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TUNNEL NUMBERS OF SMALL KNOTS
DO NOT GO DOWN UNDER CONNECTED SUM

KANJI MORIMOTO AND JENNIFER SCHULTENS

(Communicated by Ronald A. Fintushel)

Abstract. Let K1 and K2 be two knots in S3 and t(K1), t(K2) the tunnel
numbers of them. In this paper, we show that if both K1 and K2 are small,
then t(K1#K2) ≥ t(K1)+t(K2). Moreover we show that t(K1#K2# · · ·#Kn)
≥ t(K1) + t(K2) + · · ·+ t(Kn) for any small knots K1, K2, · · · , Kn.

1. Introduction

Let K be a knot in the 3-sphere S3 and t(K) the tunnel number of K. Here,
t(K) is the minimum number of mutually disjoint arcs properly embedded in E(K)
whose exterior is a handlebody, where E(K) = cl(S3−N(K)) and N(K) is a regular
neighborhood of K in S3. For two knots K1 and K2, we denote the connected sum
of them by K1#K2.

Concerning the problem if tunnel numbers of knots go down or not under con-
nected sum, in 1992 the first author showed the existence of those knots whose
tunnel numbers go down. In fact he got:

Theorem 1 ([Mo1, Theorem]). There are infinitely many knots K such that t(K)
= 2 and t(K#K ′) = 2 for any 2-bridge knot K ′.

After then, by taking the connected sum of knots obtained by modifying those
knots in Theorem 1, Kobayashi showed:

Theorem 2 ([Ko, Theorem]). For any positive integer n, there are infinitely many
pairs of knots K1 and K2 such that t(K1#K2) < t(K1) + t(K2)− n.

Theorem 2 says that tunnel numbers of knots can arbitrarily highly degenerate.
Moreover, we see that those knots in Theorem 1 and Theorem 2 have the property
that the exteriors contain closed essential surfaces.

Now, we say that a knot K is small if E(K) contains no closed essential surfaces.
Then the second author showed:

Theorem 3 ([St2, Corollary 13]). If both K1 and K2 are small, then

t(K1#K2) ≥ t(K1) + t(K2)− 1.
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This theorem says that tunnel numbers of small knots either do not go down or
go down by one under connected sum. In this paper, we show that we can get rid
of the term “− 1”. Namely we prove:

Theorem 4. If both K1 and K2 are small, then

t(K1#K2) ≥ t(K1) + t(K2).

More generally, we will prove the following. We note that K#K ′ is no longer
small even if both K and K ′ are small.

Theorem 5. For any small knots K1, K2, · · · , Kn,

t(K1#K2# · · ·#Kn) ≥ t(K1) + t(K2) + · · ·+ t(Kn).

Throughout this paper, for an m-manifold M (m = 2 or 3 resp.) and an n-
manifold N (n = 1 or 2 resp.) properly embedded in M , a component of M −
N means the closure of a component of M − N . And for a manifold X and a
subcomplex Y of X , N(Y ) denotes a regular neighborhood of Y in X .

2. Preliminaries

Let K1 and K2 be two knots in S3, and put K = K1#K2 in S3. Let N(K)
be a regular neighborhood of K in S3, and put E(K) = cl(S3 − N(K)). Let
Γ = {γ1, γ2, · · · , γt} be an unknotting tunnel sysytem for K, i.e. γi (i = 1, 2, · · · , t)
is an arc properly embedded in E(K) and cl(E(K) − N(γ1 ∪ γ2 ∪ · · · ∪ γt)) is a
genus t + 1 handlebody, where N(γ1 ∪ γ2 ∪ · · · ∪ γt) is a regular neighborhood of
γ1 ∪ γ2 ∪ · · · ∪ γt in E(K).

Put V1 = N(∂E(K) ∪ γ1 ∪ γ2 ∪ · · · ∪ γt) in E(K), V2 = cl(E(K) − V1) and
V1 ∩ V2 = F . Then V1 is a genus t + 1 compressionbody with ∂V1 − F = ∂E(K)
and V2 is a genus t + 1 handlebody with ∂V2 = F . Hence (V1, V2) is a genus t + 1
Heegaard splitting of E(K).

