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Abstract

The Kakimizu complex of a knot is a flag simplicial complex whose
vertices correspond to minimal genus Seifert surfaces and edges to
disjoint pairs of such surfaces. We discuss a general setting in which
one can define a similar complex. We prove that this complex is
contractible, which was conjectured by Kakimizu. More generally,
the fixed-point set (in the Kakimizu complex) for any subgroup of an
appropriate mapping class group is contractible or empty. Moreover,
we prove that this fixed-point set is non-empty for finite subgroups,
which implies the existence of symmetric Seifert surfaces.

1 Introduction

We study a generalisation M S(E) of the following simplicial complex M S(L)
defined by Kakimizu [Kak92]. Let £ = E(L) be the exterior of a tubular
neighbourhood of a knot L in S*. A spanning surface is a surface properly
embedded in E, which is contained in some Seifert surface for L. Let MS(L)
be the set of isotopy classes of spanning surfaces which have minimal genus.
The vertex set of MS(L) is defined to be MS(L). Vertices 0,0’ € MS(L)
span an edge if they have representative spanning surfaces which are disjoint.
Simplices are spanned on all complete subgraphs of the 1-skeleton. In other
words, MS(L) is the flag complex spanned on its 1-skeleton. Kakimizu
defines M S(L) for links in the same way, but we later argue that this is
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not the right definition and we define our MS(E) for E = E(L) differ-
ently. However, for all links whose M S(L) have been so far studied we have
MS(E(L)) = MS(L).

The general setting in which we define MS(E(L)), or more generally
MS(E,~,«), is the following. Let E be a compact connected orientable, ir-
reducible and d-irreducible 3—manifold. In particular, for any non-splittable
link L in S?, the complement E(L) of a regular neighbourhood of L satisfies
these conditions. Let « be a union of oriented disjoint simple closed curves
on OF, which does not separate any component of 0F. For E = E(L) an
example of 7 is the set of longitudes of all link components (or its subset).
We fix a class « in the homology group Hy(FE,0FE,Z) satisfying da = [v].
For E = E(L) and ~ the set of longitudes, there is only one choice for a.
It is the homology class dual to the element of H'(E,Z) mapping all ori-
ented meridian classes onto a fixed generator of Z. A spanning surface is
an oriented surface properly embedded in E in the homology class a whose
boundary is homotopic with .

We also need to assume that the map Hy(E,Z) — Hy(E,0F, Z) is triv-
ial. This is very restrictive (but satisfied by the link complements in S%),
and implies that « is determined by . Most importantly, it also guarantees
that Thurston norm minimising spanning surfaces do not separate E. In-
deed, the union of the non-closed components of a spanning surface does not
separate F in view of the hypothesis on «. Moreover, if a spanning surface
has closed components, then since they are trivial in Hy(E,0F, Z) removing
them decreases Thurston norm.

We now define the simplicial complex M S(E, v, «), which we abbreviate
to MS(FE), if E = E(L) and + is the set of all longitudes. The vertex set
of MS(E,~,«) is defined to be MS(F,~, ), the set of isotopy classes of
spanning surfaces which have minimal Thurston norm. However, we span an
edge on 0,0’ € MS(FE,~,a) only if they have representatives S € o,5" € o
such that the (connected) lift of E'\ S’ to the infinite cyclic cover associated
with « intersects exactly two lifts of £\ S. In the terminology of Section 2
this means that the Kakimizu distance between o and o’ equals one. This
is not always true for disjoint S, S’ (because they are allowed to be discon-
nected). This error is made by Kakimizu [Kak92, formula 1.3(b)] who does
not distinguish between M S(L) and M S(E(L)). However, both his and our
article prove that the right complex to consider is MS(E(L)).

For every link L it is a basic question to determine the complex M S(E(L))
which encodes the structure of the set of all Thurston norm minimising span-
ning surfaces. This has been done for all prime knots of at most 10 crossings

by Kakimizu [Kak05, Theorem A]. Moreover, questions about common prop-
erties of all MS(E(L)) (or rather MS(L)) have been asked. Here is a brief
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summary (for a broader account, see [Pel07]).

Scharlemann—Thompson proved [ST88, Proposition 5] that MS(E(L)) is
connected, in the case where L is a knot. Later Kakimizu [Kak92, Theorem
A] provided another proof for links. Schultens [Sch10, Theorem 6] proved
that, in the case where L is a knot, MS(E(L)) is simply-connected (see
also [SS09] for atoroidal genus 1 knots). For atoroidal knots bounds on
the diameter of MS(E(L)) have been obtained ([Pel07,SS09]). Kakimizu
conjectured (see [Sak94, Conjecture 0.2]) that MS(L) is contractible. This
was verified for special arborescent links by Sakuma [Sak94, Theorem 3.3
and Proposition 3.11], and announced for special prime alternating links by
Hirasawa—Sakuma [HS97]. In the present article, we confirm this conjecture,
under no hypothesis, for the complex MS(E,~, a).

Theorem 1.1. MS(E,~,«) is contractible.

Using the same method we are also able to establish the following. Note
that for £ = E(L) all mapping classes of E fix o and the homotopy class of

-

Theorem 1.2. Let G be a finite subgroup of the mapping class group of E
fixing a and the homotopy class of v. We consider its natural action on
MS(E,v,a). Then there is a simplex in MS(E,~,«) fized by all elements
of G.

Sakuma argued [Sak94, Proposition 4.9(1)] (see also [Sch10, Theorem 5]
for knots) that the set of vertices of any simplex of MS(FE,~,«) can be re-
alised as a union of pairwise disjoint spanning surfaces. Hence in the language
of spanning surfaces Theorem 1.2 amounts to the following.

