part (b) of Lemma 2, the vertex vup

that replaces one of v1, . . . , v4 lies in the star of v. It either lies in the link of v or it is
equal to v. In the latter case we must examine how this comes about. Following the
reasoning in Claim 2 of the proof of Theorem 6, we apply Lemma 2 to the vertices
vi, vi+1, vi−1 in place of the vertices v, v+1, v−1 to obtain vertices vdown, vup such that

dK(vi+1, vdown) ≤ 1, dK(vi−1, vdown) ≤ 1, dK(vi+1, vup) ≤ 1, dK(vi−1, vup) ≤ 1,

dK(vi, vdown) ≤ 1, dK(vi, vup) ≤ 1, dK(v, vdown) ≤ 1, dK(v, vup) ≤ 1

and (by part (b) of Lemma 2) also that

dK(vi+2, vdown) ≤ 1, dK(vi+2, vup) ≤ 1.

Two cases need to be considered:

Case 1: vup = v and vdown 6= v.

If vdown is equal to one of the vj, then the loop v1, v2, v3, v4 breaks into two loops
of length 3. The latter bound 2-simplices by Lemma 5. Hence we will assume that
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vdown is not equal to one of the vj. Now vi−1, vi, vdown and vi, vdown, vi+1 are loops of
length 3 and hence bound 2-simplices by Theorem 5. It follows that our loop

vi−1, vi, vi+1, vi+2

is homotopic to
vi−1, vdown, vi+1, vi+2

in Xv. In addition, both vdown, vi+1, vi+2 and vi+2, vi−1, vdown bound 2-simplices by
Lemma 5. Thus vi−1, vdown, vi+1, vi+2 and hence vi−1, vi, vi+1, vi+2, i.e., v1, . . . , v4, is
homotopically trivial in Xv. See Figure 5.

v

vv

v v
1

2

3
4

down

Figure 5: A homotopically trivial loop

Case 2: vup = vdown = v.

In this case we must argue differently. Let F be a representative of v, F0 a lift of
F to M(K), F1 = τ(F0) and C the component of

M(K)\(F0 ∪ F1)

that lies between F0 and F1. Recall the notation Sj
0, T̃

up, T̃ down, Sup, Sdown from
the proof of Lemma 1 and let S̃up, S̃down be lifts of Sup, Sdown to C, respectively. See
Figure 6. We will assume (only) that F, F0, F1 and each Sj

0 are least area surfaces in
their isotopy classes.

Denote the components of M(K)\Sj
0 by M j

− and M j
+, with M j

+ the component
above Sj

0, i.e., the component containing F1. (Note: we say that a surface in C
lies above Sj

0 if it lies in M j
+ and below Sj

0 if it lies in M j
−. It is easy to check, but

important to realize, that if Sj
0 lies above Sk

0 , then Sk
0 lies below Sj

0.) It follows from
the construction of Sup, Sdown in Lemma 1 that S̃up, S̃down are contained in T̃ up,
T̃ down, respectively. Moreover, the push-off yielding T̃ up forces it to lie above Si−1

0

and Si+1
0 , i.e., in the interior of M i−1

+ and M i+1
+ . The push-off yielding T̃ down forces

it to lie below Si−1
0 and Si+1

0 , i.e., in the interior of M i−1
− and M i+1

− .

Here Si
0, S

i+2
0 are disjoint from Si−1

0 ∪Si+1
0 by Theorem 4 and hence, after isotopy

if necessary, also from S̃up ∪ S̃down. We wish to show that Si
0, S

i+2
0 either both lie

below S̃down or both lie above S̃up. Indeed, since Si
0 ∩Si+2

0 6= ∅, we need only exclude
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the possibility that Si
0∪Si+2

0 lie above S̃down but below S̃up. Consider how Si−1
0 ∪Si+1

0

lie with respect to Si
0. Since Si−1

0 ∩ Si+1
0 6= ∅, they either both lie in M i

− or both lie
in M i

+. If
Si−1

0 ∪ Si+1
0 ⊂M i

−,

then Si
0 lies above Si−1

0 ∪ Si+1
0 and hence above S̃up. If

Si−1
0 ∪ Si+1

0 ⊂M i
+,

then Si
0 lies below Si−1

0 ∪ Si+1
0 and hence below S̃down. A similar argument applies to

Si+2
0 . Thus Si

0, S
i+2
0 either both lie below S̃down or both lie above S̃up.

1

~

~

up

down S

S

S

S

0

1

0

0

0

0

S

S

F

F

C

4

3

2

Figure 6: The product region

Since vup = vdown = v, S̃up is isotopic to F0 or F1 as is S̃down. It follows that either
Si−1 and Si+1 lie in a product region and are hence isotopic, or that Si and Si+2 lie in
a product region and are hence isotopic. See Figure 6. But this is impossible. Hence
there are no homotopically nontrivial loops of length less than or equal to 4 in the
link of v.

Lemma 4. A homotopically nontrivial loop in the link of a vertex in the Kakimizu
complex must have length at least 6.