Let ∆i (i = 1, 2) be a disk properly embedded in Vi with ∂∆i ⊂ F . Then we
say that ∆i is essential if ∂∆i is an essential loop in F . We say that the Heegaard
splitting (V1, V2) is reducible if there is an essential disk ∆i in Vi (i = 1, 2) with
∂∆1 = ∂∆2, and that the Heegaard splitting (V1, V2) is irreducible if it is not
reducible. Moreover according to [CG], we say that (V1, V2) is weakly reducible if
there is an essential disk ∆i in Vi (i = 1, 2) with ∂∆1 ∩ ∂∆2 = ∅, that (V1, V2) is
strongly irreducible if it is not weakly reducible.

Now, suppose that the unknotting tunnel system Γ for K = K1#K2 realizes the
tunnel number of K. Then the corresponding Heegaard splitting (V1, V2) of E(K)
is irreducible. Thus hereafter we assume that the Heegaard splitting is irreducible.
Then the second author showed:

Lemma 6 ([St2, Theorem 9]). Let both K1 and K2 be small, and suppose the cor-
responding Heegaard splitting (V1, V2) is weakly reducible. Then t(K1#K2) ≥ t(K1)
+ t(K2).

Let S be the 2-sphere giving the connected sum of K = K1#K2. Then we can
put S ∩ N(K) = D∗

1 ∪ D∗
2 , where D∗

i (i = 1, 2) is a meridian disk of N(K). Put
A = cl(S− (D∗

1 ∪D∗
2)); then A is a separating essential annulus properly embedded

in E(K). Then the second author showed:
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Lemma 7 ([St2, Lemma 6]). If the Heegaard splitting (V1, V2) is strongly irreduc-
ible, then after some ambient isotopy for A, A ∩ F consists of essential loops in
both A and F .

Moreover, she showed:

Lemma 8 ([St2, Lemma 11]). If both K1 and K2 are small, then (V1, V2) is weakly
reducible, or we can choose the Heegaard splitting (V1, V2) so that A∩F consists of
two essential loops or of four essential loops in both A and F .

Remark 9. The Heegaard splitting (V1, V2) in Lemma 8 may not be isotopic to the
Heegaard splitting we take first because the argument in the proof of [St2, Lemma
11] exchanges the Heegaard splittings. In fact, the argument in the proof of [St2,
Lemma 11] has been done under the two assumptions stated in [St2, section 4], but
we have no those assumptions in this paper. Therefore the statement in the above
lemma is somewhat different from that in [St2, Lemma 11].

3. Proof of theorem 4

In this section, we show the following, which is a refinement of Lemma 8.

Lemma 10. If both K1 and K2 are small, then (V1, V2) is weakly reducible, or we
can choose the Heegaard splitting (V1, V2) so that A ∩ F consists of two essential
loops in both A and F .

Remark 11. If A∩F consists of two essential loops in both A and F , then by a more
detailed argument we can show that (V1, V2) is weakly reducible. Hence this lemma
says that we can always take the Heegaard splitting of E(K1#K2) corresponding
to the tunnel number t(K1#K2) to be weakly reducible.

Proof. We denote the number of components of A∩F by |A∩F |. Then by Lemma
8, we may assume that |A ∩ F | = 4 and each component of A ∩ F is an essential
loop in both A and F . Then since A is a separating essential annulus in E(K),
we can put A ∩ V1 = E1 ∪ E2 ∪ E0 and A ∩ V2 = G1 ∪ G2, where Ei (i = 1, 2) is
an annulus in V1 connecting F and ∂E(K), E0 is an essential annulus in V1 with
∂E0 ⊂ F and Gi (i = 1, 2) is an essential annulus in V2. Then we can regard E0 as
a union of an essential disk D0 in V1 and a band b0, Gi (i = 1, 2) as a union of an
essential disk Di in V2 and a band bi. Since the annulus Ei (i = 1, 2) extends to a
non-separating disk Ei ∪D∗

i in the handlebody V1 ∪N(K), Ei is a non-separating
annulus in V1. Moreover, since A is a separating annulus in E(K), E1 ∪E2 ∪E0 is
a separating 2-manifold in V1. Hence according to whether E1 ∪E2 is a separating
2-manifold or not in V1, we have the following two cases.

Case I: E1 ∪ E2 splits V1 into two components and E0 is a separating annulus
in one of the two components (Figure 1(I)).

Case II: E1∪E2 does not split V1 and E0 is a non-separating annulus in V1 such
that E1 ∪ E2 ∪D0 splits V1 into two components (Figure 1(II)).