Corollary 1.3. Let G be a finite subgroup of the mapping class group of
E fixing o and the homotopy class of ~v. Then there is a union of pairwise
disjoint Thurston norm minimising spanning surfaces which is G-invariant
up to 1sotopy.

In the case where E is atoroidal and OF is a union of tori, its interior ad-
mits, by the work of Thurston and the theorem of Prasad, a unique complete
hyperbolic structure. Then the mapping class group of E coincides with the
isometry group of its interior, hence it is finite. Moreover, after deforming
the metric in a way discussed in [Pel07, Chapter 10] we can assume that each
element of MS(FE, 7, «) has a unique representative of minimal area. In this
case Corollary 1.3 gives the following.

Corollary 1.4. If E is atoroidal and OF is a union of tori, then there is
a union of pairwise disjoint Thurston norm minimising spanning surfaces
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which is invariant under any isometry fiving o (the homotopy class of «y is
then fized automatically). In particular, if E = FE(L), then this union is
mvariant under any isometry.

A related result concerning periodic knots was proved in Edmonds [Edm84].
Finally, Theorem 1.1 turns out to be a special case (G trivial) of the
following.

Theorem 1.5. Let G be any subgroup of the mapping class group of E fizing
a and the homotopy class of v. Then its fixed-point set Fixg(MS(E,~v,a))
15 either empty or contractible.

We decided to provide first the proof of Theorem 1.1 and then the more
technically involved proof of the generalisation, Theorem 1.5.
We conclude with the following consequence of Theorem 1.5.

Corollary 1.6. Denote by G the mapping class group of E fixzing a and
the homotopy class of v. Let F be the set of those subgroups of G which

stabilise a point in MS(E,~,«). Then MS(E,~,«) is the model for Ex(G)
(the classifying space for G with respect to the family F, see [Liic05]).

Actually, it is not clear to us what groups, apart from all finite ones (see
Theorem 1.2), belong to the family F. It is also not clear if M S(E, v, ) can
be locally infinite.

Outline of the idea. We now outline the main idea of the article.
The central object is the projection map m, which assigns to a pair of vertices
o,p € MS(E,~v,«a) at distance d > 0 a vertex m,(p) adjacent to p at distance
d—1 from 0. Kakimizu [Kak92] used the projection to prove that M S(E(L))
is connected, but in fact he did not need to verify that it is well-defined —
he worked only with representatives of vertices. We verify that 7 is well-
defined using a result of Oertel on cut-and-paste operations on surfaces with
simplified intersection.

We explain how to prove contractibility of MS(E,~,a). Assume for
simplicity that MS(E,~,«) is finite (which is the case for E hyperbolic,
see [Thu80, Corollary 8.8.6(b)]). We fix some 0 € MS(FE,~,«). Then we
prove that among vertices farthest from o there exists a vertex p which is
strongly dominated by 7,(p). This means that all the vertices adjacent to p
are also adjacent to or equal 7,(p). Hence there is a homotopy retraction
of MS(E,~,«a) onto the subcomplex spanned by all the vertices except p.
Proceeding in this way we retract the whole complex onto o.

Remaining questions. Questions about the structure of the set of all
incompressible spanning surfaces remain open. Kakimizu [Kak92] considers
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the complex IS(L) whose vertices are isotopy classes of spanning surfaces
which are incompressible and d—incompressible but not necessarily of mini-
mal Thurston norm. The edges of IS(L) are defined like edges of M.S(L),
in particular we have an embedding of M S(L) into IS(L). Kakimizu asks
if 1S(L) is contractible as well. He proves that I.S(L) is connected, using
a composition of the projection 7 with an additional operation, which we
do not know how to make well-defined on the set of isotopy classes of sur-
faces. This is why we do not know if we can extend Theorem 1.5 or even
Theorem 1.1 to the complex IS(L) (or rather to IS(E,~, ), appropriately
defined). Note however that, since MS(F,~,«a) would be a subcomplex of
IS(E,~,a), Theorem 1.2 would trivially carry over to IS(E,~, a).

Organisation of the article. In Section 2 we discuss Kakimizu distance,
a geometric way to understand the distance between vertices of M S(FE,~, «)
in its 1-skeleton. In Section 3 we prove that we can compute this distance
from representative surfaces with simplified intersection. We use that in Sec-
tion 4 to prove that the projection map is well-defined. In Section 5 we
introduce the order on MS(F,~, «) in which we will contract the complex.
We establish various properties of the projection map in Section 6. Using
these, we establish contractibility, Theorem 1.1, in Section 7. Next, in Sec-
tion 8 we prove the fixed-point result, Theorem 1.2. Finally, in Section 9 we
prove Theorem 1.5 that all fixed-point sets are contractible, if non-empty.

Acknowledgements. After having proved Theorem 1.1, we learned that
Victor Chepoi has outlined independently a possibly similar proof. In fact,
our article is inspired by what we have learned from [CO09] and [Pol00]. We
were also inspired by an argument which we have learned from Saul Schleimer
proving contractibility of the arc complex. We thank Saul Schleimer for ad-
vice, encouraging us to prove Theorem 1.2 and for telling us about [Pel07].
We thank Jessica Banks for pointing out an error in our previous definition
of semi-convexity. We also thank Irida Altman and Stefan Friedl for help-
ful conversations. The first author is grateful to the Hausdorff Institute of
Mathematics in Bonn and to the Erwin Schrédinger Institute in Vienna. The
second author is grateful to the Max-Planck Institute in Bonn.

2 Kakimizu distance

In this section we start recalling the method using which Kakimizu proved
[Kak92, Theorem A] that MS(FE(L)) is connected. This method was later
used by Schultens [Sch10, Theorem 6] to prove that MS(E(L)) is simply
connected, in the case where L is a knot, and will be also the basic tool in



the present article.