Proof: By Lemma 3, it suffices to show that there are no homotopically nontrivial
loops of length 5. So suppose that v1, . . . , v5 is a loop of length 5 in Xv. By the
reasoning in Claim 1 in the proof of Theorem 6, we may assume that dK(vi−1, vi+1) = 2
∀i. (For otherwise the loop is homotopic, in Xv, to a loop of length 4, and hence
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homotopically trivial by Lemma 3.) Endow E(K) with a relative Riemannian metric
and let S1, . . . , S5 be relative least area representatives of v1, . . . , v5. By Theorem 4,

Si ∩ (Si+1 ∪ Si−1) = ∅ ∀i

and
Si−1 ∩ Si+1 6= ∅ ∀i.

Recall the notation M(K), F0, F1, C from the proof of Lemma 3 and let S1
0 , . . . , S

5
0

be lifts of S1, . . . , S5 to C. Then

Si
0 ∩ (Si+1

0 ∪ Si−1
0 ) = ∅ ∀i

and
Si

0 ∩ S
j
0 6= ∅ for j 6= i, i± 1.

Each Si
0 is separating in C. In particular, S2

0 ∩ S5
0 6= ∅, so these two surfaces must

either both lie above or both lie below S1
0 . Assume the former, as the other case will

then follow by a symmetric argument. Also, S3
0 must lie below S2

0 , in order to have
nonempty intersection with S1

0 . Furthermore, S4
0 must lie above S3

0 in order to have
nontrivial intersection with S2

0 , but below S5
0 , in order to have nontrivial intersection

with S1
0 . See Figure 7.

1

S
0

1

S

S

S

S

0

0

0

00

2

5

3

4

S
4

F

F

0

Figure 7: Five separating surfaces

Since S3
0 ∩ S5

0 6= ∅, this is impossible.

Theorem 8. If the Kakimizu complex of a knot K is at most 2-dimensional, then it
is contractible.
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Proof: Lemmas 3 and 4 establish the fact that links of vertices in the Kakimizu
complex contain no nontrivial loops of lengths ≤ 5. Thus the hypotheses of Theorem
7 are satisfied, whence the universal cover of the Kakimizu complex is contractible.
Hence by Theorem 6 the Kakimizu complex is contractible.

7 Further remarks

To improve readability of this paper, the results have been stated and proved for knots
in S3. However, they are equally valid for knots in homology 3-spheres. Furthermore,
the Kakimizu complex is defined in terms of isotopy classes of minimal genus Seifert
surfaces. A related complex is obtained by considering all isotopy classes of incom-
pressible Seifert surfaces. The theorems and arguments used here are stated in terms
of minimal genus Seifert surfaces. It seem likely that this assumption is unnecessary
and that the analogous theorems hold for the more general complex as well.

The goal of proving contractibility of the Kakimizu complex may be out of reach,
but there are natural questions to ask, now that simple connectedness is established.
One such question is whether or not the Kakimizu complex is 2-connected. Indeed,
this question is being pursued by Sakuma and Shackleton ([21]) who believe that it
is 2-connected and that this can be established via the techniques used here.

Theorem 7 has a generalization, due to Januszkiewicz and Świa̧tkowski ([10]), to
higher-dimensional simplicial complexes, although their notion of local k-largeness is
more subtle. It is unclear if Lemmas 3 and 4 can be modified to fit their definition.

8 Appendix: A compactness theorem for stable

minimal surfaces

by Michael Kapovich

Let M be a P2-irreducible compact Riemannian 3-manifold with smooth strictly con-
vex boundary and J a compact family of smooth curves on ∂M . In the setting here
we are mostly interested in the case where ∂M is a single torus and J is a smooth
foliation of ∂M by closed curves. Let S be a compact connected surface, possibly
with boundary.

Given a smooth proper embedding f : (S, ∂S) → (M,∂M) we let [f ] denote
its (proper) isotopy class (here we are not fixing the boundary value f |∂S). From
now on, we will assume that the isotopy classes [f ] are such that for each boundary
component ∂iM of M , f−1(∂iM) is a single component of ∂S and that the surface
f(S) is incompressible. It follows that for each f as above, there exists a least area
(parameterized) surface in the set

{g ∈ [f ] : g|∂S = f |∂S},

see [8, Theorem 6.12]. Such a surface is necessarily a stable minimal surface.
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Define the “moduli space” M([f ]) of stable minimal surfaces in the given proper
isotopy class [f ] subject to the condition that f |∂S is a parameterized multi-curve in
J . Here we identify parameterized surfaces which differ by a reparameterization of
S. We let M = M(S) = ∪[f ]M([f ]) be the space of all stable embedded minimal
surfaces of the given topological type. We give M the C1-topology. Given a number
a we let Ma denote the subset of M consisting of surfaces of area ≤ a.

Proposition 9. If S has nonempty boundary, then the space Ma is compact.

When ∂S is empty, a similar compactness result holds by a theorem of Nakauchi.
In [13], Nakauchi uses Schoen’s estimates [20] on the norm of the 2-nd fundamental
form of stable minimal surfaces away from the boundary of M to conclude that
sequences of stable minimal surfaces admit convergent subsequences, except that the
limiting surfaces in [13] may fail to be embedded but appear as 2-fold coverings of
embedded surfaces.