Suppose we are in Case I.
In this case, since E1 ∪ E2 splits V1 into two components and D0 splits one

of the two components into two components, b0 is contained in one of the two
components. Then we have the following claim. Recall the annulus A consists of
five annuli E1 ∪G1 ∪ E0 ∪G2 ∪ E2.
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Figure 1

Claim 12. We may assume that the band b0 is contained in the component of
V1 − (E1 ∪ E2 ∪D0) not meeting E1 ∪E2 as illustrated in Figure 1(I).

Proof. Suppose b0 is contained in the component of V1 − (E1 ∪ E2 ∪ D0) meeting
E1 ∪ E2. Push out the band b1 from V2 into V1; then a band in V1, say b′1, is
produced. Since b1 is a part of G1, b′1 is a band connecting E1 and E0. Then, since
b0 is contained in the above component, b′1 does not run over b0. Hence we can
push out b0 from V1 into V2 leaving b′1 in V1. Then after these ambient isotopies,
A ∩ F consists of two loops, and this completes the proof.

Suppose one of G1 and G2 is a separating annulus in V2; then since A is a
separating annulus in E(K), the other is a separating annulus too. Then both D1

and D2 are separating disks in V2, and D1 ∪ D2 splits V2 into three components
R0, R1, R2, where D1 ⊂ ∂R1, D2 ⊂ ∂R2 and D1 ∪D2 ⊂ ∂R0.

Suppose the band b1 is not contained in R1, and let H1 be the component of
V2 − G1 containing R1. Then H1 ∩ F is a connected surface with two boundary
components, and H1 ∩ F is identified with X2 ∩ F or X3 ∩ F . Hence G1 connects
E1 and E2 or ∂G1 = ∂E0, a contradiction. If the band b2 is not contained in R2,
then we have the same contradiction. Thus bi is contained in Ri (i = 1, 2). Then
G1 ∪G2 splits V2 into three components H1, H2, H0, where G1 ⊂ ∂H1, G2 ⊂ ∂H2

and G1 ∪ G2 ⊂ ∂H0. If one of H1 ∩ F and H2 ∩ F is connected, then we have a
contradiction as above. Hence each of H1 ∩ F and H2 ∩ F has two components.
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Figure 2

Then there is no component in H1∩F , H2∩F and H0∩F which has two boundary
components. But X2 ∩ F has two boundary componects, a contradiction.

Thus both G1 and G2 are non-separating annuli in V2 and G1 ∪G2 splits V2 into
two components (Figure 2). Figure 2(a) is the case when the bands b1 and b2 are
contained in one of the two components V2 − (D1 ∪ D2). Figure 2(b) is the case
when b2 is contained in one of the two components V2− (D1 ∪D2) and b1 or a part
of b1 is contained in the other component, and in the latter case b1 runs over the
band b2. We note that in the case of Figure 2(b) the band b2 does not run over the
band b1.

Let X1, X2 and X3 be the three components of V1 − (E1 ∪ E2 ∪ E0) indicated
in Figure 1(I), and Y1 and Y2 the two components of V2 − (G1 ∪ G2) indicated in
Figure 2.

Claim 13. X1 ∩ F is identified with Y1 ∩ F .

Proof. Suppose X1 ∩ F is identified with a part of Y2 ∩ F . Push out the band b1

from V2 into V1, and let b′1 be the band in V1 produced by the ambient isotopy.
Then b′1 is contained in X2 or X3. This means that ∂G1 is contained in ∂(E1 ∪E2)
or that ∂G1 = ∂E0. This is a contradiction because ∂G1 consists of a component
of ∂E1 and a component of ∂E0, and completes the proof.

By the above claim, (X2 ∪ X3) ∩ F is identified with Y2 ∩ F . We denote the
images of E1, E2, E0, G1 and G2 in ∂X1, ∂X2, ∂X3, ∂Y1 and ∂Y2 by the same
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Figure 3

notations. According as X2 ∩ F is an annulus or not, we have the following two
subcases.

Case I-(1): X2 ∩ F is not an annulus.
In this case, since X2∩F has a positive genus, we can take an essential disk, say

∆1, properly embedded in X2 ⊂ V1 indicated in Figure 3(1). Let ∆2 be an essential
disk properly embedded in Y1 ⊂ V2 parallel to D1 indicated in Figure 3(2).

Then, since X1 ∩ F is identified with Y1 ∩ F , ∂∆1 ∩ ∂∆2 = ∅. This shows that
(V1, V2) is weakly reducible.