The method is to study a pair S, R of spanning surfaces via the lifts of
E\ S,E \ R to the infinite cyclic cover E of E associated with the (kernel
of the) element of H'(E,Z) dual to «. It turns out that the distance in
MS(E,~,«) between two vertices [S], [R]| determined by those surfaces can
be read instantly from the relative position of the lifts of £\ S and E'\ R.

We recall the setting and notation of [Kak92]. Let p: £ — E be the
covering map discussed above. Let 7 be the generator of the group of covering
transformations of E. Suppose that S C FE is a spanning surface. The
hypothesis that v does not separate the components of OF guarantees that
F\ S is connected. Let Ey denote a lift of E'\ S to E and denote E; = 77(FE,)
for j € 7Z. Note the difference with [Kak92], where Ej is the closure of our
Ey. Denote also S; = Ej_l N Ej for j € Z (the bars will always denote
closures).

a) a)

Figure 1: d(S, R) is defined via the lifts of S and R

Definition 2.1. Let R be another spanning surface. Let E® be any lift of
E\ R to E. We set

r = max{k € Z|E} intersects E®}, m = min{k € Z|E}, intersects E}

and we put d(S, R) = r — m. This value does not depend on the choice of
the lift £%. See Figure 1.

Furthermore, for any two isotopy classes o, p of spanning surfaces we
define d(o, p) to be the minimum of d(S, R) over all representatives S of o
and R of p.

Observe that in the case o = p we can take S = R which satisfy d(S, R) =
0. Recall that we declared two different vertices o, p of MS(E,~,«a) to be
adjacent if they satisfy d(S, R) = 1 for some S € o, R € p. Note that if S and
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R are disconnected, it could happen that S and R are disjoint, but d(S, R)
exceeds 1. One might not be able to improve that by varying S and R in the
isotopy classes.

Kakimizu proves the following. (Our context is more general, but the
proof trivially carries over.)

Proposition 2.2 ([Kak92, Proposition 1.4]). The function d is a metric on
MS(E,v,a).

In fact, if we endow the 1-skeleton of MS(F,~, «) with the path-metric
[ in which all the edges have length 1, then d satisfies the following.

Proposition 2.3 ([Kak92, Proposition 3.1]). The metric d coincides with [
on MS(E,v,a).

Let us indicate how Kakimizu proves Proposition 2.3. The distance [ =
l(o,p) is realised by a path oy = 0,01,...,00 = p. By Proposition 2.2,
we have d(o,p) < d(op,01) + ...+ d(0y-1,0;) = [, which is the estimate in
one direction. The second estimate will be explained at the beginning of
Section 4.

3 Simplified intersection

In this section we address the following issue. What hypotheses on the rep-
resentatives S, R of spanning surfaces o, p guarantee d(o,p) = d(S, R)? To
formulate a criterion we need the following terminology (see [Oer88]).

Let S, R be compact surfaces properly embedded in a connected (not nec-
essarily compact) 3—manifold M with boundary. We discuss product regions
bounded by S and R in OM and M. If 3 is an (abstract) arc, we denote by J
the product 5 x I with {x} x I collapsed to a point for each x € 95. A product
region in OM is an embedded copy of J with 5 x {0} C S, fx {1} C R, and
IN(SUR)=03. Similarly, if W is a compact surface with boundary and 0
is a closed 1-submanifold of W, we denote by J the product W x I with in-
tervals {x} x I collapsed to points for z € §. A product region in M (called a
blister in [Sak94]) is an embedded copy of J with W x {0} C S, W x {1} C R,
and JN (SUR) = 0F \ int(J N OM). Note that ¢ is allowed to be empty, in
which case the product region is really a product.

We say that two surfaces S, R in a manifold M have simplified intersec-
tion, if they do not bound any product region. In particular, if a component
S of S is isotopic to a component R of R, then we must have S = R.



We say that S and R are almost transverse if for each component S of S
and R of R either S equals R or they intersect transversely. In particular, if
S equals R then S and R are almost transverse.

We say that surfaces S and R are almost disjoint if for intersecting com-
ponents S of S and R of R we have S = R. In particular, S is almost disjoint
from itself.

Note that for a pair of surfaces S, R, the surface R can be always isotoped
to R’ which is almost transverse to .S and has simplified intersection with S.
(This is not true if we wanted to drop ’almost’, consider the case where
some components of S and R coincide. Actually, this also fails in the very
special case where S = R and M is a surface bundle over a circle, but we
will ignore that since then MS(FE,~,«) is trivial.) Moreover, if Ry, Ry are
almost disjoint, then they can be isotoped to almost disjoint R}, R/, which are
both almost transverse to S and have simplified intersection with S (again
we cannot require that R}, R, are disjoint, even if Ry, Ry are).

Remark 3.1. In [Oer88] the definition of having simplified intersection con-
sists of one more condition, which under standard hypotheses follows from
the others. Namely, let M be orientable, irreducible, 0—-irreducible and sup-
pose that S, R are orientable, incompressible and d—incompressible. If S and
R are almost transverse and have simplified intersection, then there are no
components of S N R which are closed curves that are trivial in S or R, or
arcs that are 0—parallel in S or R.

We now answer the opening question of the section.

Proposition 3.2. Let S, R be spanning surfaces in E representing o, p in
MS(E,v,«). If S and R are almost transverse and have simplified intersec-
tion, then they satisfy

d(o,p) =d(S,R).

We deduce Proposition 3.2 from the following version of [Sak94, Propo-
sition 4.8(2)], which we give without a proof.

Proposition 3.3. Let M be (possibly non-compact) orientable, irreducible,
and O—irreducible 3—manifold. Let W, N be (possibly non-compact) proper 3—
submanifolds of M such that OW, N are incompressible and 0—incompressible
surfaces which are almost transverse with simplified intersection. If N is iso-
topic to a submanifold N' such that the interior of N' is disjoint from W,
then also the interior of N is disjoint from W.