Proof: In the case of surfaces with boundary we modify Nakauchi’s argument as
follows: Given a sequence of minimal surfaces fi : S → M whose boundary values
are in J and whose area is ≤ a, a theorem of Anderson [3, Theorem 3.1] tells us
that there exists a subsequence fij so that the sequence fij (S) converges to a minimal
surface Σ ⊂ M whose boundary is in J . The surface Σ need not be of the same
topological type as S. However, the convergence of the surfaces is smooth away from
a finite subset x1, ..., xm ∈ Σ. Moreover, Anderson proves [3, Paragraph 4 of the
proof of Theorem 3.1] that all the points xi belong to the interior of M . Thus we
can apply Schoen’s estimates [20] to each point xi ∈ int(M) in the same manner
as Nakauchi does, provided that the fi(S) are stable minimal surfaces. Schoen’s
estimates imply smooth convergence at the points x1, ..., xm. Therefore, the maps
fij : S → M converge smoothly to a covering map f : S → Σ. Suppose that
f is a nontrivial covering, then its restriction to ∂S is also nontrivial. However,
compactness of J implies that the maps fij : ∂S → ∂M converge to an embedding.
This is a contradiction. Therefore, f is 1-1.

Remark 5. If M is a closed 3-manifold with a bumpy Riemannian metric, Colding
and Minicozzi proved in [5] that the space of (not necessarily stable) minimal surfaces
of uniformly bounded area is finite: Bumpiness of the metric is used to ensure that the
limiting minimal surface Σ has no nontrivial Jacobi fields. The same argument can
be used in conjunction with the above proposition to ensure finiteness ofMa, provided
that the metric on M is chosen to be bumpy on the interior of the manifold.

Corollary 10. Ma splits as a disjoint union of finitely many open and closed subsets
Ma([g]) each of which consists of isotopic surfaces.

Proof: Let g be a stable minimal surface in Ma and let fk : S → M be a sequence
of surfaces in Ma\Ma([g]). Suppose that the sequence fk : S → M converges to
f : S → M . Then f is isotopic to each fk for k sufficiently large. In particular, f
cannot be inMa([g]). It follows that the subsetsMa([g]) are open. Finiteness of the
number of these sets follows from the compactness of Ma.
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Corollary 11. Each M([f ]) contains an area-minimizer. In particular, each class
{g ∈ [f ] : g|∂S ∈ J } admits an area-minimizer.

Proof: Area is a continuous function, therefore the corollary follows from the com-
pactness of Ma([f ]).

We now assume that ∂M is a union of tori. We say that a Riemannian metric on
M is relative if M has a strictly convex boundary. It is easy to see that M always
admits a relative Riemannian metric: Start with a metric on T 2×[0, 1], where T 2×{0}
strictly convex. Identify T 2 × [0, 1] with neighborhoods of boundary tori ∂iM of M ,
where ∂iM is identified with T 2×{0}. Then extend the metric on a neighborhood of
∂M arbitrarily to the rest of M . Fix a C1-foliation J of ∂M by closed curves.

The area minimizers in the isotopy classesM([f ]) will be called relative least area
surfaces (the word “relative” refers to the fact that we are assuming that f(∂S) ∈ J ).
We now compare our setup with that of [7].

In our boundary conditions for relative least area surfaces we are using boundary
curves in J rather than using a free boundary condition as is done in [7]. However,
since curves in J are either disjoint or equal, this ensures that the cut-and-paste
arguments used in [7] preserve our boundary conditions. With this in mind, the
arguments in [7] go through with our set-up. In particular, we obtain:

Theorem 12. Let fi : Si → M, i = 1, ..., n, be incompressible surfaces which are
pairwise non-isotopic and pairwise disjoint. Let gi : Si → M, i = 1, ..., n be relative
area minimizers in the isotopy classes of fi, i = 1, ..., n. Then g1(S1), ..., gn(Sn) are
also pairwise disjoint.

We now assume that M is diffeomorphic to the exterior of a knot in S3, J is
a foliation of ∂M by preferred longitudes and the surface S has a single boundary
component.

Fix a number n and let L ⊂ Mn denote the subset of n-tuples represented by
parameterized minimal genus Seifert surfaces (f1, ..., fn), so that:

a) dK([fi(S)], [fi+1(S)]) = 1, i is taken mod n. Here dK is the Kakimizu distance
and the isotopy class [fk(S)] = vk represents a vertex in the Kakimizu complex.

b) The loop in the 1-skeleton of the Kazimizu complex represented by the vertices
v1, ..., vn is homotopically nontrivial in the Kazimizu complex.

It follows immediately from Corollary 10 that L is closed inMn. Define the area
functional A :Mn → R+,

A(f1, ..., fn) =
n∑

i=1

A(fi(S)).

We then obtain the following:

Corollary 13. The functional A|L attains a minimum.

Proof: It is clear that A is continuous and positive. By Proposition 9, A is proper.
Since L is closed inMn, the restriction A|L is proper as well. Therefore, A|L attains
its minimum.
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