Case I-(2): X2 ∩ F is an annulus.
Let N1 and N2 be the two components of N(K)− (D∗

1∪D∗
2) so that Ni∩Xi (i =

1, 2) is an annulus. Put B1 = X1 ∪ N1 ∪ Y1 and B2 = X2 ∪ N2. Then B2 is a
3-ball. And since B1 is a component of S3 − S, B1 is a 3-ball too. Moreover, since
B1 ∩ X3 = X1 ∩ X3 = E0 is an annulus, B1 is a 2-handle for the handlebody X3

along E0. And since B2 ∩ Y2 = X2 ∩ F is an annulus, B2 is a 2-handle for the
handlebody Y2.

Put W1 = B1 ∪ X3 and W2 = B2 ∪ Y2. Then W1 ∪ W2 = S3 and W1 ∩ W1 =
∂W1 = ∂W2. Hence at least one of W1 and W2 has a compressible boundary. Then
we have the following two subcases.

(i): ∂W1 is compressible in W1.
Suppose W1 is a 3-ball. Then X3 is a solid torus. If the annulus E0 winds around

the handle of X3 more than once, then by [Mo2, Proposition 1.3] S3 has a lens space
summand, a contradiction. Hence E0 winds around the handle of X3 exactly once,
and we can push out E0 from V1 into V2. This makes |A ∩ F | to be 2. Hence we
may asuume that W1 is not a 3-ball. Then W1 has a compressible boundary with
a positive genus. Then by [Ja, Theorem 2] (cf. [Sr1, Lemma 1.1]), ∂X3 − E0 is
compressible in X3. Then there is a compressing disk, say ∆1, for ∂X3 − E0 in
X3. And, since E0 is an incompressible annulus in ∂X3, ∆1 is an essential disk in
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X3 and in V1. Let ∆2 be an essential disk properly embedded in Y1 ⊂ V2 parallel
to D1 indicated in Figure 3(2). Then ∂∆1 ∩ ∂∆2 = ∅. This shows that (V1, V2) is
weakly reducible.

(ii): ∂W2 is compressible in W2.
Put B2 ∩ Y2 = G3. Then G3 is an annulus in ∂Y2, and ∂G3 consists of a

component of ∂G1 and a component of ∂G2. In this case, the four components
∂G1 ∪ ∂G2 are all mutually parallel to each other in ∂Y2.

If W2 is a 3-ball, then Y2 is a solid torus. Then ∂Y2 − (G1 ∪ G2 ∪ G3) is an
annulus, and it is identified with ∂X3 − E0. Hence X3 is a solid torus, and by
the argument in the case (i), we may assume that W2 is not a 3-ball. Then by
the argument in the case (i) ([Ja, Theorem 2]), we have an essential disk, say
∆2, properly embedded in Y2 ⊂ V2 with ∂∆2 ⊂ ∂Y2 − (G1 ∪ G2 ∪ G3). Let ∆1

be an essential disk properly embedded in X1 ⊂ V1 parallel to D0 (then ∆1 is a
separating disk in X1 ⊂ V1). Then ∂∆1 ∩ ∂∆2 = ∅, and this shows that (V1, V2) is
weakly reducible. This completes the proof of Case I.

Suppose we are in Case II.
Let X1 and X2 be the two components of V1− (E1∪E2∪E0) indicated in Figure

1(II). Suppose one of G1 and G2 is a separating annulus in V2; then by the same
reason as in Case I, the other is a separating annulus too. Then both D1 and D2

are separating disks in V2, and D1∪D2 splits V2 into three components R0, R1, R2,
where D1 ⊂ ∂R1, D2 ⊂ ∂R2 and D1 ∪D2 ⊂ ∂R0.

Suppose the band b1 is not contained in R1, and let H1 be the component of
V2 − G1 containing R1. Then H1 ∩ F is a connected surface with two boundary
components, and H1 ∩ F is not identified with X1 ∩ F . Then by the argument in
the proof of Claim 12, we can change the bands b0 and b1 and reduce the number
of |A∩F |. Hence bi is contained in Ri (i = 1, 2). Then G1 ∪G2 splits V2 into three
components H1, H2 and H0, where G1 ⊂ ∂H1, G2 ⊂ ∂H2 and G1 ∪ G2 ⊂ ∂H0.
Since H0 ∩ F is a connected surface with four boundary components, H0 ∩ F is
identified with X1 ∩ F and (H1 ∩ F ) ∪ (H2 ∩ F ) is identified with X2 ∩ F .