In the setting described in Section 2, this yields the following.



Corollary 3.4. Let W, N be proper 3—submanifolds ofE such that OW, 0N
are unions of lifts of Thurston norm minimising spanning surfaces which are
almost transverse with simplified intersection. If N is isotopic to N’ such
that the interior of N' is disjoint from W, then also the interior of N is
disjoint from W.

We will usually invoke Corollary 3.4 in the situation where W = FE, and
N = Ti(ER) for some j, i, where F; and E are as in Section 2.

We are now prepared for the following.

Proof of Proposition 3.2. Let R and S be almost transverse with simplified
intersection. Let R’ be an element of p = [R] for which the minimum of
d(S,R') is attained. Then we have d(o,p) = d(S,R') = r" —m/, where
ET ' m/ are as in Definition 2.1 with R replaced by R’. Then E¥ is disjoint
from all E; with j > 7'+ 1 or j < m/ — 1. Let Ef be the lift of £\ R to
E isotopic to Ef'. Since R has simplified intersection with S, its lifts have
simplified intersection with the lifts of S. By Corollary 3.4, E¥ is disjoint
from all E; with j > "+ 1 or j <m’— 1. Then we have r <7’ and m > m/,
which implies d(S, R) < d(S, R'), as desired. O

We conclude with recording the following lemma, whose proof we leave
for the reader.

Lemma 3.5. Let M be orientable, irreducible, O—irreducible and suppose
that S, R and T are orientable, incompressible and O—incompressible surfaces
properly embedded in M. Then S, R and T can be isotoped to be pairwise
almost transverse and have pairwise simplified intersection.

4 Projection map

In this section we recall a construction of Kakimizu which we think of as
a projection map and which will be our main tool. First, we need to fix
a basepoint 0 € MS(FE,v,a). The projection map m, will map every p €
MS(E,v,«) at distance n > 0 from o to a vertex 7,(p) € MS(E,~, )
adjacent to p at distance n — 1 from o.

The existence of such projection map completes Kakimizu’s proof of
Proposition 2.3. It implies, in particular, that MS(E,~,«) is connected.
In the present article we promote this method to prove contractibility of
MS(E,v, ).

We say that an oriented surface 7" is obtained by a cut-and-paste operation
on S and R if it is a union of closures of oriented components of S\ R, R\ S
and common components of S and R, with 9T C 9S U JR.
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Definition 4.1. Let o # p be vertices of MS(FE,~,«). Put n = d(o, p). For
any fixed spanning surface S € o we can choose R € p such that S and R are
almost transverse with simplified intersection. In particular S and R have
almost disjoint boundaries, which means that the boundary components are
disjoint or equal. By Proposition 3.2 we have d(S, R) = n.

Recall the notation of Section 2 that r is largest such that the translate
E, of E, intersects the lift E® of E'\ R to E. Denote R = E'n T(ER). Let
Pc Sy U R denote the surface obtained by a cut-and-paste operation on .S,
and R, which is the intersection of the boundaries of ER\ET and T(ER) UE,.
See Figure 2. N

The surface P considered with the orientation inherited from R and S,
satisfies in homology (E® N E,) = R — P. Hence the image P of P under
p is in the homology class a. Moreover, P embeds under p into E. In order
to justify that P is a spanning surface, it remains to prove that its boundary
OP is not only homological but also homotopic to . This follows from the
fact that P is homotopic to a combination of curves in v and that by the
hypothesis that 7 does not separate the components of dF no non-trivial
combination of curves in 7 is homological to zero.

Now a calculation as in case 1 of the proof of [Kak92, Theorem 2.1] yields
that P is a spanning surface of minimal Thurston norm. We define

We prove that this class is well-defined in Proposition 4.4.

As indicated at the beginning of this section, we have the following prop-
erty, which justifies calling m, the projection.

Remark 4.2. The surface P in Definition 4.1 satisfies d(R, P) = 1 and
d(S, P) = n—1. Hence 7, (p) is adjacent to p and satisfies d(o, 7,(p)) = n—1.

In the proof that the projection is well-defined we need the following
result.

Theorem 4.3 ([Oer88, Theorem 3]). Let M be an orientable, irreducible, 0—
irreducible 3—manifold. Let S, R be orientable, incompressible, 0—incompressible
surfaces properly embedded in M. Assume that S and R are almost transverse
with simplified intersection and that they are isotopic to S’, R, respectively,
which are also almost transverse with simplified intersection. Suppose a cut-
and-paste operation on S and R yields an orientable, incompressible and
d—incompressible surface P. Then there is a corresponding cut-and-paste
operation on S', R’ yielding a surface P' isotopic to P.
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Figure 2: Construction of P
11



Proposition 4.4. The class [P] in Definition 4.1 does not depend on the
choice of S and R.

Proof. We can fix S € 0. Let R,R' € p be almost transverse to S with
simplified intersection. Let P be obtained | by a cut-and-paste operation on
R and S, as in Definition 4.1. Let EX| R’ be the lifts of £\ R', R to E
isotopic to E¥, R respectively. By Corollary 3.4, r is the largest integer such
that B intersects E,. Let P’ be the surface obtained from the cut-and-paste
operation on S, and R’ described in Definition 4.1, with R in place of R.
By Theorem 4.3 there is a surface P , obtained by a cut-and-paste opera-
tion on R’ and S,-, which is isotopic to p. The correspondence in Theorem 4.3
(arising from the proof) is such that in fact we have P’ =P, as desired. [

5 Ordering the vertices

In this section we describe a natural way of ordering the vertices of the com-
plex MS(E,~,a). One can check that for special arborescent links this order
coincides with the order described in [Sak94, Lemma 3.7] (for appropriate o).