Consider the incompressibility of H1 ∩ F . If H1 ∩F is compressible in H1 ⊂ V2,
then we have a compressing disk, say ∆2, for H1∩F properly embedded in H1 ⊂ V2,
and let ∆1 be the essential disk properly embedded in X1 ⊂ V1 parallel to D0. Then
∂∆1 ∩ ∂∆2 = ∅. This shows that (V1, V2) is weakly reducible, a contradiction. If
H1 ∩ F is compressible in X2 ⊂ V1, then we have a compressing disk, say ∆1, for
H1 ∩ F properly embedded in X2 ⊂ V1, and let ∆2 be the essential disk properly
embedded in H0 ⊂ V2 parallel to D1. Then ∂∆1∩∂∆2 = ∅, a contradiction. Hence
H1 ∩ F is incompressible in both H1 and X2.

Glue H1 ∪ H2 and X2 along (H1 ∩ F ) ∪ (H2 ∩ F ) = X2 ∩ F , and get E(K2) =
H1 ∪ H2 ∪ X2. By this identification, X2 ∩ F has two components each of which
has two boundary components. Hence H1 ∩ F is a connected surface with two
boundary components. Put Q = H1 ∩ F . Then Q is an incompressible surface
properly embedded in E(K2), and ∂Q consists of two meridian loops of N(K2). If
Q is not an annulus, then Q is essential and by [CGLS, Theorem 2.0.3(iii)], E(K2)
contains a closed essential surface, a contradiction. Thus Q is an annulus and hence
H1 is a solid torus. Then by [Mo2, Proposition 1.3], G1 is parallel to an annulus in
∂V2. Then we can reduce the number of |A ∩ F |, a contradiction. Thus both G1

and G2 are non-separating annuli.
Let Y1 and Y2 be the two components of V2 − (G1 ∪ G2) indicated in Figure 2.

Then by the argument similar to the proofs of Claims 12 and 13, Xi ∩ F (i = 1, 2
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resp.) is identified with Yi∩F (i = 1, 2 resp.) We denote the images of E1, E2, E0,
G1 and G2 in ∂X1, ∂X2, ∂Y1 and ∂Y2 by the same notations.

If X2 ∩ F is compressible in X2, then we have a compressing disk, say ∆1, for
X2 ∩ F properly embedded in X2 ⊂ V1. Let ∆2 be an essential disk in Y1 ⊂ V2

indicated in Figure 3(2); then ∂∆1 ∩ ∂∆2 = ∅. This shows that (V1, V2) is weakly
reducible. If Y2∩F is compressible in Y2, then we have a compressing disk, say ∆2,
for Y2 ∩ F properly embedded in Y2 ⊂ V2. Let ∆1 be an essential disk in X1 ⊂ V1

parallel to D0; then ∂∆1 ∩ ∂∆2 = ∅. This shows that (V1, V2) is weakly reducible.
Hence we assume that X2 ∩ F (Y2 ∩ F resp.) is incompressible in X2 ( Y2 resp.).

Glue X2 and Y2 along X2 ∩ F = Y2 ∩ F . Then we get E(K2) = X2 ∪ Y2.
Put Q = X2 ∩ F = Y2 ∩ F . Then Q is an incompressible 2-manifold properly
embedded in E(K2), and ∂Q consists of four meridian loops of N(K2). If Q has
a component which is not an annulus, then the component is an essential surface
in E(K2) and by [CGLS, Theorem 2.0.3(iii)], E(K2) contains a closed essential
surface, a contradiction.

Suppose Q consists of two annuli. Then X2 is a solid torus homeomorphic to (an
annulus, say R) ×[1, 4] so that R × {1} = E1, R × {4} = E2 and (a component of
∂R) ×[2, 3] = E0. Put E3 = R×{ 5

2}. Then, since a component of ∂E3 is contained
in E0 ⊂ A, the component splits A into two annuli A1 and A2. And, since small
knots are prime, one of A1∪E3 and A2∪E3, say A1∪E3, is a decomposing annulus
of E(K1#K2) and A2 is isotopic rel. ∂E(K1#K2) to E3. This reduces the number
of |A ∩ F | and completes the proof of Case II and Lemma 10.

Proof of Theorem 4. Let (V1, V2) be a Heegaard splitting corresponding to an un-
knotting tunnel system for K = K1#K2 which realizes the tunnel number of
K. Then (V1, V2) is irreducible, and by Lemma 10 we may assume that (V1, V2)
is weakly reducible or the decomposing 2-sphere of K1#K2 intersects the Hee-
gaard surface in two essential loops. In the former case, by Lemma 6 we have
t(K1#K2) ≥ t(K1) + t(K2). In the latter case, by the argument in the proof of
Case 1 of [St2, Theorem 12], we have t(K1#K2) ≥ t(K1) + t(K2). This completes
the proof of Theorem 4.

4. Proof of Theorem 5

Put K = K1#K2# · · ·#Kn, and let (V1, V2) be the Heegaard splitting of E(K)
corresponding to an unknotting tunnel system for K which realizes the tunnel
number of K.

Lemma 14. If (V1, V2) is weakly reducible, then

t(K1#K2# · · ·#Kn) ≥ t(Ki1# · · ·#Kij ) + t(Kij+1# · · ·#Kin)

for some j.

Proof. Since (V1, V2) is weakly reducible, by considering the untelescoping of (V1, V2)
and by [CG, Theorem 3.1] and [St2, Remark 7] (cf. [LM, Theorem 1.3]), there is
a closed incompressible surface S in E(K) such that S splits (V1, V2) into two
Heegaard splittings (V 1

1 , V 1
2 ) and (V 2

1 , V 2
2 ). Then (V1, V2) is an amalgamation of

(V 1
1 , V 1

2 ) and (V 2
1 , V 2

2 ) along the surface S, and g(V1, V2) = g(V 1
1 , V 1

2 )+g(V 2
1 , V 2

2 )−
g(S), where g(·) is the genus of the Heegaard splitting or is the genus of the sur-
face. For the definition of amalgamation, see [St1]. And for the definition of the
untelescoping, see [St2, Definition 12], [Sr2] or [ST].
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Figure 4

If S is boundary parallel in E(K), then E(K) has a lower genus Heegaard
splitting than g(V1, V2), a contradiction. Hence S is essential. Then by [St2,
Lemma 14], S is a swallow follow torus as illustrated in Figure 4, and S splits
E(K) into E(Ki1# · · ·#Kij )−(a solid torus) and E(Kij+1# · · ·#Kin). Then,
since (V 1

1 , V 1
2 ) ((V 2

1 , V 2
2 ) resp.) is a Heegaard splitting of E(Ki1# · · ·#Kij )−

(a solid torus) (E(Kij+1# · · ·#Kin) resp.), t(Ki1# · · ·#Kij ) ≤ g(V 1
1 , V 1

2 ) − 1 and
t(Kij+1# · · · #Kin) ≤ g(V 2

1 , V 2
2 ) − 1. Thus by noting g(S) = 1, we have

t(Ki1# · · ·#Kij ) + t(Kij+1# · · ·#Kin) ≤ g(V 1
1 , V 1

2 )−1 + g(V 2
1 , V 2

2 )−1 = g(V1, V2)
−1 = t(K1#K2# · · · #Kn). This completes the proof.

Let S1, S2, · · · , Sn−1 be the decomposing 2-spheres giving the connected sum of
K = K1#K2# · · ·#Kn. Put Ai = Si ∩ E(K) (i = 1, 2, · · · , n − 1). Then Ai is a
separating essential annulus properly embedded in E(K). By Claim 2 in the proof
of [St2, Theorem 15], we have:

Lemma 15. (V1, V2) is weakly reducible, or we can choose the Heegaard splitting
(V1, V2) and the decomposing 2-spheres so that F intersects at most one of the
decomposing annuli in 2 or 4 essential loops and intersects the others in 2 essential
loops in both F and the annuli.

By Lemmas 14 and 15, and by exchanging the decomposing 2-spheres if neces-
sary, we can put |F ∩ Ai1 | = 2 or 4 and |F ∩ Aij | = 2 (j = 2, · · · , n − 1). Then
by repeating the argument in the proof of Case 1 of [St2, Theorem 12], we have
t(K1#K2# · · ·#Kn) ≥ t(Ki1#Ki2) + t(Ki3)+ · · ·+ t(Kin). Moreover by Theorem
4, t(Ki1#Ki2) ≥ t(Ki1) + t(Ki2). This completes the proof of Theorem 5.
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