We begin with the following, which describes a possible position of a
pair of adjacent vertices p,p’ € MS(E,~,«) with respect to a vertex o €
MS(E,v,a). Note that p and p’ may be at the same or different distance
from 0. We may choose almost disjoint R € p, R’ € p’ such that R and R’ are
almost transverse to a fixed S € o and have simplified intersection with S.
Moreover, we can assume that R and R’ have also simplified intersection (this
does not follow automatically from almost disjointness). By Proposition 3.2
we then have d(R, R') = 1. As usual E® denotes a lift of £\ R’ to E and r’
is largest such that FE,. intersects E® . Let E be the lift of F'\ R contained

in 2% U (E™).
Definition 5.1. If E¥ intersects E,., then we write
p<sp.
See Figure 3. We write p <, p/ if p <, p' or p=p'.
Remark 5.2. Definition 5.1 does not depend on the choices of R and R’.
Indeed, by Corollary 3.4 the isotopy class of ¥ does not depend on the

choice of R' € p'. Hence also the isotopy class of E¥ is well-defined. Again
by Corollary 3.4 the property that E® intersects F, is invariant.

We prove that adjacent vertices are always related by <,.
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T

Figure 3: Relation [R]| <, [R/]

Lemma 5.3. Let p # p' be adjacent vertices of MS(FE,~y,«) and consider
any 0 € MS(E,v,a). Then we have p' <, p or p <, p'.

Later, in Lemma 5.5, we will show that in fact p’ <, p and p <, p’ cannot
happen simultaneously, which justifies using the notation <,.
Proof. Assume we do not have p <, p/, i.e. Ef is disjoint from E,.. If we
now interchange p with p’, then E, = E,._; takes on the role of E,, and
7 1(E®) takes on the role of E®. Since 77'(E™) intersects E, _;, we have
P <, p- O

In the following configuration we can determine the direction of the rela-
tion <, .

Lemma 5.4. If in Definition 5.1 the vertex p is farther from o then p, then
we have p <, p'.

Proof. Since ET is contained in ET U T‘l(FR ), it may intersect only Ej
with m’ — 1 < k <’. By Proposition 3.2 we have d(S, R) = d(S,R') + 1, so
EF must intersect all those Fj,. In particular it intersects E,/, as desired. [J

We now prove that, in particular, p’ <, p and p <, p’ implies p = p'.
Lemma 5.5. There are no p',. .., p~, for k > 2, satisfying

1 2 k 1
P <op <g...<op <op.

13



Before we provide the proof, we record the following immediate conse-
quence. Note that in general the relation <, is not transitive, because p <, p’
and p’ <, p” do not imply that p and p” are adjacent.

Corollary 5.6. The relation <, extends to a linear order on MS(E,~,a).

Proof of Lemma 5.5. Since consecutive p' are adjacent, we can inductively
choose R* € p* RF1 € p*=1 ... R! € p! satisfying the following. First, each
R is almost transverse to S with simplified intersection. Second, for i < k the
surface R’ is almost disjoint with R“*! and they have simplified intersection.
Let 7 be largest such that E, intersects a lift ER" of E \ RF. For i < k define

Ri+1 i+1
inductively E' to be the lift of E \ R' contained in EY U T*I(ER ). In
view of p! <, p? <, ... <q p¥, all EX intersect E,.

Finally, let R* € p* be almost transverse to S with simplified intersection

and almost disjoint from R' with simplified intersection. Let ET" be the lift
— 1 — 1 *

of E'\ R* contained in EY U T‘l(ER ). In view of p* <, pt, EF" intersects

E,. By Corollary 3.4, B and ER lie in the same isotopy class. Then the

surfaces B N T(ER ) and EY n T(ER ) are almost disjoint and bound a

product containing all F¥ ﬂT(ER ). Hence all p; coincide, contradiction. [

6 Properties of the projection map

In this section we collect the properties of the projection map which will be
later used to prove the theorems from the Introduction.

The following property of the projection map 7, is the key to our proof
of Theorem 1.1.

Lemma 6.1. Let p and p' be adjacent vertices of MS(E,~,«) such that p
is different from some 0 € MS(E,v,a). Assume p <, p'. Then we have
P <, me(p). In particular w,(p) and p’ are equal or adjacent.

Proof. Let S, R, R', E®' | ER be as in Definition 5.1 and let P be as in Defi-
nition 4.1. Let ET be that lift of E'\ P which contains E®\ E,.

Then EF is contained in EPUT(EP). In particular 7,(p) and p’ are equal
or adjacent. There is an isotopy i of P such that i(P) is almost transverse
to S with simplified intersection and almost disjoint with R’ with simplified
intersection. Since ET is disjoint from E,, by Corollary 3.4 so is the lift of
E \ i(P) in the isotopy class of E¥. Hence we do not have 7,(p) <, p’. By
Lemma 5.3 we then have p’ <, 7m,(p), as desired. See Figure 4. O

A double application of Lemma 6.1 yields the following.
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Corollary 6.2. Let p and p' be adjacent vertices of MS(E,~,«) different
from some 0 € MS(E,v,a). Assume p <, p/. Then we have m,(p) <,

7o (6).

The following two results will be only used in the proof of Theorem 1.2
in Section 8. They are inspired by [Pol00]. In particular the proof of our
Lemma 6.4 resembles the proof of [Pol00, Lemma 3.9].

w N\
= \\E
% \

4

o

;U_) oo o

a~JN!

Figure 5: Configuration from Lemma 6.3

Lemma 6.3. Assume that there are vertices p', ..., p* at the same non-zero
distance from o € MS(E,~,a) satisfying

Pl <o P? <o ... <o pt, and m(p') = 7, (p").
Then all 7,(p') are equal and all p* are pairwise adjacent.

Proof. The fact that all 7,(p’) are equal follows immediately from Corol-
lary 6.2 and Lemma 5.5. To show that all p’ are adjacent it is enough to give
an argument that p* and p* are adjacent (for other pairs of p' we pass to a

subsequence).
First we choose B, ..., ER" in the same way as in the proof of Lemma 5.5.

Let P, P¥ be obtained as in Definition 4.1. Then 7(P*) is disjoint from E&*

16



and in the same isotopy class as T(ﬁl). See Figure 5. Hence R' and R* are
isotopic to almost disjoint surfaces i(R') and i(R¥) contained in the closure
of the lift of £\ P bounded by P! and 7(P'). Then we have

d(p(i(R"), p(i(RY))) = 1.
]

Recall that by [Sak94, Proposition 4.9(1)] all simplices of MS(E, v, «) can
be realised by sets of disjoint spanning surfaces. Hence by Kneser’s theorem,
there is a bound on the dimension of simplices in MS(FE,~, «). We promote
this to the following.

Lemma 6.4. For any n > 0 there is a constant l,, satisfying the following.
Let o be any vertex of MS(E,~,a) and let pt, ..., p" be at distance n from o
satisfying

1 2 l
Pl <o p’ <o ... <o p.

Then we have | < ,.

Proof. Let L be a bound on the dimension of simplices in M S(FE,~v,a). We
prove by induction that it suffices to put l,, = (L+1)". For n = 1 this follows
directly from Lemma 6.3. Assume we have verified this for some n > 1.

Let now p',...,p" be at distance n + 1 from o satisfying p' <, p? <,

. <y pl. Put ig = 0. For k > 1 define inductively i, to be maximal

satisfying m,(p"*) = m,(p*-1*1), until some i, equals [. By Lemma 6.3
for all 1 < k < m we have i — 11 < L+ 1. Summing up this implies
[ <m(L+1).

It remains to bound m. By Corollary 6.2 for all 1 < k < m we have
T, (p™) <o Ty (p* ). This gives rise to

To (") <o To(p) <o ... <o To(p™).

By Remark 4.2, all 7, (p’) are at distance n from o. By induction hypothesis
we have m < [,. Altogether, [ is bounded by l,,11 = [,,(L+1), as desired. [

We will also need in Section 8 the following technical result. Roughly
speaking it says that projection paths do not exit balls containing their end-
points.

Lemma 6.5. Foro # p,0’ € MS(E,~,a) withd(d',p) < d and d(c’,0) <d
we have d(o’,m,(p)) < d.

17
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Figure 6: Configuration from Lemma 6.5 (here S=FE,. N E.y1)

Et—d+ 1

Proof. Choose S € o, R € p,S" € o' which are pairwise almost transverse
with simplified intersection (see Lemma 3.5). Let r, P, P be as in Defini-
tion 4.1. Let E¥ be the lift of £\ P bounded by P and 77!(P). Choose a
lift £ of E\ S’ to E and denote E} = 7%(E}).

Let t be largest such that F] intersects E® N E,_; (which is non-empty).
Note (see Figure 6) that E” is contained in the union of

Efn (| By and B0 (| J7(E).

k<r—1 i<0

In particular, E¥ is contained in the intersection of Ef U E,_; with E;’s
satisfying k& < ¢. Since we have d(S’, R) < d and d(S5’,S) < d, these k must
satisfy ¢t — k < d, as desired. O]

We conclude with another technical lemma which will be used only in
Section 9. Roughly speaking, it describes how the projection 7, looks from
the point of view of a vertex o adjacent to o’.

Lemma 6.6. Let 0,0’ € MS(E,~,a) be adjacent. Let p,p € MS(E,~, )
be also adjacent satisfying p' <o p and p <, p'. If o’ # p, then we have

(i) p <o 7o (p'),

18



(i) if o # p/, then d(o, 7, (p')) < d(o,p').

See Figure 7 for an illustration.

]Ti?

=

Figure 7: Configuration from Lemma 6.6 (here S=F.N E,. ., and S =
B NE.)

Proof. Let S € 0,5 € 0/, R € p, R € p' be pairwise almost transverse with
simplified intersection (this is easily achieved by viewing S U S" and R U R’
as a pair of surfaces). Let Ej) be the lift of E'\ S’ contained in Eq U E; (for
some lift By of E'\ S). Let r’ be largest such that E/, = 77" (E}) intersects a
lift B of B\ R'. Let ET be the lift of £\ R contained in YU T_l(ERI>.

The hypotheses p' <, p and p <, p’ guarantee that E¥ is disjoint from
E!, but intersects E,». Let P’ = p(P') € 7, (p’) be obtained as in Defini-
tion 4.1 and let E¥" be the lift of £\ P’ bounded by P’' and 7~*(P'). Since
E% is disjoint from E',, the surface P’ is contained in T(ER). (In particular
p and 7, (p") are equal or adjacent.)

There is an isotopy ¢ of P’ such that i(P’) is almost transverse to S with
simplified intersection and almost disjoint from R with simplified intersection.
Since EF" is disjoint from E,.,1, by Corollary 3.4 so is the lift of £\ i(P') in
the isotopy class of ET". Moreover, this lift contains R which intersects E,.
This implies assertion (i).

Assertion (ii) is trivial since E” intersects exactly the same Ej, as Ef. [
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7 Contractibility

In this section we prove Theorem 1.1. By Whitehead’s theorem it suffices
to prove that all finite subcomplexes of MS(FE,~,a) are contained in con-
tractible subcomplexes of MS(E,~, a).

We say that a flag subcomplex X C MS(E,~,«) is o—conver, for o €
X if for any p # 0 € X© we have 7,(p) € X©. By Remark 4.2 each finite
subcomplex of MS(FE,~,a) is contained in a finite o—convexr subcomplex of
MS(E,~,«) for any (hence some) o. Hence in order to prove Theorem 1.1,
it suffices to establish that finite o —convex subcomplexes of M S(E,~, a) are
contractible. In fact, we have even a stronger property than contractibility.

Definition 7.1. A finite graph is dismantlable if its vertices can be linearly
ordered zy, ..., z,, so that for each ¢ # m there is j > 7 satisfying

(i) the vertex z; is adjacent to x;,

(ii) for any xj adjacent to x; with k > i, the vertex x; is adjacent or equal
to xy.

It is well known that finite flag complexes whose 1-skeleta are dismant-
lable are contractible (see e.g. [CO09]). We just indicate that one obtains a
homotopy retraction onto x,, by successively retracting x; to x;, where j is
as in Definition 7.1. In view of this in order to prove Theorem 1.1 it remains
to prove the following.

Theorem 7.2. Finite o—convex subcomplexes of MS(E,~,«) have disman-
tlable 1-skeleta.

Proof. We order all the vertices by extending the relation <, which is possi-
ble by Corollary 5.6. By Lemma 6.1 for all p # o we have p <, m,(p), hence
o is largest in this order.

For any non-largest x; we put z; = m,(x;). As discussed above we have
r; <, xj, which implies j > 7 and condition (i) in Definition 7.1.

It remains to verify condition (ii). Let zj be adjacent to x; with k > 4.
By Lemma 5.3 we have z; <, x; or x; <, x;. Since k > ¢ we must have
T; <, T. Then x; and x;, are adjacent or equal by Lemma 6.1. O

8 Fixed-point theorem

In this section we prove Theorem 1.2. Key notions will be the following.
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Definition 8.1. A flag subcomplex X of MS(FE,~,«) is convex if for all
o # p € XO the vertex m,(p) lies in X,

For a vertex v of MS(FE,~,a), let N(v) denote the union of v with the
set of all vertices adjacent to v. For a subcomplex X of MS(E,~, «a) we put
Nx(v) = N(v)n X©,

A flag subcomplex X of MS(E,~,a) is semi-convex if for all ¢ # p € X©)
there exists a vertex 7 € X© satisfying

Nx(ms(p)) C Nx(m),

and such that the distance between 7w and o in the 1-skeleton of X equals
d(m,(p), o). In particular, a convex subcomplex is also semi-convex.

The convex hull of a subcomplex X of MS(E,~, «) is the minimal convex
subcomplex of MS(FE,~,a) containing X, i.e. it is the intersection of all
convex subcomplexes of MS(FE,~,«) containing X.

Note that semi-convex subcomplexes of MS(E,~, «a) have 1-skeleta iso-
metrically embedded in the 1-skeleton of MS(E,~,«). Hence when we dis-
cuss the distances in semi-convex subcomplexes we do not have to specify if
we consider the distance in the 1-skeleton of the subcomplex or of the whole
MS(E,~,«). We also need the following preliminary result which follows
directly from Lemma 6.5.

Corollary 8.2. The convezr hull of a subcomplex of diameter d (in the 1-
skeleton of MS(E,~,a)) has diameter d as well.

Proof of Theorem 1.2. Let X C MS(FE,~v,«a) be a finite orbit of the G-
action on MS(E, v, a). Denote by X the convex hull of X. By Corollary 8.2
X has finite diameter. Note that X is G-invariant. We consider now G-
invariant non-empty semi-convex subcomplexes Y of MS(FE, 7, «) of minimal
diameter d. We want to show that d equals 1.

Otherwise, we also minimise the following value {(Y"). It is the maximum
over o € YO of | admitting a sequence p' <, p? <o ... <, p' for some
p', ..., plat distance d from o. Note that [(Y) is always finite by Lemma 6.4.

We say that a vertex v of a subcomplex Y of MS(FE,~,«) is strongly
dominated (by w) in Y if there is a vertex w in Y satisfying Ny (v) C Ny (w).

Let Z denote the set of all the vertices v € Y(© strongly dominated in
Y. Let W be the subcomplex of Y spanned by all the vertices in Y (© \ Z.
Obviously W is G—invariant. In order to obtain a contradiction it suffices to
establish that W is non-empty and semi-convex, and (W) < I(Y).

We first prove (W) < I(Y). Consider any ¢ € W© and a sequence
Pl <o p? <o ... <o p') of vertices at distance d from o. It suffices to show
that p! belongs to Z.
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By the definition of [(Y) every p € Y(© at distance d from o adjacent to
p* violates p <, p'. Then by Lemma 5.3 we have p! <, p. By Lemma 5.4
the same holds for all other p € Y(© adjacent to p'. Hence by Lemma 6.1
all vertices in Y adjacent to p' are adjacent to or equal 7,(p'). Note that
To(p') might note lie in Y(©) but since Y is semi-convex, there is 7 € Y at
distance d — 1 from o satisfying Ny (m,(p')) C Ny (7). At this point we have

Ny (p') C Ny ().

Similarly, since d > 2, there is ©' € Y(©) at distance d — 2 from o satisfying
Ny (7,(m)) C Ny(7'). In particular, 7" is adjacent to 7, but not to p'. Hence
we have

Ny (p') G Ny ().

We conclude that p! is strongly dominated by 7 in Y, which means that p
belongs to Z.

We now prove that W is non-empty. Pick a vertex v € Y(©) with maximal
Ny (v) (with respect to inclusion). Such a vertex exists since otherwise we
would have a simplex in MS(F,~,«) of infinite dimension. Then v is not
strongly dominated in Y by any vertex and hence v belongs to W (.

It remains to show that W is semi-convex. Take o # p € W© . Since
Y is semi-convex, there is a vertex m of Y© at distance d — 1 from o sat-
isfying N(m,(p)) C N(r). Let 7’ be a vertex of Y® with maximal possible
Ny (7') containing Ny (7). Such a vertex exists since M S(F,~,«) is finite-
dimensional. Then #’ is not strongly dominated in Y, hence 7’ belongs to
W®. Note that we also have Ny (7,(p)) C Ny (7).

Now we prove that 7’ is at distance d — 1 from o in WM. Let my =
T, T, ..., Tq_1 = 0 bea path in YO from 7 to 0. Put 7, = 7', 7/, , = o and
for all 0 < i < d— 1 let 7} be a vertex of Y(© with maximal possible Ny (/)
containing Ny (m;). Like before, all 7} belong to W(®). Moreover, since m; is
adjacent to m;11, also 7} is adjacent to ;11 and consequently =, is adjacent
to 7, ;. Hence 7 form a path and 7’ is at distance d — 1 from o in W,
Thus W is semi-convex, as required.

To summarise, assuming d > 2 we proved that Y contains non-empty
semi-convex G-invariant W with (W) < [(Y) (where [(W) = 0 means that
the diameter of W is less than d). This contradicts the choice of Y. In case
d=1,Y is the desired G—invariant simplex. ]

Note that the proof would be easier if we knew that M S(E, v, «) is locally
finite.
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9 Contractibility of fixed-point sets

In this section we prove Theorem 1.5. This is an elaboration on the proof
from Section 7.

Let G be a subgroup of the mapping class group of F fixing v and the
homotopy class of 7. Its fixed-point set Fixg(MS(E, v, «)) has the following
structure of a flag simplicial complex X. Its vertices can be identified with the
set V' of minimal G—invariant simplices of M S(FE,~, «). Its edges are spanned
on pairs of vertices corresponding to simplices in M S(FE,~,a) spanning a
common simplex.

We assume that X = Fixg(MS(FE,~,«)) is non-empty, i.e. there is a
vertex ¥ € V of X (a simplex of MS(FE,~,«)) which is invariant under G.
We need to prove that X is contractible. The plan of the proof is the same
as in Section 7. We will define a mapping Iy, from V' \ {¥} to V which will
play the role of w,. We will observe that each finite subcomplex of X lies in
a finite X —convexr subcomplex of X. The proof will then reduce to proving
dismantlability of ¥—convex subcomplexes of X.

Definition 9.1. For ¥ # A € V we define [Ix(A) € V in the following
way. We choose a vertex o of the simplex ¥. We consider 6 € A which is
minimal with respect to the order <,. We define IIx(A) to be the G-orbit
of m,(6). We still need to check that this is an element of V, i.e. a simplex
in MS(E,~,«). Note that since the relation <, and the mapping 7, are
G—equivariant, this definition does not depend on the choice of o.

Lemma 9.2. IIx(A) spans a simplex of MS(E,v,«). As a vertex of X it
is adjacent to A. Furthermore, for o € X,0 € A as in Definition 9.1 and all
7 € s (A) we have

0 <, .

Proof. Let o0 € ¥ and § € A be as in Definition 9.1. By Lemma 6.1, for all
d" € A we have §' <, 7,(5). In particular, 7,(9) is adjacent or equal to all
the vertices of A.

Let now 7 be any vertex of IIx(A). By equivariance, 7 is adjacent or
equal to all the vertices of A. Moreover, we have m = 7 (d’) for some
o' € 3,0 € A satisfying 0’ <, . Now Lemma 6.6(i) implies § <, 7.

Finally, by Lemma 6.1, 7,(d) and 7 are adjacent or equal. ]

We have the following analogue of Remark 4.2, which in particular implies
that IIg(A) is different from A.

Lemma 9.3. The sum of the distances between a vertex of ¥ and all the
vertices of lls(A) is less than the corresponding sum for ¥ and A.
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Note that by equivariance the value in Lemma 9.3 does not depend on
the choice of the vertex of X.

Proof. Fix 0 € ¥ and let 6 € A be minimal with respect to <,. By Re-
mark 4.2 we have d(o,7,(0)) < d(o,d). All other vertices §' € A are in
correspondence with vertices 7" € IIx(A) of the form 7,/ (d") for some o’ € 3.
By Lemma 6.6(ii) we then have d(o,7’") < d(o,d’). Summing up the inequal-
ities yields the lemma. O

We now introduce a definition analogous to the one in Section 7.

Definition 9.4. A flag subcomplex Y of X is ¥ —convez, for ¥ € YO if for
any A € YO\ {3} we have IIg(A) € Y(©,

Note that by Lemma 9.3 each finite subcomplex of X is contained in a
finite ¥—convex subcomplex of X. Hence in order to prove Theorem 1.5, it
remains to show the following.

Theorem 9.5. Let Y be a finite ¥—convex subcomplex of X. Then YV is
dismantlable.

Proof. We choose any o € Y. By Corollary 5.6 we can extend the relation
<, to a linear order on MS(E,v, a). Let x4 be the vertex of Y(®) containing
the minimal possible vertex of MS(F,~,«) in this order. Let x; be one
of the remaining vertices of Y(© containing a minimal possible vertex of
MS(E,~,«) etc. By Lemma 9.2, every II5;(A) is larger than A in this order.
In particular, ¥ is largest.

For any non-largest x; we put z; = IIx(x;). By Lemma 9.2 j satisfies
condition (i) in Definition 7.1 and (as discussed above) we have j > i.

It remains to verify condition (ii). Let z; be adjacent to z; with k > 1.
Let 0 € x; be the minimal element with respect to <,. By the way we have
ordered the z’s, for all ' € x;, we have 6 <, ¢'. From Lemma 6.1 we get
§ <, m,(0), for all 0" € xj. By equivariance, we get that ¢’ and 7 are adjacent
or equal for all ' € x), and 7 € Il (z;) = x;. This means that x; and x; are
adjacent or equal, as desired. O
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